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Abstract: Plants are a reservoir of phytochemicals, which are known to possess several beneficial
health properties. Along with all the secondary metabolites, polyphenols have emerged as potential
replacements for synthetic additives due to their lower toxicity and fewer side effects. However,
controlling microbial growth using these preservatives requires very high doses of plant-derived
compounds, which limits their use to only specific conditions. Their use at high concentrations
leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical
modification of natural preservatives can be a promising alternative to enhance the antimicrobial
efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration
of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction
products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems
standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents,
the mechanism of the biochemical methods and the ways these methods may be used in enhancing
the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the
development of potent antimicrobial agents that may find their use in food applications.

Keywords: polyphenols; antimicrobial activity enhancement; ascorbic acid; Maillard reaction
products; laccase–mediator system; horseradish peroxidase–H2O2 system

1. Introduction

The quality and safety of food products are compromised by the loss of nutrients,
sensory attributes, and microbial growth. The prior can be in terms of off odor, off flavor,
discoloration, or production of toxic compounds as metabolic end products of the saccha-
rolytic, proteolytic, pectinolytic, and lipolytic enzymes, which ultimately leads to food
poisoning or intoxication. Ensuring food safety and meeting the demand for food without
synthetic chemical preservatives has led to increased interest in natural alternatives to
inactivate microorganisms and enzymes in food [1,2]. Although attempts have been made
to produce additive-free foods, it is unlikely that the current marketing system could exist
without the use of antimicrobials. In addition, requirements for toxicology safety have
limited the ability of the industry to develop new chemical antimicrobials [3]. Therefore, it
is essential for the food industry to find new and natural antimicrobial food alternatives.

Phytochemicals can be recovered from plant products and used as ingredients in food
and cosmetics, as healthy antimicrobials, and as alternatives to chemical preservatives. A
typical feature of plants is their ability to synthesize a wide range of phyto-compounds (i.e.,
secondary metabolites), which play essential roles in the interaction of the plant with its en-
vironment [4]. They can be structurally divided into five major groups: phenylpropanoids,
flavonoids, polyketides, terpenoids, and alkaloids. Furthermore, it is increasingly clear that
several phytocompounds in fruits and vegetables of different chemical classes are beneficial
to human health [5,6]. Interestingly, several phytochemicals such as simple phenolic acids,
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polyphenols, terpenes, isothiocyanates, polyacetylenes, etc., also exhibit antimicrobial prop-
erties. There is sufficient evidence supporting the potential of plant-derived phytochemicals
as natural antimicrobial agents [7–9].

However, only a few natural antimicrobials have found practical application in the
food industry. Their use in foods as preservatives is often limited due to the need for high
concentrations to achieve the desired activity, which may modify the sensory characteristics
of food by making it unacceptable [10]. Another limitation is the interaction of natural
antimicrobial with complex food matrices, mainly with hydrophobic compounds such as
lipids [11]. Nonetheless, polyphenols can interact with proteins through hydrophobic or
hydrophilic interactions, leading to the formation of soluble or insoluble complexes [12].

The “antimicrobial potency” of polyphenols can be altered and enhanced by biochem-
ical means that could allow their application as antimicrobial agents. This means that
the antimicrobial effect can be improved by reducing the effective concentration of the
plant-derived compounds [13]. Biochemical and physiological studies have provided a
large body of evidence to surmise that plant-derived polyphenols can be well adapted to
achieve promising and potent antimicrobials for use in foods, ensuring microbial safety of
foods without chemical additives [14,15]. Such biochemically modified natural ingredients
would positively affect food preservation without compromising the sensory attributes
and health of the consumers.

2. Plant Polyphenols as Antimicrobials

Recent studies have shown that plant compounds used as natural antimicrobials are
safe alternatives to chemical additives [16,17]. Natural antimicrobials’ mechanism of action
includes cell membrane rupture, defective nucleic acid mechanisms, decay of the proton
motive force, and depletion of adenosine triphosphate (ATP). The antimicrobials from
plants (polyphenols, essential oils) use the aforementioned mechanisms of action against
foodborne bacteria [18]. Amongst all secondary metabolites in plants, polyphenols are the
ones that play multiple essential roles in plant physiology, also in addition having potential
health-benefiting properties such as having antioxidant, antiallergic, anti-inflammatory,
anticancer, antihypertensive, and antimicrobial features [19,20]. Basically, they are divided
into flavonoids and non-flavonoids, on the basis of their chemical structure.

2.1. Flavonoids

Flavonoids, such as catechins, flavones, and flavonols, have antifungal, antiviral,
and antibacterial activities [21]. The antimicrobial activity of the flavonoid quercetin is
attributed to the inhibition of the enzyme DNA gyrase and (-)-epigallocatechin gallate,
which was reported to inhibit the energy metabolism [21]. Flavonoids, especially catechins
and proanthocyanidins (due to antioxidant properties), have been proposed to neutralize
bacterial toxic factors originating from Vibrio cholerae, Staphylococcus aureus, Vibrio vulnifi-
cus, Bacillus anthracis, Clostridium botulinum [22]. The citrus flavonoids, such as apigenin,
kaempferol, quercetin, and naringenin, are effective antagonists of cell–cell signaling [23].
Recent reviews have provided lines of evidences on the antimicrobial activity of plant
flavonoids along with their mechanism of actions [24,25].

2.2. Non-Flavonoids

Phenolic acids (benzoic, phenylacetic, and phenylpropionic acids) have been found
to inhibit pathogenic and non-pathogenic bacteria and fungi such as Escherichia coli, Lacto-
bacillus spp., S. aureus, Pseudomonas aeruginosa and Candida albicans [26]. Hydroxycinnamic
acids (caffeic, coumaric, ferulic, and sinapic acids) have been found to inhibit Bacillus cereus
and S. aureus; P. fluorescens [27]. In addition, the antibacterial activity of caffeic, ferulic,
and p-coumaric acids against E. coli, S. aureus, and B. cereus, with p-coumaric acid being
effective against E. coli, has been reported [27]. Hydroxycinnamic acids (i.e., nitrobenzoate,
p-aminobenzoate, ethyl aminobenzoate, ethyl- and methyl-benzoate, salicylic acid, trans-
cinnamic acid, trans-cinnamaldehyde, ferulic acid, o-acetoxy benzoic acid, and anthranilic
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acid) have been found to inhibit aflatoxins production from Aspergillus flavus and Aspergillus
parasiticus [28]. Additionally, furocoumarins present in carrots, celery, citrus fruits, parsley,
and parsnips have been reported for their antimicrobial activity against E. coli O157:H7,
Erwinia carotovora, Listeria monocytogenes, and Micrococcus luteus [29].

The antibacterial properties of some common foods and beverages such as coffee
against Legionella pneumophila and E. coli O157:H7 are attributed to its compounds such as
caffeic acid, chlorogenic acid, and protocatechuic acid [30,31]. Furthermore, tea (Camellia
sinensis) has also been found to display antimicrobial properties [32–34] through its pre-
dominant catechin, epigallocatechin gallate, against methicillin-resistant S. aureus (MRSA).
The compound E-cinnamaldehyde has been found to significantly contribute to the antimi-
crobial properties of cinnamon stick extract (Ext) against B. cereus, E. coli, L. monocytogenes,
S. aureus, and Salmonella [35].

2.3. Extraction of Polyphenols from Plant Products

Extraction methods have been developed recently using modern technology. These
methods use fewer or no organic solvents, thereby minimizing environmental and health
impacts and maximizing the yield of desired polyphenols by selective extraction [36].
Advanced methods such as microwave-assisted, ultrasound-assisted, pulsed -electric-field-
assisted and enzyme-assisted extractions, as well as pressurized liquid and supercritical
fluid extractions, are given prime importance these days to extract desired polyphenols
from the plant products [37,38]. One of the recent studies has suggested extraction of
non-extractable or bound polyphenols by pretreatment using the aforementioned meth-
ods, which are further cleaved using acid, alkaline, or enzyme treatments, followed by
purification step using solid-phase extraction column chromatography and finally storage
step using lyophilization [39]. Studies have illustrated that the bioavailability and yield
of polyphenols are one of the most important factors of their antimicrobial activity [40,41].
However, along with these factors, their structure has also been found to play a critical role
in their antimicrobial activity [42,43]. The relationship between the structure of polyphenols
and their antimicrobial activity is elaborately illustrated in the proceeding section.

3. Antimicrobial Activity and Structural Relationship of Plant-Derived Polyphenols

The structural diversity of polyphenols is immense, and the impact of antimicrobial
action they produce against microorganisms depends on their structural configuration [44].
For instance, Phenolic acids inhibit the activity of bacterial enzymes, disrupting their
metabolism and depriving the substrates necessary for growth. The hydroxycinnamic
acids (p-coumaric acid, caffeic, and ferulic acid) induced higher ion leakage and a more
significant influx of protons into the cells, compared with hydroxybenzoic acids, gallic,
vanillic, and syringic acid [45]. Additionally, these hydroxycinnamic acids have been found
to meet Lipinski’s rules, proving their functional potential as drugs and antimicrobial
agents. The relationship between chemical structure and biological activity has received
considerable attention in recent years because it allows the prediction of chemical toxicity
or bioactivity without an inordinate amount of time and effort.

The potency of an antimicrobial is attributed to its structural characteristics. The
relationship of the antimicrobial activity of plant polyphenols is classified into four types:
(1) position of functional groups (FNG), (2) number of FNG, (3) presence of C2=C3 double
bond, and (4) type of FNG.

3.1. Position of Functional Group

The structural antimicrobial activity of the major plant polyphenols, i.e., flavonoids, is
well documented [46]. The amphipathic features of flavonoids play an essential role as far
as antibacterial properties are concerned [47]. The hydrophobic substituents such as prenyl
groups, alkylamino chains, alkyl chains, and nitrogen or oxygen-containing heterocyclic
moieties usually enhance the antibacterial activity of all flavonoids [48]. Different classes of
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flavonoids, mainly chalcones, flavanes, and flavan-3-ol exhibits better antimicrobial activity
due to variation in the position of the functional group attached to the rings [46].

3.1.1. Chalcones

Several studies have suggested that chalcones with a lipophilic group such as iso-
prenoid and methoxy groups at positions 3′, 5′, and 2′ of ring A are the most potent
inhibitors of MRSA strains [49]. Based on the activity of isobavachalcone (MIC: 30 µg/mL),
(Figure 1A), the authors of [50] suggested the that A ring with a prenyl group displays
adequate antimicrobial activity, but cyclization or addition of the prenyl group to B ring
in addition to the A ring decreases this activity. Likewise, the hydroxy group at 4′, 4,
and 6 of A and B rings increase the antimicrobial activity. For example, kuraridin and
7,9,2′,4′-tetrahydroxy-8-isopentenyl-5-methoxychalcone (THIPMC) compounds with the
same structure, with only one difference in the OH of the B ring (2 and 4 instead of 4 and 6),
showed high activity against the MRSA strain [51].
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Figure 1. Structure–activity (SAR) relationship of important flavonoids: (a) in chalcones, substitution
of OMe, OH, and prenyl group in ring A, OH group in ring B, and OH groups in 2′ and 4′ position of
ring C enhances antimicrobial activity; (b) on flavanes, substitution of prenyl and OH groups at 5′and
7′ positions in ring A and OH, OMe groups at 3′ and 5′ position and prenyl at 4′ position in ring
C enhances antimicrobial activity; (c) in flavanols, substituting OH group at 5′ position and prenyl
at 8′ position of ring A, and OH groups at 2′, 4′ position can enhance antimicrobial activity; (d) in
flavonols, replacing OH and Me group in ring A, OH, O-glycoside group in ring B and OH groups in
ring C can improve antimicrobial activity; (e) In flavones substitution of OH group at 5′, OH, Me
groups at 6′, and OH, OMe group at 7′ of ring A can improve antimicrobial activity.
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3.1.2. Flavanes and Flavanols

Flavanes with a prenyl group at the A ring have been found to be the most potent
antibacterial compounds against S. aureus. It is established that the number and position
of prenyl groups on this ring increase antimicrobial activity [52]. The presence of the
hydroxy groups at different positions on A and B rings has also been reported to improve
antibacterial activity (Figure 1B,C). The compound 3′-O-methydiplacol with OH at the
5, 3′, and 4′ positions of the A and B rings, respectively, as well as the geranyl group at
C-6 and OMe at C-5′, showed satisfactory (i.e., MIC value of 4 µg/mL) activity against
S. aureus [53]. additionally, sophoraflavanone with isogeranyl at C-8 and OH at 3, 2′, and
4′ at A and B rings were active (i.e., MIC value of 7.3 µg/mL) against S. aureus [51]. The
position of prenyl, hydroxyl, and especially methoxy groups at positions 5 and 7 of the A
ring, increased the antibacterial effect of flavanes and flavones [54]. Furthermore, different
substitutions on position 3 of the C ring with a hydroxyl or an O-glycoside group could
enhance the antimicrobial activity of certain flavones [46]. One of the earlier findings also
suggested that the tetraflavonoids without OH on the C ring showed moderate activity
against E. coli [55].

3.1.3. Flavonols

In the A ring, many studies have confirmed that hydroxylation at positions 5 and 7
together are critical for the antibacterial activity of flavonols against S. aureus strains [56].
In addition, hydroxylation on the B and C rings also increased the antimicrobial activity
of these compounds. A comparison of compounds with the same structure showed that
kaempferol with a hydroxy group at C-4′ had less activity than galangin (without OH
at C-4′) against S. aureus (Figure 1D) [47]. The number of glycosyl groups instead of the
hydroxy group at position 3 has been found to have a significant effect on antibacterial
activity. For example, among the compounds extracted from Maytenus buchananii, quercetin-
3-O-[α-L-rhamnopyranosyl-(1→ 6)-β-D glucopyranoside] with a disaccharide group at
the same position was the better inhibitor of S. aureus growth than amentoflavone-7′′,4′′′-
dimethyl-ether with monosaccharide group (quercetin-3-O-β-D-glucopyranoside) [57].
Substitution of the methoxy group at position 3 decreased the antimicrobial activity. For
example, piliostigmol (with OMe and Me groups at positions 6 and 7 of the A ring and OH
at position 3) was more active against S. aureus than 6-C-methylquercetin-3,3′,7-trimethyl
ether (with OMe at the C-3 position) [58].

3.1.4. Flavones

Studies conducted on the antibacterial activity of flavones [59] suggested that at
least one hydroxy group in the A ring (especially at C-7) is vital for antibacterial activity.
Hydroxyl groups in other positions such as C-5 and C-6 can also increase the antibacterial
action [60]. However, the substitution of OH with OMe at C-7 was seen to reduce the
antibacterial activity. For instance, the compound 5,7-dihydroxy-flavone with two OH
at positions 5 and 7 has been found to be more potent against Ralstonia solanacearum (i.e.,
MIC: 25 and 300 µg/mL) compared to 5-hydroxy-7-methoxy-flavone with OMe at position
7 and OH at position 5 (Figure 1E) [61]. The importance of the –OH group at position 5 of
flavones for their antimicrobial activity against MRSA strains has also been reported [62].
One of the investigations on plant isoflavonones suggested that the hydroxyl group’s C-5, 6
and 7 position is crucial for antimicrobial action [63]. The presence of the prenyl (C5) group
at position 6 without cyclization of this substituent with the A ring has also been reported
to improve antibacterial activity [52].

3.2. Number of Functional Groups Attached

The number of functional groups attached has been found to have a significant in-
fluence on antimicrobial activity. The 2′, 4′- or 2′, 6′-dihydroxylation of the B ring and
5, 7-dihydroxylation of the A ring in the flavanone structure are essential for anti-MRSA
activity [64]. Moreover, 5-hydroxyflavanones and 5-hydroxyisoflavanones with one, two
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or three additional hydroxyl groups at the 7′, 2′, and 4′ positions inhibited the growth of
Streptococcus mutans and S. sobrinus [65]. Caffeic acid had higher antimicrobial activity
than p-coumaric acid due to the additional –OH group on the phenolic ring of the former
compound [66].

3.3. Presence of C2=C3 Double Bond

It has been observed that flavanones with C2=C3 are more active than the correspond-
ing flavones. For example, naringenin showed antibacterial effects on all the tested bacteria,
whereas apigenin showed almost no effect [67]. In addition, the C2=C3 double bond was
found to be responsible for the antifungal activity of 5,7-dihydroxyflavonoids, while hydro-
genation of the C2=C3 bond reduced the antifungal effect [68]. The flavonoids apigenin
luteolin, dinatin, and daidzein, C2=C3 had better anti-influenza virus activities, compared
with catechin and epicatechin belonging to the flavanols class of compounds that lack the
C2=C3 bond [69].

3.4. Type of Functional Group

The hydrophobic substituents such as prenyl groups, alkylamino chains, alkyl chains,
and nitrogen- or oxygen-containing heterocyclic moieties have been reported to enhance
the activity of all the flavonoids [48]. Variation in the antimicrobial activity of polyphenols
also depends on variation in the functional group they have [70]. The substitution of the
phenyl moiety by a propyl or a methyl group has been found to be deleterious for the
antibacterial effect against S. aureus and B. subtilis [71]. This negative antimicrobial effect
was also observed against L. monocytogenes, when substituting the phenyl with the propyl
moiety [71].

The naphthoquinone 5,8-dihydroxy-1,4-naphthoquinone without chlorine was very
active against three Gram-positive (S. aureus, B. subtilis, and L. monocytogenes) and three
Gram-negative (E. coli, P. aeruginosa, and S. Enteritidis) strains but in a lower extent against
P. aeruginosa. The compound 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone with chlorine
was significantly less active against E. coli and P. aeruginosa [70]. The presence of gallic or
galloyl moieties was found to promote the antibacterial activity of epigallocatechin gallate
by inducing damage to the bacterial membrane [72]. The antibacterial action of caffeic acid
and their alkyl esters against specific strains of S. aureus and E. coli showed that longer alkyl
side chains were more effective against the Gram-positive bacterium, while caffeic acid
esters with medium length alkyl side chain were more effective against the Gram-negative
bacterium which was also far less susceptible to caffeic acid and its esters [73].

4. Enhancement of Antimicrobial Activity of Plant Derived Polyphenols by
Biochemical Methods

Higher potency of the antimicrobial or their use in low concentration is preferred
in food application to avoid any changes in the organoleptic properties and minimize
interaction with the complex food matrices [14,74]. The following biochemical means may
be used to obtain high potent antimicrobials.

4.1. Enhancement Using Ascorbic Acid and Transition Metals

One of the promising approaches to enhance antimicrobial activity by non-enzymatic
means can be mild oxidation of plant phytochemicals, particularly polyphenols by reactive
oxygen species (ROS), using ascorbic acid (AA) and transition metals (Cu (II), Fe (II), Fe (III)
systems. However, the reaction mechanism of AA oxidation in the presence of transition
metals is still unclear, and different mechanisms have been proposed.

In one study, the AA and Cu2+ reaction were projected to yield one mole of hydrogen
peroxide (H2O2) and one mole of dehydro-ascorbic acid in the pH range of 2.6–9.3 [75].
Additionally, it has been assumed that H2O2 is formed when AA reacts with Cu(II) in
the presence of O2 within a pH range of 2.5–4.0 [76]. At physiological pH (7.0), H2O2
production increased when the copper (Cu2+) concentration was deficient, compared with
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AA [77]. It was further postulated that the ascorbate mono-anion would dominate when
the pH is over 4.25. This form can further be oxidized with the concomitant reduction of
copper II to copper I [78]. At pH higher than 4.25, rapid redox cycling of copper generates
superoxide, peroxide, and hydroxyl radicals via a copper assisted Fenton reaction, and at a
pH lower than 4.25, the level of superoxide in the solution decreases as superoxide anion
reacts with hydrogen to form the hydroperoxyl radical (HO2

•) [78].
The reaction product of AA and Cu2+ leads to cleavage of viral and plasmid DNA,

which could be withdrawn in the presence of metal chelators such as EDTA, stating that
copper plays an essential role in the oxidation of AA [79]. The reaction was also withdrawn
in the presence of the catalase enzyme, confirming the fact that H2O2 is mainly produced
in the AA/Cu2+ reaction [79]. The hydroxyl radical generated by the AA/Cu2+ system is
lesser than that generated by the ascorbate/H2O2 system [80]. It has also been reported
that transition metal ions, such as Fe (III) and Cu (II), are reduced by ascorbate. Their lower
oxidation states (e.g., Fe (II) and Cu (I), respectively) (Equations (1) and (2) below) may
further give rise to Fenton reactions with H2O2, producing hydroxyl radicals [81].

Cu++H2O2 → Cu2++OH•+OH− (1)

Fe2+ + H2O2 → Fe3+ + OH• + OH− (2)

In the presence of limited oxygen, polyphenols can be oxidized non-enzymatically [82].
The polyphenols containing a catechol ring are oxidized to semiquinone and benzoquinone
radicals (Figure 2). At the same time, the oxygen is reduced to H2O2, and the whole
process is mediated by the redox cycle of Fe3+/Fe2+ and Cu2+/Cu+ [83]. Recent reviews
have illustrated the antimicrobial action of quinone and its derivatives [84–86]. It may be
suggested that, in presence of ascorbic acid and transition metals, redox oxygen species
may be generated, which may oxidize the polyphenols to corresponding quinones or
benzoquinones, enhancing antimicrobial activity [87,88].
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propagation step during which O2
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Phenolics from plants have been combined with other substances, sometimes referred
to as adjuncts, such as transition metal ions or vitamin C to enhance phenolic efficacy [90,91].
Enhancement of antimicrobial activity was observed in the case of pomegranate rind
Ext by Cu (II) alone or with both Cu (II) and AA combinations against many bacterial
strains [92,93]. The addition of copper (II) sulfate and AA ascertained the enhancement
of antimicrobial activities of whole and sub-fractionated white tea against S. aureus [94].
Enhanced antimicrobial activity against S. aureus and E. coli was also observed by the
addition of the AA to the (+)-catechin–copper (II) mixture [95]. A recent study revealed
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the antibacterial effect of AA against S. enterica subsp. Enterica serovar Typhi and Vibrio
fluvialis could be enhanced when applied in a combination with linalool and copper [96].
However, the mechanism behind the enhancement in antimicrobial activity due to the
addition of transition metals and AA to the plant polyphenols has not been appropriately
elucidated yet.

4.2. Enhancement Using Degradation Products of Ascorbic Acid in an Ethanolic Solution

In aqueous (AQ) systems, AA is very unstable and efficiently degraded both aerobic
(AB) and anaerobically. The degradation process of AA is complex and involves many
oxidation–reductions and intermolecular rearrangement reactions. The degradation of
AA via AB and anaerobic (AAB) pathways depends upon oxygen, heat, light, storage
temperature, and time [97,98]. However, degradation of AA mainly results in the formation
of volatile and brown products via self-degradation and non-enzymatic browning. The
most commonly reported terminal products resulting from the AB degradation of AA
and dehydroascorbic acid in acidic AQ conditions (pH 1–3), were found to be 3-hydroxy-
2-pyrone and 2-furoic acid [99]. These are also amongst the highest yielding products
depending on the conditions utilized. Heat-induced (60–100 ◦C) AB degradation of different
solutions of AA and dehydroascorbic acid demonstrated that both 3-hydroxy-2-pyrone
and 2-furoic acid were the main degradation products of AA (Figure 3A). This included
decarboxylation of 2,3-diketogulonic acid with the formation of xylosone, a mechanism
already reported by the authors of [100], followed by a multi-step conversion of xylosone
to the terminal products via oxidation, dehydration, and/or ketoenol tautomerism [100].
Xylosone is a gateway to numerous degradation products, and its presence as an AA or
dehydroascorbic acid degradation product has been confirmed by several studies [101,102].
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The term “AAB degradation” of AA refers to ascorbic acid degradation to some
terminal product via a mechanistic pathway that does not require an oxidation step. The
AAB degradation of AA does not generally require the removal of O2 from a reaction
system; however, the lowering of oxygen concentration has the advantage of limiting the
competing AB reactions [103]. The degradation of AA by reaction with oxygen occurs
faster than its AAB degradation [104]. However, the AAB degradation rate can increase
considerably with higher temperatures [104]. The pH level is also known to influence the
rate of AAB degradation of AA, which increases as the pH is raised from 2.3 to 4.0 [105].

Regardless, the most commonly reported terminal product for the AAB degradation
of AA is furfural [99,106]. The general mechanism to describe the formation of furfural is
shown in (Figure 3B) and involves initial ring cleavage and hydration of AA rather than
oxidation [107]. The subsequent steps require decarboxylation, acid-catalyzed dehydration,
and cyclization. Several studies have shown that the formation of furfural is favored at
lower pH values [108,109].

Another mechanism has been reported for the acid-catalyzed AAB degradation of
AA in methanol, forming a bicyclic structure similar to dehydroascorbic acid. It then
undergoes dehydration and decarboxylation via dihydrofuran-type intermediates to afford
furfural [110]. The authors proposed that the mechanism would be equally valid in AQ
systems but did not provide evidence.

Not all scholars agree that furfural is exclusive to the AAB degradation of AA. Instead,
it has been suggested that it can be formed via an oxidatively generated dehydroascorbic
acid degradation pathway [111,112]. Another product unique to the AAB pathway is,
4,5-dihydroxy-2-ketopentanal (otherwise known as 3-deoxypentosulose) generated upon
storage of AA at pH 3.5, although the storage temperature was not so relevant to wine
conditions (120 ◦C for 2 h) [113]. This compound has been proposed as an intermediate
in the formation of furfural during the AAB degradation of AA. The intermediate furan
compounds which were generated during AA degradation have been found to inhibit
the proliferation of S. typhi and B. subtilis to different extents [114]. The MIC values of
furfural and furoic acid (terminal products of AA degradation) against B. subtilis and S.
typhi were 0.027, 0.015, and 0.029, 0.009 µM, respectively [114]. Recent studies have reported
antimicrobial action of furoic acid and furan compounds [115,116] The reported end product
of AB and AAB degradation might have potency in enhancing the antimicrobial activity of
plant Ext. However, to date, there is no evidence of the enhancement of the antimicrobial
activity of plant Ext using the degradation product of AA.

4.3. Enhancement Using Maillard Reaction Products

The Maillard reaction (MR) is a heat-induced browning reaction widely employed in
various fields in the food industry that has been used as an effective method for protein
modification and the production of remarkable changes in the structure and bioactivity
of proteins [117,118]. In particular, MR products (MRPs) have been shown to have sig-
nificant antibacterial activities against a wide range of bacteria, with lower toxicity than
antibiotics [119,120]. The MRPs possess many intermediate products (Figure 4), such as
aldehydes, ketones, and heterocyclic compounds, which can effectively inhibit the growth
of some Gram-positive and Gram-negative bacteria [119].

MR products may have the potential to exhibit a synergistic antimicrobial effect in
conjunction with phytochemicals from plant compounds, thus enhancing their potency
( i.e., lowering the MIC value of the plant-derived compounds) [121]. The plant-derived
polyphenols have been found to have additive, synergistic antimicrobial effects with
the intermediate products of the MR such as diacetyls, carbonyls, and furfural [122,123].
Methylglyoxal (one of the intermediate products of MR) and catechin have been reported
to positively affect antibacterial activity [124]. However, the antimicrobial activity of plant
Ext or plant phytochemicals using MRPs is not yet reported, and further research is needed
in this area.



Horticulturae 2022, 8, 401 10 of 19

Horticulturae 2022, 8, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 4. Scheme of Maillard reaction in different pH levels consisting of early stage with the for-
mation of the ARP products and Schiff base, followed by the advanced stage, consisting of fission 
reaction, Stecker degradation, resulting in formation of advanced glycated products with a final 
stage of oxidation, condensation, cyclization, and rearrangement resulting in melanoidin polymers. 

MR products may have the potential to exhibit a synergistic antimicrobial effect in 
conjunction with phytochemicals from plant compounds, thus enhancing their potency ( 
i.e., lowering the MIC value of the plant-derived compounds) [121]. The plant-derived 
polyphenols have been found to have additive, synergistic antimicrobial effects with the 
intermediate products of the MR such as diacetyls, carbonyls, and furfural [122,123]. 
Methylglyoxal (one of the intermediate products of MR) and catechin have been reported 
to positively affect antibacterial activity [124]. However, the antimicrobial activity of plant 
Ext or plant phytochemicals using MRPs is not yet reported, and further research is 
needed in this area. 

4.4. Enhancement Using Laccase−Mediator System 
The oxidation of organic compounds to produce functionalized molecules is essential 

in organic synthesis [125]. Controlled enzymatic oxidation or hypo-oxidation can yet be 
another approach toward enhancing the antimicrobial activities of phytocompounds. In-
creased bioactivities have been observed by the biochemical transformation of triterpenes 
using oxidative enzymes [126]. Oxidoreductive enzymes such as laccase and peroxidise 
can transform phenols through oxidative coupling reactions with the production of poly-
meric products by self-coupling or cross-coupling with other molecules. 

Laccase (EC 1.10.3.2), is a multi-copper oxidase that couples the four-electron reduc-
tion of oxygen with the oxidation of a broad range of organic substrates, including phe-
nols, methoxy-substituted phenols, anilines, aryl diamines, hydroxyindoles, benzenethi-
ols and inorganic/organic metal compounds by a one-electron transfer mechanism, mak-
ing this green enzyme useful for carrying out several types of oxidative reactions [127–
132]. Laccases use O2 as the electron acceptor to remove protons from the phenolic hy-
droxyl groups. This reaction gives rise to radicals that can spontaneously rearrange, which 
can either lead to the fission of C–C or C–O bonds of the alkyl side chains or the cleavage 
of aromatic rings [128]. The oxidation of a reducing substrate by laccase involves losing 
an electron and forming a free radical [129]. This radical is, in general, unstable and may 

Figure 4. Scheme of Maillard reaction in different pH levels consisting of early stage with the
formation of the ARP products and Schiff base, followed by the advanced stage, consisting of fission
reaction, Stecker degradation, resulting in formation of advanced glycated products with a final stage
of oxidation, condensation, cyclization, and rearrangement resulting in melanoidin polymers.

4.4. Enhancement Using Laccase–Mediator System

The oxidation of organic compounds to produce functionalized molecules is essential
in organic synthesis [125]. Controlled enzymatic oxidation or hypo-oxidation can yet
be another approach toward enhancing the antimicrobial activities of phytocompounds.
Increased bioactivities have been observed by the biochemical transformation of triterpenes
using oxidative enzymes [126]. Oxidoreductive enzymes such as laccase and peroxidise can
transform phenols through oxidative coupling reactions with the production of polymeric
products by self-coupling or cross-coupling with other molecules.

Laccase (EC 1.10.3.2), is a multi-copper oxidase that couples the four-electron reduc-
tion of oxygen with the oxidation of a broad range of organic substrates, including phenols,
methoxy-substituted phenols, anilines, aryl diamines, hydroxyindoles, benzenethiols and
inorganic/organic metal compounds by a one-electron transfer mechanism, making this
green enzyme useful for carrying out several types of oxidative reactions [127–132]. Lac-
cases use O2 as the electron acceptor to remove protons from the phenolic hydroxyl groups.
This reaction gives rise to radicals that can spontaneously rearrange, which can either lead
to the fission of C–C or C–O bonds of the alkyl side chains or the cleavage of aromatic
rings [128]. The oxidation of a reducing substrate by laccase involves losing an electron and
forming a free radical [129]. This radical is, in general, unstable and may undergo further
laccase-catalyzed oxidation (e.g., quinone from phenol) or non-enzymatic reactions (e.g.,
hydration, disproportion, or polymerization) [132]. The electron transfer from the substrate
to copper is controlled by the redox potential difference. The rate of substrate oxidation by
laccase, which has high redox potential, is higher if it has a lower redox potential.

Enzymatic polymerization of phenolic compounds (catechol, resorcinol, and hydro-
quinone) has been carried out using laccase [133–135]. Intermediates (quinones) formation
in the first stage of oxidation with further oxidation reaction, forming colored polymers,



Horticulturae 2022, 8, 401 11 of 19

was observed while evaluating the polymerization and the structures of the polymers
by UV–Vis and Fourier transform infrared spectroscopy [134]. Changes in the color of
flavonoids due to oxidation by the laccase enzyme were due to the polymerization and
linkage of the quinones (Figure 5) formed as an intermediate [133]. Laccase oxidation of
caffeic acid and isoeugenol was shown to enhance their antimicrobial activity against S.
aureus and E. coli in liquid media [135]. Some low molecular weight phenolic compounds
are usually produced as a result of oxidative metabolism by C ring cleavage of catechin
and epicatechins [136]. The antimicrobial properties of one of these low molecular weight
polyphenols, 3,4 dihydroxy benzoic acid have been well established [137,138]. Moreover,
dimers and polymers of flavonoids have also been found to have superior antimicrobial ef-
fects in comparison to the parent monomer [139–141]. It has been suggested that the toxicity
of the laccase-treated olive Ext can be due to the presence of phenolic compounds such as
ortho-benzoquinones, quinonoid, or oxidative coupling polymers, which results because of
Lac treatment is more toxic than the parent compounds [142]. Many studies have suggested
polymerization of the phenolics using the Lac enzyme [143,144]. Enhanced antimicrobial
activity of the resulting oligomers and polymers has also been reported [145,146].
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Although laccase can oxidize a wide range of substrates, some substrates of interest
cannot be oxidized directly by laccases, either because they are too large to fit into the en-
zyme active site or because they have an exceptionally high redox potential. By mimicking
nature, it is possible to overcome this limitation with the addition of so-called “chemical
mediators”, which are suitable compounds that act as intermediate substrates for the lac-
case, whose oxidized radical forms can interact with the bulky or high redox-potential
substrate targets [131]. Laccase–mediator system (Figure 6) has found its immense applica-
tion in the degradation of lignin. Small redox molecules such as 3-hydroxyanthranilic acid
(HAA) might act as “electron shuttles” between the enzyme and lignin and cause polymer
de-branching and degradation [131]. Some examples of laccase mediators extensively
used are 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), N-hydroxybenzo-
triazole (HBT), N-hydroxyphtalimide (HPI), violuric acid (VLA), N-hydroxyacetanilide
(NHA), methyl ester of 4-hydroxy-3,5-dimethoxy-benzoic acid (syringic acid), and 2,2,6,6-
tetramethyl piperidine-1-yloxy (TEMPO) [131].
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Laccase is capable of oxidizing unreactive iodide to reactive iodine [147]. Pheno-
lic compounds such as vanillin, which resembles substructures of softwood lignin, can
be directly iodinated by reacting with laccase and iodide, resulting in compounds with
antifungal activity [147]. The addition of redox mediators “acetosyringone” in catalytic con-
centrations increased the rate of iodide oxidation by ten-fold and the yield of iodo-vanillin
by 50% [147].

Functionalization is the process of adding new functions, features, capabilities, or
properties to material by changing the surface chemistry of the material [148]. In one study,
functionalization of chitosan with phenolic acids such as caffeic acid or gallic acid using lac-
case from Trametes versicolor formed a product with enhanced antimicrobial activity against
E. coli and L. monocytogenes [149]. The authors proposed the functionalization of chitosan
with the phenolic acids by laccase catalyzed oxidation of phenolic acids to electrophilic
o-quinones, which undergo a new oligomer/polymer-forming structure originated by
C–C coupling between the benzene rings and C–O–C coupling involved with the phenolic
side chains.

4.5. Enhancement Using Peroxidase Enzyme

The peroxidases (EC 1.11.1.7) are heme proteins and contain iron (III) protoporphyrin
IX (ferriprotoporphyrin IX) as the prosthetic group. They come under the class of oxidore-
ductases that catalyze the oxidation of a wide range of molecules, using peroxide as an
electron acceptor [150]. The reduction of peroxides at the expense of electron-donating
substrates makes peroxidases useful in several industrial and analytical applications. The
common overall reaction of the peroxidases can be written as in the following Equation (3),
where RH is a suitable peroxidase substrate and R is a free-radical product derived from it
as follows:

2RH + H2O2 → 2R•+2H2O (3)

Oxidation reactions carried out by peroxidase may be one-electron or two-electron
oxidation. A classic example of one-electron oxidation is guaiacol assay through which gua-
iacol is oxidized to a free radical that undergoes a subsequent radical–radical combination
to give a colored dimeric product. The dimerization can occur between two ring carbon
atoms or by adding the oxygen of one phenoxy radical to the ring carbon of the other [151].
Two-electron oxidation is rare for most peroxidase enzymes. The example under this type
is the oxidation of halide and pseudo-halide ions, specifically I−, Br−, Cl−, and NCS−. The
oxidation of I− and NCS− is common for the peroxidases [152]. Many reactions are known
in which oxidation of a substrate by peroxidases produces a two-electron oxidized product.
These reactions can be rationalized by forming a free radical metabolite, followed by the
second oxidation of the free radical to the final observed product.

Lactoperoxidase, together with thiocyanate ions and hydrogen peroxide generates,
hypothiocyanite ions and the oxidized product which is known as the lactoperoxidase
system. The oxidized effect possesses a broad spectrum of antimicrobial activity. Hence,
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much attention has been paid to the lactoperoxidase system [153], e.g., lactoperoxidase
systems mediated by oxidized β-carotene/SCN− cycling lead to enhanced antimicrobial
effects [154].

4.6. Future Perspective

Structural changes in polyphenols by biochemical modifications can be elucidated
through elemental analysis and spectral data (IR, 1H NMR). Furthermore, crystal, and
molecular structures of the potential metal flavonoid or phenolic acid complexes can be
identified by using single-crystal X-ray diffraction data. By electron paramagnetic resonance
spectroscopy, transient oxidation species could also be identified. Morphological study of
the bacterial and fungal cells triggered by biochemically modified polyphenols can reveal
the possible antimicrobial effect on the cells. Membrane potential study may indicate the
mechanism by which the antimicrobials could have affected the membrane permeability.
Ultimately, antibacterial effects against food pathogens can be carried out to understand
the scope of biochemically formulated antimicrobials in food applications.

5. Conclusions

Polyphenols are widely and easily available bioactive compounds that have health
benefits. Despite their benefits, their use in food applications is limited, due to their low
potency and high concentration needs. This review showed different biochemical means of
improving the antimicrobial property of plant-based polyphenols. Considering the struc-
tural importance of the antimicrobial properties of polyphenols, this report also showed the
significance of different classes of polyphenols as active antimicrobial agents. Although the
mechanisms of the biochemical methods involved in enhancing the antimicrobial activity of
plant polyphenols have been explained in this review, the possible structural and functional
modifications that these biochemical methods may bring about in the modified polyphenols
have not yet been established completely. Therefore, further validation of these methods
through high-throughput techniques is crucial.
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