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Abstract: Cymbidium is the most famous and widely distributed type of plant in the Orchidaceae
family. It has extremely high ornamental and economic value. With the continuous development
of the Cymbidium industry in recent years, it has become increasingly difficult to classify, identify,
develop, and utilize orchids. In this study, a classification model GL-CNN based on a convolutional
neural network was proposed to solve the problem of Cymbidium classification. First, the image
set was expanded by four methods (mirror rotation, salt-and-pepper noise, image sharpening, and
random angle flip), and then a cascade fusion strategy was used to fit the multiscale features obtained
from the two branches. Comparing the performance of GL-CNN with other four classic models
(AlexNet, ResNet50, GoogleNet, and VGG16), the results showed that GL-CNN achieves the highest
classification prediction accuracy with a value of 94.13%. This model can effectively detect different
species of Cymbidium and provide a reference for the identification of Cymbidium germplasm resources.

Keywords: Cymbidium; classification; global–local CNN; convolutional neural network

1. Introduction

Orchidaceae is one of the largest and most diverse flowering plants and has been
widespread all around the world [1]. Cymbidium, belonging to the Orchidaceae family,
with elegant and upright leaves and fragrant flowers, is the most important and economic
flowering genus. It is popular in Asia, especially in China, Japan, Korea, and Southeast
Asia [2]. In China, the Cymbidium has more than a thousand years of history with extremely
high cultural and economic value [3]. The flowers of Cymbidium have various colors and
shape patterns, which usually leads to confusion when comparing cultivars to assess
genetic resources at the species level [4]. In recent years, with the continuous development
of the Cymbidium industry, the number of Cymbidium germplasm resources has increased
year by year, which greatly increases the difficulty of orchid classification, identification,
and development. Traditional approaches for the classification of Cymbidium cultivars
are based on morphological traits, which are difficult due to the problems associated
with morphological variability, growth conditions, overlapping geographical origins, and
individual biases, and most of these cultivars are related [5–7]. It requires professionals
but offers jugged with subjective. Molecular recognition is the most effective method to
identify the various Cymbidium cultivars [8–10], but often time and cost-consuming, making
it unsuitable for high throughput and rapid classification.

Recently, an emerging field of machine learning, deep learning (DL), known as deep
neural networks, has been growing fast and widely used in many fields, such as image
processing, content prediction, and text understanding [11]. The main core of the deep
learning algorithm is largely inherited from artificial neural network architecture with many
hidden layers. Deep learning allows computers to process and analyze images and extract
image details similar to the human brain and has been significantly progressed for image
pattern recognition as computer vision algorithms [12]. Convolutional neural network
(CNN) is one of the most common methods for visual image classification and has been
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widely adopted by the research community [13]. With the support of powerful graphics
processing units (GPU), CNN can be easily used with low-cost normal image data and huge
numbers of datasets, as deep learning often requires large datasets and powerful resources
for model training [14]. Inspired by the results of image classification and object detection,
many researchers use CNN to identify plant images [15,16]. For instance, CNN has been
successfully used to automatically learn discriminative features from leaf images [17] and
to detect the diversity in flower images [18]. In addition, the features extracted by CNN
could highly improve classification accuracy and have been suggested to be the optimal
candidate for any visual task [19,20]. CNN has been successfully used to extract features for
hyperspectral image (HSI) classification and perform at high accuracy [21]. Hiary et al. [22]
conducted a two-step deep learning model that could automatically discover the portions
of flowers and use the feature extracted from this portion to yield a high classification
accuracy of 97.1% on flowers. Dias et al. [23] also performed feature extraction from a
fine-tuned CNN model and used these features to establish a support vector machines
(SVM) classification model. The model accuracy reached 90% on apple flowers. In addition,
a combination of features extracted from pretrained CNN models (AlexNet, ResNet50,
and VGG-16) was also used for flower species classification, with a success rate of 80%.
These pretrained models have achieved successful results in an ImageNet competition [24].
Evidence has shown that combining the feature selection of CNN model and traditional
machine learning methods, such as SVM and random forest (RF), could yield a high success
rate, save massive process time, and reduce computation intensity [25]. However, among
the available research into CNN technologies, there is limited research into detecting flower
images of diverse Cymbidium species.

CNN has a powerful ability to capture local features and keep parallel motion un-
changed [26]. However, the existing classification methods based on CNN mostly focus on
single-scale image datasets [27]. Global–local CNN (GL-CNN), a CNN based on multifea-
ture fusion, can fuse global and local features. Hao et al. [27] used GL-CNN to classify the
growth period of Gynura bicolor DC, and the test accuracy of GL-CNN reached 95.63%. In
this study, we proposed a global–local joint training CNN framework called GL-CNN to
solve the problem of identifying different Cymbidium species instead of using global image
information alone. Specific objectives were to: (1) The image set was expanded by four
methods (mirror rotation, salt-and-pepper noise, image sharpening, and random angle
flipping) to improve the model training effect and prevent overfitting. (2) A GL-CNN archi-
tecture based on a fusion strategy was proposed to classify 10 different species of Cymbidium.
(3) The GL-CNN model was compared with the four classic models (AlexNet, ResNet50,
GoogleNet, and VGG16) and the model performance was comprehensively evaluated.

2. Materials and Methods
2.1. Cymbidium Species Flower Dataset

In this study, we collected 10 species of Cymbidium, which were C. goeringii, C.
longibracteatum, C. faberi, C. sinense, C. hybrids, C. hybridum, C. ensifolium, C. kanran,
C. hookerianum, and C. tortisepalum for flower classification. During the flowering period,
the flowers of each species were pictured using a high-definition camera (Canon 500D,
Tokyo, Japan). There was a total of 3390 pictures. They were divided into two types, as
shown in Figure 1. One was an unpicked Cymbidium plant, and the other was a flower on
a black background.
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Figure 1. Examples of pictures of 10 Cymbidium species.

2.2. Data Preprocessing
2.2.1. Two-Scale Image Acquisition

Before model training, Cymbidium images were subjected to two-scale processing to
improve the robustness of the classification model established by the image with different
backgrounds [27]. Figure 2 shows an image sample randomly selected from 10 Cymbidium
species. The red frame represents the second scale image captured. First, set the original
image to a size of 224 × 224 to obtain an image of the first scale. Since the recognition
targets were basically located in the middle of the images, the experiment chose to intercept
a partial image from the center of the first scale image (the height and width of the partial
image were both 0.8 times of the first scale image) as the second scale image. The size of
the second scale image was the same as the first scale image, which was 224 × 224 [28].
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2.2.2. Data Set Enhancement

The original data set was divided into training, validation, and test sets at a ratio of
8:1:1. Although the diversity of sample species and morphology were considered in the
image collection process, the growth of orchids and the imaging angle were random [26].
This experiment mainly chose mirror rotation, sharpening, salt-and-pepper noise, and
random angle rotation to enhance the image set [29–31]. The total number of samples was
expanded by four times, and the effects before and after image enhancement are shown in
Figure 3.
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2.3. Global–Local CNN Classification Model
2.3.1. GL-CNN Model Construction

In this part, we proposed a global–local CNN (GL-CNN) network to achieve accurate
classification of different kinds of Cymbidium. The network consists of two types of features
extracted from the trained GL-CNN. The first branch network is the global feature, denoted
as “Gnet.” The second feature is used to capture the local information of the input image,
denoted as “LNet” [27]. The overall network structure is shown in Figure 4. The model
input consists of two parts. The original image is input to GNet with a size of 224 × 224,
and the corresponding local images of the same size are input to LNet. There is a one-to-one
correspondence between input images of two scales. This operation expands the original
image information from the data level by expanding the resolution of the input image in
the LNet branch.

This experiment designed different sizes of convolution kernels according to the scale
of the input image in order to enhance the feature extraction ability of the network. As
shown in Figure 4, since GNet extracts global features based on larger-scale images, the
size of the first convolution kernel is set to 11 × 11 to extract edge features. This branch
mainly includes four convolutional layers, three pooling layers, and one fully connected
layer. Moreover, LNet is a detailed feature extraction branch based on a more fine-grained
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image design, which adds an additional convolutional layer based on GNet to abstract the
features [26].
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2.3.2. Cascade Fusion Strategy

We used the cascade fusion strategy to fit the multiscale features obtained from
the two branches [32]. A feature fusion block was designed to capture features with
more details [31]. With a cascading operation, it can process data layer-by-layer, and it
only merges the two parts of the feature vectors without performing other mathematical
operations. More importantly, the concatenated vector contains all the feature vectors. In a
nutshell, the model can be concerned as an “ensemble of ensembles.”

In order to combine the different features of the global image and the local image, the
“cascade fusion” strategy integrates FC11 and FC12 into the Cas layer through cascade
(Table 1) and sends the Cas feature queue to the FC2 and FC3 layers for further feature
combination and integration. Finally, the prediction probability output is realized through
the SoftMax layer. The main hidden layer parameter settings are shown in Table 1.

Table 1. Details of GL-CNN hidden layer parameters.

Layer Type Size Number of Cores Step Size Output Size Number of
Convolutions

Number of
Neurons

Input - - - - 224 × 224 × 3 - -
Conv11 Convolution 11 × 11 96 4 54 × 54 × 96 (11 × 11 + 1) × 96 54 × 54 × 96
Pool11 Mean-pooling 3 × 3 - 2 26 × 26 × 96 - 26 × 26 × 96
Conv12 Convolution 5 × 5 96 1 26 × 26 × 256 (5 × 5 + 1) × 96 26 × 26 × 96
Pool12 Mean-pooling 3 × 3 - 2 12 × 12 × 96 - 12 × 12 × 96
Conv13 Convolution 3 × 3 192 1 12 × 12 × 384 (3 × 3 + 1) × 192 12 × 12 × 192
Conv14 Convolution 3 × 3 256 1 12 × 12 × 384 (3 × 3 + 1) × 256 12 × 12 × 256
Pool13 Mean-pooling 3 × 3 - 2 5 × 5 × 256 - 5 × 5 × 256
FC11 Fully connected 1 × 1 4096 - 1 × 1 × 4096 (1 × 1 + 1) × 4096 1 × 1 × 2048

Conv21 Convolution 5 × 5 96 3 75 × 75 × 96 (5 × 5 + 1) × 96 75 × 75 × 96
Pool21 Mean-pooling 3 × 3 - 3 25 × 25 × 96 - 25 × 25 × 96
Conv22 Convolution 5 × 5 96 1 25 × 25 × 256 (5 × 5 + 1) × 96 25 × 25 × 96
Pool22 Mean-pooling 3 × 3 - 2 12 × 12 × 96 - 12 × 12 × 96
Conv23 Convolution 3 × 3 192 1 12 × 12 × 384 (3 × 3 + 1) × 192 12 × 12 × 192
Conv24 Convolution 3 × 3 256 1 12 × 12 × 384 (3 × 3 + 1) × 256 12 × 12 × 256
Conv25 Convolution 3 × 3 256 1 12 × 12 × 384 (3 × 3 + 1) × 256 12 × 12 × 256
Pool23 Mean-pooling 3 × 3 - 2 5 × 5 × 256 - 5 × 5 × 256
FC21 Fully connected 1 × 1 4096 - 1 × 1 × 4096 (1 × 1 + 1) × 4096 1 × 1 × 2048
Cas Cascade - - - 1 × 1 × 8192 - 1 × 1 × 8192
FC2 Fully connected 1 × 1 4096 - 1 × 1 × 4096 (1 × 1 + 1) × 4096 1 × 1 × 4096
FC3 Fully connected 1 × 1 1000 - 1 × 1 × 1000 (1 × 1 + 1) × 1000 1 × 1 × 1000

Output Output 1 × 1 10 - 1 × 1 × 10 - -
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2.3.3. Model Enhancement

The model uses ReLU6 and dropout to prevent gradient explosion and alleviate poten-
tial overfitting problems. End-to-end training is achieved through momentum stochastic
gradient descent, and cross-entropy is used as the loss function.

ReLU 6 is an activation function commonly used in deep convolutional neural net-
works [27,33]. Relu uses x for linear activation in the region of x > 0, which may cause the
value after activation to be too large and affect the stability of the model [34]. In order to
offset the linear growth of the ReLU excitation function, the Relu6 function can be used.
The ReLU activation function and derivative function are:

ReLU6(x) = min(max(x, 0), 6) ∈ [0, 6] (1)

ReLU6′(x) =
{

1, 0 < x < 6
0, else

∈ {0, 1} (2)

Dropout is used to combat overfitting in artificial neural networks. It can avoid
complicated mutual adaptation to training data [35]. During the network training process,
half of the neurons are usually ignored randomly; that is, the dropout is set to 0.5. The
cross-entropy loss function is used to evaluate the difference between the predicted and
actual values of the model [36], which can be expressed as follows:

L =
1
N ∑i Li = −

1
N ∑i ∑M

c=1 yic log(pic) (3)

where M is the number of categories, N is the number of samples, and yic indicates the
symbolic function (0 or 1). If the true category of the sample i is equal to C, take 1, or
otherwise take 0. pic indicates the predicted probability of the observation sample with i
belonging to category C.

2.4. Model Training
2.4.1. Parameter Settings

Referring to the method of Hao et al. [27], the experiment was performed on a Win-
dows 10 64-bit PC equipped with an Intel(R) Xeon(R) CPU @ 3.80 GHz processor, 32 GB
RAM, and a GPU of NVIDIA GeForce GTX 3060. The GL-CNN model mentioned in this
article is implemented based on the Keras framework. In addition, the maximum number
of iterations epochs is set to 60, the initial learning rate is set to 0.05, and the learning rate is
updated to 1/2 of the original value every 20 epochs. The “SGD+Momentum” strategy is
adopted to update the parameters to improve the training speed of the model and avoid
falling into the local optimum at the same time [37].

2.4.2. Contrast Experiment

In order to evaluate the performance of the proposed GL-CNN model in orchid-type
classification tasks, comparative experiments were carried out with the classic AlexNet,
ResNet50, GoogleNet, and VGG16 models. AlexNet is a convolutional neural network
designed by Alex Krizhevsky and contains an eight-layer network [38]. The first five layers
are convolutional layers, some of the later layers are maximum pooling layers, and the last
three layers are fully connected layers. It uses a non-saturated ReLU activation function
and shows better training performance than tanh and sigmoid [39]. The Residual Neural
Network (ResNet) is an artificial neural network (ANN) that stacks residual blocks on
top of each other to form a network. ResNet-50 is a convolutional neural network with a
depth of 50 layers, which can accurately analyze visual images [40]. GoogLeNet is a type of
convolutional neural network based on the Inception architecture [39]. It utilizes Inception
modules, which allow the network to choose between multiple convolutional filter sizes
in each block. An Inception network stacks these modules on top of each other, with
occasional max-pooling layers with stride 2 to halve the resolution of the grid. VGG16 is a
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convolutional neural network model proposed by K. Simonyan and A. Zisserman of Oxford
University. This model achieves a top-five test accuracy rate of 92.7% in ImageNet [28].

2.4.3. Model Performance Evaluation

Four metrics, namely, precision, recall, F1-score, and accuracy, were used to evaluate
the classification model [27,41], and the formulas are expressed as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

F1 =
2TP

2TP + FP + FN
(7)

where true positive (TP) refers to the number of samples whose predicted value and actual
value are both positive. False positive (FP) refers to the number of samples whose predicted
value is positive, and the actual value is negative. False negative (FN) means false negative,
which refers to the number of samples whose predicted value is negative, and the measured
value is positive, correspondingly. True negative (TN) is true negative, which refers to the
number of samples whose predicted value and actual value are both negative.

3. Results
3.1. Data Collection and Preprocessing

In the image samples randomly selected from 10 Cymbidium species shown in Figure 2,
it can be observed that the background of the second scale image was smaller, and the
details of the flower such as veins and textures were more abundant, which was more
helpful to expand the input features and improve the classification accuracy. Four data
enhancement methods, i.e., mirror rotation, sharpening, salt-and-pepper noise, and random
angle rotation, were used to expand the training set by four times to prevent overfitting.

3.2. Model Performance Evaluation

The visual confusion matrix was used to count the classification results of different
Cymbidium species (Figure 5). The true category (ordinates) and the predicted category (ab-
scissa) were compared to obtain the classification rate of each species. The GL-CNN model
has the highest prediction accuracy for C. faberi and C. hookerianum, with an accuracy rate of
100%, followed by C. hybridum, with an accuracy rate of 98% (Figure 5a). From the numeri-
cal distribution of the confusion matrix, it can be observed that all models have achieved
high classification accuracy on C. hybrids, and their average classification rates have reached
95.6%. In addition, there have been more misclassifications between C. goeringii, C. longi-
bracteatum, and C. tortisepalum. In general, the model GL-CNN built by this project has
achieved a high individual classification rate in most orchid species recognition. The recog-
nition performance of VGG16 is poor, and there is a serious misclassification phenomenon.
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Figure 6 shows the precision, recall, and F1-score of 5 models for classifying 10 Cymbidium
species. Among them, the precision, recall, and F1-score of each model on C. goeringii and
C. hybrids all reached high values. On the contrary, the precision, recall, and F1-score of the
five models on the C. hookerianum are quite different. GL-CNN has the highest precision,
with an average of 89%. ResNet’s average precision is the lowest, only 78%, indicating that
there are many samples misclassified under this method. Using the AlexNet model, many
samples were misclassified to other varieties (the average recall rate was 0.78) because the
differences between the samples were small, and there was a certain degree of difficulty
in recognition. The precision and recall rate of different models are quite different, which
indicates that the recognition difference of each model is more prominent in the categories
that are more difficult to distinguish, showing a certain degree of unstable performance.
In addition, GL-CNN showed high precision and recall rates in 10 different species of
Cymbidium, indicating its strong ability to extract nuances.

Table 2 lists the average accuracy of the five models in order to further and compre-
hensively evaluate the effectiveness of the model. It can be observed from the table that
GL-CNN has achieved the highest average accuracy of 94.13%. Compared with other mod-
els, GL-CNN has greatly improved the accuracy of classification. Correspondingly, VGG16
only achieves an average accuracy of 88.60%, which is significantly lower than GL-CNN.

Table 2. Average accuracy of each model.

GL-CNN AlexNet ResNet GoogleNet VGGNet

Average
accuracy (%) 94.13 90.06 89.47 92.15 88.60
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4. Discussion

CNN is a method that combines an artificial neural network and deep learning with
good fault tolerance and adaptability [42]. At the same time, it also has the advantages of
automatic feature extraction, weight sharing, and a good combination of input image and
network structure [27]. It is widely used in plant species identification, pest identification,
weed identification, and other fields [43–45]. Existing CNN-based classification methods
mainly focus on single-scale image data sets [27]. Therefore, there is an urgent need to
design a fusion network that integrates the advantages of multiple features, which will
greatly improve classification performance. This research proposed a two-scale CNN model,
GL-CNN, which can extract features of different granularities from images of two scales,
thereby enriching useful feature information, and ultimately improving the recognition
ability of the model [26,27]. Researchers found that increasing the number of layers and
units in the network will bring significant performance improvements, but it is prone to
overfitting, explosion, or the disappearance of gradients [26]. To solve the above problems,
a compact bilinear pooling method was proposed by Gao et al. [46], which can reduce
the dimensionality while maintaining accuracy. Our experiment used a cascade fusion
strategy to fit the two-scale features obtained from the two branches. Meanwhile, ReLU6,
dropout, and other methods were used to alleviate potential overfitting problems. In the
process of network training, dropout reduces the running time by randomly ignoring a
certain proportion of hidden layer nodes, which can effectively reduce the interdepen-
dence between neurons, thereby extracting independent important features and inhibiting
network overfitting.

In model training, the choice of feature extractor can affect the accuracy and speed
of model detection. As the number of feature extractor layers increases, the network
can extract higher-dimensional sample features, but the increase in network depth will
affect the update signal of each layer and affect detection accuracy [47,48]. As classic
feature extractors, AlexNet, ResNet, GoogleNet, and VGGNet are mostly used for image
classification and recognition [48,49]. This study has shown that compared with the four
typical models, GL-CNN has obvious accuracy and computational advantages, and the
model accuracy is as high as 94%. An unexpected phenomenon is that the two excellent
models (VGGNet and ResNet) did not achieve the desired performance, especially VGGNet,
which obtained the lowest results, with a model accuracy of only 88.6%. The reason for
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this phenomenon is that the VGGNet training speed is very slow, and the weight of the
network architecture itself is very large. In the case of many parameters and insufficient
image data, the excellent classification effect cannot be exerted [49,50]. ResNet’s network
connection is also very complicated and requires a lot of calculations. Therefore, they need
a large data set to complete the convergence of the model [50]. In contrast, GoogLeNet,
and AlexNet contain fewer parameters, a relatively simpler structure, and better training
effects than VGGNet and ResNet [27]. As the best training model, GL-CNN has a slight
advantage over GoogleNet in accuracy. The parameters and calculations of GL-CNN
are significantly smaller, and it is easy to construct and apply. When the orchid image
with more background information is adjusted to 224 × 224, a great deal of fine-grained
information will be lost, which prevents the network from learning more in-depth and
sufficient details. This situation can lead to poor network performance. GL-CNN can obtain
global and local information and cascade the two parts together to extract detailed context
features, which helps to expand the input features and improve classification accuracy.

Deep learning is still data-driven, and the size and quality of the data set will directly
affect the effectiveness of network training [26]. Due to the limitation of the data set size, it
may be difficult to train CNN. This study found that the precision, recall, and F1-score of
each model on C. hookerianum are quite different. This is due to the small sample size of
C. hookerianum, which makes the stability performance of the model different. Therefore,
the training model is not sensitive enough to recognize the experimental samples. By
increasing the number of such images, the compatibility of the classification model for
different Cymbidium species can be improved.

5. Conclusions

In this study, a Cymbidium classification method based on the GL-CNN was proposed.
It consists of two CNN networks with comparable weight, which helps expand the input
features and improve classification accuracy. The cascade fusion strategy was used to fit
the multiscale features obtained from the two branches. ReLU6 and dropout were used to
prevent gradient explosion and alleviate the problem of overfitting. The end-to-end training
was realized, and the robustness of the model was enhanced. Comparing GL-CNN with
four classic models (AlexNet, ResNet50, GoogleNet, and VGG16), the results showed that
GL-CNN achieved the highest classification prediction accuracy with a value of 94.13%.

In summary, the GL-CNN model used in this paper integrates multiscale information
through the network, expands the number of features, has high detection accuracy, and can
effectively identify different species of Cymbidium.
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