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Abstract: Citrus essential oils (EOs) are widely used as flavoring agents in food, pharmaceutical,
cosmetical and chemical industries. For this reason, their demand is constantly increasing all over the
world. Besides industrial applications, the abundance of EOs in the epicarp is particularly relevant for
the quality of citrus fruit. In fact, these compounds represent a natural protection against postharvest
deteriorations due to their remarkable antimicrobial, insecticidal and antioxidant activities. Several
factors, including genotype, climatic conditions and cultural practices, can influence the assortment
and accumulation of EOs in citrus peels. This review is focused on factors influencing variation of
the EOs” composition during ripening and on the implications on postharvest quality of the fruit.

Keywords: citrus peel; terpenes; maturation stages; antimicrobial effects; insecticidal effects; fruit quality

1. Introduction

The genus Citrus (Rutaceae, Aurantioideae) includes four basic taxa and several
hybrid species which are mainly cultivated in subtropical regions [1]. All Citrus species
are characterized by a particular kind of berry fruit, the hesperidium, of which the epicarp
is scattered with cavities lined with secretory cells producing essential oils (EOs). Besides
conferring the typical scent, these mixtures possess a series of notable biological properties
which contribute to the fruit quality and represent an added value for these crops in
view of several possible applications in the food, pharmaceutical, cosmetical and chemical
industries [2].

One of the most important applications is based on the antimicrobial properties of EOs,
which have been recognized for a long time and recently boosted by the urgent need for
alternatives to chemical bactericides following the spread of antibiotic resistance. Generally
recognized as safe, these compounds possess inhibitory properties against a wide range of
microorganisms, both as direct oil and in vapor form; undoubtedly, they represent a group
of natural antimicrobials which may fulfil health and technical requirements for both the
consumers and the food industry [3].

2. Essential Oils of Citrus Fruits

According to the International Organization for Standardization (ISO), “essential oil”
is defined as a “product obtained from a natural raw material of plant origin, by steam
distillation, by mechanical processes from the epicarp of citrus fruit or by dry distillation,
after separation of the aqueous phase—if any—by physical processes” [4].

Essential oils are composed of lipophilic and highly volatile secondary metabolites,
with a molecular weight below 300 Da, that can be physically separated from other plant
components [5].
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In citrus, essential oils could be extracted from leaf, flower, epicarp and fruit juice
representing more than 80% of the volatile fraction, mainly constituted of terpenoids,
phenylpropanoids and short-chain aliphatic hydrocarbon derivatives [6]. Terpenoids are
the predominant EO constituents; they are characterized by a wide structural diversity
deriving from Cs isoprene units and are classified as hemiterpenes (Cs), monoterpenes
(Cy0), sesquiterpenes (Cy5), diterpenes (Cy), sesterterpenes (Cys), triterpenes (Czg) and
tetraterpenes (Cy9) [7]. The monoterpene hydrocarbons and oxygenated monoterpenes
comprising alcohols, aldehydes, ketones and esters, are responsible for the odor and flavor
profiles of fruit. Despite the dominance of the monoterpene hydrocarbon limonene in the
citrus EO composition, other less abundant monoterpenes actively contribute to the citrus
aroma, representing major determinants of fruit quality.

EO composition is known to vary among the several Citrus species, according to
both the genetic bases and a series of environmental factors which are examined in the
next section. Compounds characterizing EOs are listed in Table 1, based on data gath-
ered from recent literature concerning the most common citrus species, such as: key lime
(C. aurantifolia) [8,9], bitter orange (C. aurantium) [10-12], bergamot (C. bergamia) [13-15],
pomelo (C. maxima or C. grandis) [16,17], kaffir lime (C. hystrix) [18], persian lime (C. latifolia) [8],
sweet lemon (C. limetta) [19,20], lemon (C. limon) [8,11,21], rangpur (C. limonia) [8], wild or-
ange (C. macroptera) [16], citron (C. medica) [22,23], grapefruit (C. paradisi) [17], mandarin or-
ange (C. reticulata) [11,24-26], sweet orange (C. sinensis) [11,27], hyuganatsu
(C. tamurana) [28,29] and satsuma mandarin (C. unshiu) [30].

Table 1. Essential oils reported from peels of Citrus fruits.

Compound *

Citrus Species Structure

Monoterpenes

Alcohols and derivatives

C. aurantium [11], C. limon [11,21], C. reticulata [11],

Ris

Borneol C. sinensis [11], C. tamurana [28]
H
Campherenol C. bergamia [14] %/\(
HO
Carvacrol C. aurantium [11], C. limon [11], C. reticulata [11], C. sinensis
[11], C. tamurana [28]
HO
OH
Carveol C. limetta [19], C. medica [22]

trans-Carveol

OH
C. limon [20,21], C. maxima [16], C. paradisi [17],
C. tamurana [29]

O O
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Table 1. Cont.

Compound * Citrus Species

Structure

C. limetta [20], C. maxima [16,17], C. paradisi [17],
C. tamurana [28]

cis-Carveol

WOH

C. aurantium [11], C. bergamia [14],C. limon [11],
Citronellol (= citronellyl alcohol) C. macroptera [16], C. medica [22,23],
C. reticulata [11,24,26], C. sinensis [11], C. tamurana [28,29]

HO

el

HO
«-Citronellol C. reticulata [26]
HO
D-Citronellol C. hystrix [18]
Dehydrocarveol C. maxima [17], C. paradisi [17], C. tamurana [28]

OH

C. aurantifolia [8], C. latifolia [8], C. limetta [21], C. limon [8,11],
C. macroptera [16],
C. maxima [17], C. medica [23], C. paradisi [17],
C. reticulata [11,25], C. tamurana [28,29]

Geraniol (=geranyl alcohol)

Geraniol methyl ether C. medica [22]

C. aurantium [10-12], C. aurantifolia [8], C. bergamia [14,15],
C. latifolia [8],C. limetta [19], C. limon [8,11],
Nerol (=Z-geraniol) C. maxima [17], C. medica [23],
C. paradisi [17], C. reticulata [11,25,26], C. sinensis [11],
C. tamurana [28,29]

Isopinocarveol (=pinocarveol) C. limetta [19]

Limonene-1,2-diol C. tamurana [28,29], C. medica [22,23]

C. aurantifolia [8], C. aurantium [10-12], C. bergamia [13-15],
C. hystrix [18], C. latifolia [8], C. limetta [19,20],
C. limon [8,11,21], C. limonia [8], C. macroptera [16],
C. maxima [16,17], C. medica [22,23], C. paradisi [17],
C. reticulata [11,24,25], C. sinensis [11,27], C. tamurana [28,29],
C. unshiu [30]

Linalool

L-Menthol C. tamurana [28,29]




Horticulturae 2022, 8, 396

4 0f 34

Table 1. Cont.

Compound * Citrus Species Structure
trans-p-Mentha-2,8-dienol C. maxima [17], C. paradisi [17]
-
trans-p-Menth-2,8-dien-1-o0l C. lime”(’;’[;;jf;;;i”[’?;ifg‘ [;%t?;ni- [ngfim [23], Q
2, PH

cis-p-Menth-2,8-dien-1-ol

C. limetta [20]

p-Menth-2,8-dien-1-o0l

C. limon [21]

p-Mentha-1,8-dien-10-0l

C. tamurana [28,29]

p-Mentha-1-en-9-ol

C. maxima [17], C. paradisi [17], C. tamurana [28,29]

Myrcenol

C. aurantium [10], C. tamurana [28] HM

trans-Myrtanol

C. limetta [19]

3,7-Nonadien-2-ol, 4,8-dimethyl

C. medica [22]

Perillol

C. limon [21], C. maxima [17], C. paradisi [17]

HO
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Table 1. Cont.

Compound *

Citrus Species

Structure

trans-Piperitol

C. tamurana [28]

H

cis-Piperitol

C. maxima [17], C. paradisi [17]

H

Sabinol

C. limon [21]

trans-Sabinene hydrate

C. bergamia [15], C. limetta [19], C. paradisi [17],
C. sinensis [27]

H

cis-Sabinene hydrate

C. aurantium [11,12], C. bergamia [14], C. limetta [19],
C. limon [11], C. reticulata [11], C. sinensis [11]

H

Terpinen-4-ol

C. limetta [19], C. aurantifolia [8], C. limonia [8], C. latifolia [8],
C. macroptera [16], C. maxima [16], C. hystrix [18],
C. limon [8,11,21], C. reticulata [11,24], C. aurantium [11,12],
C. sinensis [11,27], C. tamurana [28,29], C. bergamia [14,15],
C. medica [22,23]

HO&
H

a-Terpineol

C. aurantifolia [8,9], C. aurantium [10-12], C. bergamia [14,15],
C. hystrix [18], C. latifolia [8], C. limetta [19], C. limon [8,11,21],
C. limonia [8], C. macroptera [16], C. medica [22],

C. paradisi [17], C. reticulata [11,24,25], C. sinensis [11,27],
C. tamurana [28,29]

Thymol

C. reticulata [26]

cis-Verbenol

C. medica [23]

|95%

H

O/,‘i
\_/
o; i
o
|
OH
OH
‘\\H
< H

?

trans-Verbenol

C. limon [21]
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Table 1. Cont.

Compound *

Citrus Species

Structure

Aldehydes

Citronellal

C. aurantium [12], C. bergamia [14], C. hystrix [18],
C. limon [21], C. limonia [8], C. maxima [17], C. paradisi [17],
C. reticulata [24,25], C. sinensis [27], C. tamurana [28,29]

O
Y

Cumin aldehyde

C. maxima [17], C. paradisi [17], C. tamurana [28]

Geranial (=E-citral)

C. aurantifolia [8], C. bergamia [14,15], C. latifolia [8],
C. limetta [19], C. limon [8], C. macroptera [16],
C. maxima [16,17], C. medica [22,23], C. paradisi [17],
C. reticulata [24,25], C. sinensis [27]

Neral (=Z-citral)

C. aurantifolia [8], C. aurantium [12], C. bergamia [14,15],
C. latifolia [8], C. limetta [19], C. limon [11,21],
C. macroptera [16], C. maxima [17], C. medica [22],
C. paradisi [17], C. reticulata [25], C. sinensis [27],
C. tamurana [28,29]

Ty

Perillaldehyde

C. bergamia [14], C. limetta [19], C. maxima [17],
C. paradisi [17], C. reticulata [26], C. reticulata [24],
C. tamurana [28,29]

Esters

Bornyl acetate

C. aurantium [11], C. limon [11], C. reticulata [11],
C. sinensis [11], C. tamurana [28,29]

O

Carveol propionate

C. limon [21]

e
<

oy

Citronellol acetate

C. bergamia [14,15], C. hystrix [18], C. reticulata [25],
C. tamurana [28]

TOW

Citronellol formate

C. macroptera [16], C. tamurana [28,29]

Geraniol acetate

C. aurantium [11,12], C. bergamia [14,15], C. latifolia [8],
C. limetta [19], C. limon [8,11], C. medica [22],
C. reticulata [11,25], C. sinensis [11], C. tamurana [28,29]

Geraniol formate

C. reticulata [25]
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Table 1. Cont.

Compound * Citrus Species Structure
o
Geraniol propionate C. maxima [17], C. paradisi [17], C. tamurana [28,29] W \f(\
0
Isobornyl acetate C. bergamia [14] o
=
C. aurantium [11,12], C. bergamia [13-15], 7 o
Linalool acetate (=bergamiol) C. limetta [19], C. limon [11], C. maxima [17], C. paradisi [17], X Y
C. reticulata [11], C. sinensis [11], C. tamurana [28,29] o
/ o
Linalool butyrate C. aurantium [10] X W
o)
p-Mentha-1-en-9-yl acetate C. tamurana [28]

o
Methyl geranate C. bergamia [14] M h
0

Methylthymol C. reticulata [24]

Z-2-Octen-1-0l,3,7-dimethyl-,
isobutyrate

Perillyl acetate C. bergamia [15], C. paradisi [17] ?
o)
Ao

C. aurantium [11,12], C. bergamia [14,15], C. limetta [19],
C. limon [11], C. medica [23], C. reticulata [11], C. sinensis [11],
C. tamurana [28,29]

C. medica [22] o

Terpineol acetate
(=terpinyl acetate)
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Table 1. Cont.

Compound * Citrus Species Structure

~
0
B-Terpinyl acetate C. medica [23]

Hydrocarbons

C. aurantium [11,12], C. bergamia [14,15], C. hystrix [18],
C. latifolia [8], C. limetta [19,20], C. limon [8,11],

Camphene
C. reticulata [11], C. sinensis [11], C. tamurana [28,29]

2-Carene C. reticulata [24]

C. aurantium [10,11], C. bergamia [14],
C. limon [11,21], C. medica [22], C. reticulata [11],

3-Carene
C. sinensis [11,27], C. tamurana [28,29]

0-Cymene C. aurantium [12], C. limon [21], C. unshiu [30]

Cyvmene C. latifolia [8], C. limetta [20], C. limon [8,11],
el C. limonia [8], C. reticulata [11], C. sinensis [11,27],
C. tamurana [28,29]

oa-Fenchene C. aurantium [12], C. limon [21], C. tamurana [28,29]

Isolimonene C. medica [23]

C. medica [23], C. latifolia [8], C. macroptera [16],
Limonene C. paradisi [17], C. limon [8,11,21], C. aurantium [10-12],
C. sinensis [8,11,27], C. bergamia [13-15], C. reticulata [11,25],
C. tamurana [28,29], C. maxima [16,17], C. aurantifolia [8,9]

. C. hystrix [18], C. limetta [19,20], C. medica [22,23],
D-Limonene .
C. reticulata [24]

m-Cymene C. latifolia [8], C. limonia [8] /5
C. aurantifolia [8], C. aurantium [11,12], C. bergamia [14,15],
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Table 1. Cont.

Compound *

Citrus Species Structure

L-Limonene

4

C. unshiu [30]

Myrcene (= f-myrcene)

C. aurantifolia [8], C. aurantium [10-12], C. bergamia [14,15],
C. latifolia [8], C. limetta [19,20], C. limon [11], C. limonia [8],
C. macroptera [16], C. maxima [16], C. medica [22,23], M
C. reticulata [11,24,25], C. sinensis [8,11,27],
C. tamurana [28,29], C. unshiu [30]

Allo-Ocimene

_
C. medica [22] W

E--Ocimene C. aurantium [10,11], C. bergamia [14], C. limetta [11], = X
C. reticulata [11,24,25], C. sinensis [11,27]
7-B-Ocimene C. bergamia [14,15], C. medica [22], C. reticulata [25],

C. tamurana [28]

Z-1,3,6-Octatriene,3,7-dimethyl-

C. medica [23]

a-Phellandrene

C. medica [22], C. latifolia [8], C. bergamia [14,15],
C. tamurana [28,29]

B-Phellandrene

C. bergamia [15], C. reticulata [24], C. sinensis [27],
C. tamurana [28]

a-Pinene

C. aurantifolia [8,9], C. aurantium [10-12], C. bergamia [14,15],

C. limonia [8], C. macroptera [16], C. maxima [16,17],
C. medica [22,23], C. paradisi [17], C. reticulata [11,24,25],
C. sinensis [11,27], C. tamurana [28,29]

B-Pinene

C. limetta [19], C. medica [22], C. limonia [8], C. latifolia [8],
C. macroptera [16], C. hystrix [18], C. paradisi [17],
C. aurantium [10-12], C. bergamia [13-15], C. limon [11,21],
C. reticulata [11,24], C. sinensis [11,27], C. aurantifolia [8,9],
C. tamurana [28,29], C. maxima [16,17]

Sabinene

C. aurantifolia [8,9], C. aurantium [11,12], C. bergamia [14,15],
C. limetta [19], C. limon [8,11], C. limonia [8],
C. macroptera [16], C. maxima [16,17], C. paradisi [17],
C. reticulata [11,25], C. sinensis [11,27]

D-Sabinene

C. tamurana [28,29]

\K\/j/
=
X
\(\/)/
C. hystrix [18], C. latifolia [8], C. limetta [19,20], C. limon [8,11],
N
H
H
%4
H
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Table 1. Cont.

Compound *

Citrus Species Structure

a-Terpinene

C. aurantifolia [8,9], C. aurantium [11], C. bergamia [14,15],
C. latifolia [8], C. limon [8,11], C. limonia [8], C. maxima [17],
C. medica [22], C. paradisi [17], C. reticulata [11],

C. sinensis [11], C. tamurana [28,29]

7-Terpinene

C. aurantifolia [8,9], C. aurantium [11,12], C. bergamia [13-15],
C. hystrix [18], C. latifolia [8], C. limon [8,11,21], C. limonia [8],
C. macroptera [16], C. maxima [16,17], C. medica [22],

C. paradisi [17], C. reticulata [11,24], C. sinensis [11,27],

C. tamurana [28,29], C. unshiu [30]

C. aurantifolia [8], C. aurantium [11], C. bergamia [14,15],

Terpinolene C. latifolia [8], C. limon [11], C. limonia [8], C. paradisi [17],
C. reticulata [11,24], C. sinensis [8,11,27], C. tamurana [28,29]
C. aurantifolia [8], C. aurantium [11,12], C. bergamia [14],
w-Thuiene C. hystrix [18], C. latifolia [8], C. limon [8,11], C. limonia [8],
) C. paradisi [17], C. reticulata [11,24], C. sinensis [11,27],
C. tamurana [28,29]
B-Thujene C. tamurana [28,29] &
. C. aurantium [11,12], C. bergamia [14], C. limon [11],
Tricyclene C. reticulata [11], C. sinensis [11] 3
Ketones
Camphor C. aurantium [11], C. limetta [19], C. limon [11,21],
p C. reticulata [11,24], C. sinensis [11]
e}
6-Camphor C. tamurana [28,29] &0
Carvomenthone C. medica [22]
o
L-Carvone C. tamurana [28,29]

e
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Table 1. Cont.

Compound *

Citrus Species

Structure

Carvone

C. bergamia [15], C. maxima [16,17], C. paradisi [17],
C. reticulata [25]

aSS

cis-Dihydrocarvone

C. aurantium [11], C. limon [11], C. reticulata [11],
C. sinensis [11]

<

Isopiperitone

C. tamurana [28,29]

Menthone

C. tamurana [28,29]

S« %«

Sabina ketone

C. maxima [17], C. paradisi [17]

3-Terpinolenone (=piperitone)

C. limon [21]

Oxides

4,5-Epoxycarene

C. medica [23]

Carvone oxide

C. tamurana [28]

Q||

o

1,8-Cineole (= eucalyptol)

C. aurantifolia [9], C. aurantium [11,12], C. bergamia [15],

C. limon [11], C. macroptera [16], C. reticulata [11,25],
C. sinensis [11]

7
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Table 1. Cont.

Compound *

Citrus Species

Structure

cis-Limonene-1,2-epoxide

C. bergamia [14], C. maxima [16], C. reticulata [25],
C. sinensis [27], C. tamurana [28]

trans-Limonene-1,2,-epoxide

C. bergamia [14,15], C. limon [21], C. reticulata [25],
C. sinensis [27], C. tamurana [28]

Z-Linalool pyranoxide

C. tamurana [28,29]

cis-Linalool-oxide

C. aurantium [10,11], C. bergamia [15], C. hystrix [18],
C. limetta [20], C. limon [11], C. macroptera [16],
C. maxima [16], C. reticulata [11], C. sinensis [11],
C. tamurana [28,29]

trans-Linalool oxide

C. aurantium [12], C. bergamia [15], C. hystrix [18],
C. macroptera [16], C. maxima [16], C. tamurana [28,29]

Myrcene epoxide

C. paradisi [17]

Nerol oxide

C. tamurana [28,29]

7-Oxabicycloheptane,
1-methyl-4-(1-methylethyl)

C. medica [23]

Perillene

C. paradisi [17]

«-Pinene oxide

C. limon [21]

Rose furan epoxide

C. reticulata [25]
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Table 1. Cont.

Compound * Citrus Species Structure
Sesquiterpenes
Alcohols and derivatives
OH

w-Bisabolol

C. bergamia [14,15], C. latifolia [8], C. limetta [19], C. limon [21],
C. medica [22,23], C. tamurana [28,29]

B-Bisabolol

C. limon [21], C. limetta [19], C. medica [22,23]

T

SalacY-tkou s

C. maxima [17], C. paradisi [17], C. tamurana [28,29]

a-Cadinol C. macroptera [16], C. tamurana [28]
Cedrenol C. tamurana [28]
C. bergamia [15], C. maxima [17], C. paradisi [17],
Cedrol C. tamurana [28,29]
Cubenol C. macroptera [16]
i OH
Elemol C. aurantifolia [9], C. hystrix [18], C. macroptera [16], )‘\§

OH

a-Eudesmol

C. aurantifolia [9]

B-Eudesmol

C. aurantifolia [9], C. macroptera [16], C. tamurana [28,29]

HO

g
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Table 1. Cont.

Compound * Citrus Species Structure

HO

v-Eudesmol C. aurantifolia [9], C. tamurana [28]

7-epi-a-Eudesmol C. aurantifolia [9]
=z = =z OH
2E,6E-Farnesol C. limetta [19], C. tamurana [28,29]
OH
3 C. aurantium [11], C. limon [11], C. paradisi [17],
22,6E-Farnesol C. reticulata [11], C. sinensis [11], C. tamurana [28,29] =z =z =
OH
Globulol C. paradisi [17], C. tamurana [28,29] @
OH
Ledol C. limon [21] §:@
E-Nerolidol C. reticulata [25], C. aurantium [12], /
C. bergamia [15], C. macroptera [16], C. tamurana [28,29] HO ~ ~
4
A
HO
Z-Nerolidol C. paradisi [17], C. reticulata [26], C. tamurana [28,29]
N
«-Santalol C. limetta [19] %
OH
E-B-santalol C. limetta [19]

A
E-sesquisabinene hydrate C. bergamia [14]

HO
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Table 1. Cont.
Compound * Citrus Species Structure
C. aurantium [11], C. limon [11], C. reticulata [11],
Spathulenol C. sinensis [11], C. tamurana [28,29]
H
Valerianol C. aurantifolia [9]
HO
Viridiflorol C. tamurana [28]
Aldehydes
w-Sinensal C. maxima [17], C. paradisi [17], C. reticulata [26] = - e
B-Sinensal C. maxima [17], C. paradisi [17], C. reticulata [26], X X X0
C. tamurana [28]
Hydrocarbons
Aromadendrene C. limetta [19]

a-Bergamotene

C. bergamia [15]

cis-x-Bergamotene

C. latifolia [8], C. limon [21]

trans-x-Bergamotene

C. aurantifolia [8], C. bergamia [14], C. latifolia [8],

C. limetta [19], C. limon [8], C. limonia [8], C. medica [22,23],

C. reticulata [25]

Bicyclogermacrene

C. bergamia [14], C. macroptera [16]
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Table 1. Cont.

Compound * Citrus Species Structure

X

a-Bisabolene C. latifolia [8], C. limetta [21]

7

A
/

C. aurantifolia [8], C. bergamia [14,15], C. latifolia [8],

p-Bisabolene C. limon [8], C. limonia [8], C. reticulata [25]

E-y-Bisabolene C. bergamia [14]
Z-y-Bisabolene C. bergamia [14]
B-Cadinene C. hystrix [18]
5-Cadinene C. aurantifolia [8], C. aurantium [12], C. limonia [8],

C. macroptera [16], C. medica [22,23], C. tamurana [28]

w-Cedrene C. maxima [17], C. paradisi [17], C. tamurana [28,29]

C. aurantifolia [8], C. aurantium [11,12],
C. bergamia [14], C. hystrix [18], C. latifolia [8], C. limon [11],
C. macroptera [16], C. medica [23], C. reticulata [11,25],
C. sinensis [11], C. tamurana [28,29]

a-Caryophyllene (=humulene)

C. aurantifolia [8], C. aurantium [12], C. bergamia [14,15],
C. hystrix [18], C. latifolia [8], C. limetta [8], C. limon [8],
C. macroptera [16], C. maxima [17], C. medica [22,23],
C. paradisi [17], C. reticulata [25], C. tamurana [28,29]

B-Caryophyllene

C. aurantium [12], C. hystrix [18], C. macroptera [16],

a-Copaene C. maxima [17], C. paradisi [17], C. tamurana [28,29]

geehiraniiCoesale s fies e e




Horticulturae 2022, 8, 396

17 of 34

Table 1. Cont.

Compound *

Citrus Species Structure

a-Cubebene

C. maxima [17], C. paradisi [17], C. tamurana [28]

B-Cubebene

C. hystrix [18], C. macroptera [16], C. tamurana [28,29]

w-Curcumene

C. limon [21]

B-Curcumene

C. limon [21]

C. aurantifolia [8], C. aurantium [12], C. hystrix [18],

B-Elemene C. latifolia [8], C. macroptera [16], C. sinensis [27],
C. tamurana [28,29], C. unshiu [30]
C. aurantifolia [8], C. aurantium [12], C. bergamia [14],
é-Elemene C. maxima [17], C. paradisi [17], C. reticulata [24],
C. reticulata [25]
v-Elemene C. reticulata [24], C. aurantium [12], C. tamurana [28,29]

RN Ne IS (g RS AIe S

E,E-n-Farnesene

C. limetta [19], C. macroptera [16], C. maxima [17], = = XX
C. medica [23], C. paradisi [17], C. unshiu [30]

E-B-Farnesene

C. aurantifolia [8], C. bergamia [15], C. latifolia [8], = = X
C. limetta [19], C. tamurana [28,29]

Z-B-Farnesene

C. bergamia [14], C. medica [23], C. tamurana [28]

Germacrene B

C. reticulata [25,26]
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Table 1. Cont.

Compound * Citrus Species

Structure

C. aurantifolia [8], C. aurantifolia [8], C. aurantium [11],
C. bergamia [14,15], C. hystrix [18], C. latifolia [8],

C. limon [8,11,21], C. macroptera [16], C. medica [22,23],

C. reticulata [11,24], C. sinensis [11], C. tamurana [28,29]

Germacrene D

o~-Muurolene (=x-Cadinene) C. macroptera [16], C. medica [22]
Z-B-Santalene C. bergamia [14], C. limetta [19], C. limon [21]
epi-B-Santalene C. limetta [19]
Sesquiphellandrene C. bergamia [14], C. limetta [21], C. tamurana [28,29]
Sesquithujene C. bergamia [14]
Seychellene C. limon [21]

C. aurantium [11], C. limon [11], C. reticulata [11],

Valecene C. sinensis [11], C. tamurana [28,29]
a-Ylangene C. tamurana [28]
B-Ylangene C. tamurana [29]

Zizaene C. limon [21]
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Table 1. Cont.

Compound *

Citrus Species Structure

Esters

Cedryl acetate

C. tamurana [28]

2E 6E-Farnesol acetate

C. aurantium [12], C. tamurana [28,29]

Methoprene

C. medica [22]

Nerolidol acetate

C. maxima [17], C. paradisi [17]

Loy

Nerol acetate

YO
C. aurantifolia [8], C. aurantium [12], C. bergamia [14,15],
C. latifolia [8], C. limetta [19], C. medica [22,23],
C. reticulata [25], C. tamurana [28,29]

Nerol formate

/
O
L

Sy

C. reticulata [25]

Ketones

X
\%/\/Y
(@]
X AN
O,
@

C. reticulata [11,25], C. sinensis [11], C. tamurana [28,29]

B-lonone C. tamurana [28]
. . .\J\
Nootkatone C. bergamia [14,15], C. paradisi [16,17]
(@)
Oxides
C. aurantium [11,12], C. bergamia [15], C. limon [11],
Caryophyllene oxide C. maxima [17], C. paradisi [17],
g
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Table 1. Cont.

Compound *

Citrus Species

Structure

Diterpenes

Geranyl a-terpinene

C. sinensis [27]

E-Phytol

C. reticulata [25]

HO.
\/Y\/Y\/Y\/\(

Coumarins

Bergamottin

C. bergamia [13]

Bergapten

C. bergamia [13]

Citropten

C. bergamia [13]

5-Geranyloxy-7-
methoxycoumarin

C. bergamia [13]

Phenylpropanoids

Cinnamic aldehyde

C. paradisi [17]

Cinnamyl alcohol

C. tamurana [28,29]

a-Curcumin

C. aurantifolia [9]

O/\)\/\)\
fm
07 Yo o
o
o
07~ o o
o
m
o )
)\/j\/\
X o)
/@fi
o o~ o
|
o)
@/\)J\
H
o) (]

H H

O X = oL
H e
HO OH

Estragole

C. limon [21]
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Table 1. Cont.

Compound * Citrus Species Structure
AN O
Ethyl cinnamate C. limon [21] 0
AN O
0
Ethyl p-methoxycinnamate C. limon [21]
o)
o
Eugenol C. tamurana [28] HO
X
=
Isoeugenol C. tamurana [28,29]
o
OH
0 A
Isosafrole C. reticulata [26] <
O
0 =
Methyl eugenol C. maxima [16] U\/
o
Miscellaneous

E-Solanone C. bergamia [15] ‘j/\
o
Sulcatone C. bergamia [15], C. limon [21], C. reticulata [25], M
C. tamurana [28] Ie)

* Stereochemistry is reported when inferable from the original manuscripts.

3. Main Changes in the Essential Oils Content during Fruit Maturation

The fruit quality attributes (e.g., juice color, flavor, seed presence, shape, peel color,
presence of alterations) have strong economical relevance because they are related to the
consumer perception. It is known that the general nutritional properties vary remarkably
during the fruit ripening stages and harvesting time as a result of variation in nature
and concentration of organic acids, sugars and phenolics which largely affect taste and
organoleptic quality [31]. Among these compounds, EOs have attracted attention due to
their high content in peels, aroma, flavors and bioactive properties. Although different
citrus species share many EOs (Table 1), each fruit has a distinctive odor that is related to the
presence or absence of unique components, which significantly influence the organoleptic
properties and, as a consequence, the market destination of the fruit [32].
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Besides the genetic bases concerning species (Table 1) and cultivars [33], preharvest
climatic conditions and cultural practices (e.g., rootstocks, irrigation, crop management
following conventional or organic farming), harvesting time and methods represent crucial
factors that affect the chemical composition of EOs. In this respect, it has been observed
that the rootstock may influence the yield and composition of peel EOs in orange, with
a low impact on flavor. Generally, neither the rootstock nor the scion ploidy levels affect
the EOs content; however, the tetraploid level of the scion may significantly reduce the
oxygenated compound fraction. Sensitive significant differences were detected between the
reference sample (diploid scion—diploid rootstock) and the three other diploid-tetraploid
combinations, suggesting that the rootstock and the ploidy level of the scion are key
elements for the profiling of aromatic flavor [27].

In general, the fruit growth and development in citrus consists of three stages: a first
phase of slow growth, a second phase of major increase in size and weight by growth
of juice sacs from the pulp and a third phase of reduced fruit growth together with fruit
transformation and maturation [34]. The decision on harvesting time is critical in defining
the quality of the fruits.

In order to maximize the quality of citrus fruit in terms of EO production, studies
have been conducted to investigate the evolution of the main products at the different
stages of ripening [11,35-40], observing significant variation essentially in monoterpene
hydrocarbons and oxygenated monoterpenes.

An investigation on variation during ripening of the chemical composition of the peel
of four citrus (i.e., C. aurantium, C. limon, C. sinensis, C. reticulata) revealed that it depends
on the stage and the species. In fact, the stage of maximum yield of EOs production
is the immaturity for C. limon, the semimaturity for C. sinensis and C. reticulata and the
maturity for C. aurantium. However, in all these species the highest level of limonene was
already reached at the immature stage [11]. Subsequently, Bhuyan et al. [38] confirmed
that in C. reticulata the maximum yield of peel oil is reached at the turning (semimature)
stage, with lower specific gravity, refractive index and ester number, and a higher content
in aldehydes and other organoleptically important oxygenated constituents; particularly,
these products contribute to the overall quality and typical aroma of mandarin oil, making
it more suitable for commercial applications.

An Italian study also demonstrated that variation of peel EOs during fruit ripening
depends on the origin and cultivars. In fact, the measurement of EO content of four
cultivars of C. limon at different harvesting times (i.e., October, November, December,
February) showed that the maximum yield was reached in November for Campanian
cultivars (i.e., ‘Ovale di Sorrento” and ‘Sfusato Amalfitano’), whereas in Sicilian cultivars
(i.e., "Femminello Cerza” and ‘Femminello Adamo’) the peak was reached in December.
Furthermore, the most abundant monoterpene hydrocarbons (e.g., x-pinene, 3-pinene,
myrcene, D-limonene, and y-terpinene) decreased during the ripening stages [36].

The EO yield was also determined for C. medica peels, observing a marked increase
during fruit development and maturation. The content of some components, particularly
limonene, a-thujene, 3-carene, a-pinene, 3-pinene and y-terpinene, varied significantly
during maturation stages [35].

Investigating the effect of harvesting time on the volatile compounds produced by
C. bergamia is particularly important considering that bergamot fruits are primarily used
for the extraction of EOs employed in perfumes, cosmetics and confections. Marzocchi
et al. [37] conducted a study aimed to assess the EO quality of two varieties of C. bergamin
at different maturation stages, observing that the volatile compound concentration is
higher at the second and the third stage. Particularly, the maturation stage seemed to
affect many compounds (e.g., p-pinene, y-terpinene, x-terpineol), while limonene, the
most representative compound, had similar concentrations in all varieties regardless of the
harvesting time.
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4. Biological Properties as Related to Protection against Postharvest Deterioration

Many substances contribute to the biological properties of citrus fruits, such as
carotenoids [41], flavonoids [42], ascorbic and other organic acids [31]. However, in con-
sequence of the possibility of extracting them from the peels as by-products, bioactivities
of EOs have been considered more in-depth, and independently studied. Besides usage
in cosmetology [43], these properties have been essentially investigated with reference to
multiple favorable effects on health and ensuing pharmaceutical relevance. This refers
to possible applications in the treatment of neurological [44] and vascular disorders [45],
and as antioxidant [12,46-50], anticholesterolemic [51], antidiabetic [12] and antitumor
agents [43,52]. The latter effects have been also studied with reference to purified products,
such as citral [53,54], bergamottin and 5-geranyloxy-7-methoxycoumarin [13].

However, the most exploited applications undoubtedly rely on antimicrobial proper-
ties (Table 2). These concern use of EOs not only as alternative antibiotics in the medical
field [12,55-60], but particularly as food additives. The latter usage, that may also involve
EOs extracted from other plants which are not considered in this article, aims at improving
the quality of a wide array of food products with reference to both possible contamination
with human pathogens and preservation of organoleptic properties after inhibition of
deteriorating microbial agents [47,50,56,61-66]. Of course, the latter is a priority aspect in
the case of citrus fruits, which generally need to overcome prolonged postharvest periods
before undergoing either fresh consumption or industrial transformation. Hence, to a cer-
tain extent citrus fruits benefit from a natural protection against postharvest deterioration
from the EOs which abound in their epicarp (Table 2).

Table 2. Bioactivity of essential oils extracted from citrus peels as related to fruit quality.

Species Bioactivity References
Acaricidal [9]
e Antibacterial [67,68]
C. aurantifolia Antifungal [8,67,69-74]
Insecticidal [75]
Antibacterial [12,47,49,68,76,77]
c . Antifungal [49,77,78]
- aurantium Antioxidant [12,47,49]
Insecticidal [77,79]
Antibacterial [56,57]
. Antifungal [77,78,80]
C. bergamia Antioxidant [48]
Insecticidal [81]
C. latifolia Antifungal [8,70]
Antibacterial [47,49,50,55-57,61,62,64,66,67]
Cli Antifungal [8,49,50,55,62,63,67,69-71,73,78,82-84]
- fmon Antioxidant [46,47,49]
Insecticidal [33,79,81]
C. limonia Antifungal [8]
. Antibacterial [65]
C. maxima
Antifungal [70,74,85]
. Antibacterial [86,87]
C. medica
Antifungal [59,88]
Antibacterial [64,67]
C. paradisi Antifungal [63,64,67,69,70,73,89]

Insecticidal [33]
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Table 2. Cont.

Species Bioactivity References
Antibacterial [47,49,50,60,64]
C. reticul Antifungal [24,25,49,50,63,69,70,74,90]
- reticulata Antioxidant [47,49]
Insecticidal [79]
Antibacterial [47,50,55-57,64,67,73,90,91]
C. sinensis Antifungal [50,55,63,67,70,73,74,85,88,90-97]
Antioxidant [47]
C 1 Antibacterial [30]
- unsiin Antifungal [70]

Postharvest quality of citrus fruits is affected by several fungal pathogens which start
the infection process in the field, such as Phytophthora citrophthora, Alternaria citri, Diaporthe
citri and Lasiodiplodia theobromae [98-100]. In the case of the tropical citrus spot agent
Pseudocercospora (=Phaeoramularia) angolensis, tolerance by certain species/cultivars has been
referred to the composition of peel EOs [70]. Several practical applications have dealt with
the heterologous use of citrus EOs against biological adversities of other crops [89,92,101];
many examples concern pests and pathogens which are also known on citrus fruits, hence
representing indirect evidence of possible effectiveness in their management on the latter.
This is the case of reported effects against Colletotrichum gloeosporioides, the agent of citrus
anthracnose also known as Glomerella cingulata, which damages fruits both in the field
and in postharvest [71,72,88,96,102]. Inhibitory effects have also been documented against
other fungi, such as Aspergillus spp. [55,63,78,82,85,93-95,97,101,103,104], which may affect
citrus quality as mycotoxin producers [105,106]. The gray mold agent Botrytis cinerea,
also recently affirmed as an emergent citrus postharvest pathogen [107], proved to be
sensitive to lemon essential oil, which completely inhibits in vitro growth at concentrations
of 17 uL mL~1 [83], or 0.016% [108]. However, lower inhibitory activities resulted from
two other studies carried out with EOs of C. limon, C. limonia. C. aurantifolia and C. latifolia
(MIC 312-625 nug mL~1) [8], and of C. aurantifolia, C. limon, C. paradisi and C. sinensis (ECsq
ranging between 249 and 809 mg L~!) [67], with the latter also showing mild antibacterial
effects. Inhibitory properties against the agent of bacterial canker Xanthomonas citri subsp.
citri were displayed by EOs extracted from C. aurantium [76], from C. aurantifolia and
C. aurantium [68] and from C. reticulata, C. limon, C. sinensis and C. aurantium [47].

Undisputedly, a major impact on citrus fruit quality has to be ascribed to the agents
of blue mold (Penicillium italicum) and green mold (Penicillium digitatum) [109]. EOs from
orange (cvv. ‘Washington Navel’, ‘Sanguinello’, “Tarocco’, ‘Moro’, ‘Valencia late” and
‘Ovale’), bitter orange, mandarin (cv. ‘Avana’), grapefruit (cvv. ‘Marsh seedless” and ‘Red
Blush’) and lemon (cv. ‘Femminello’, collected in three periods) displayed to various
extents inhibitory activities against these fungi, with P. digitatum being more sensitive [69].
Moreover, treatments with lime EOs at 10% concentration reduced disease severity on
orange fruit, along with significant reduction of the undesirable fruit percentage and weight
loss, and increase in total soluble solid content during cold storage for 14 weeks [73]. Young
green lemon fruit show a significantly lower level of postharvest decay as compared to
the older yellow fruit. Inoculation with P. digitatum demonstrated that resistance of green
fruit is related to compounds synthesized in the oil glands of the flavedo, the majority
of which are identified as the monoterpene aldehyde citral. Flavedo of green lemons
contains 1.5-2-times higher levels of citral than the yellow fruit. In parallel with citral
decline, flavedo extracts of yellow lemons exhibited an increased level of the monoterpene
ester neryl acetate, which not only proved to be inactive but, in concentrations below
500 ppm, even stimulated development of P. digitatum. During long-term storage, citral
concentration decreases in parallel with the decline of antifungal activity in the peel and
with an increase of decay incidence [110]. Citral was recently found to affect ergosterol



Horticulturae 2022, 8, 396

25 of 34

biosynthesis, indicating general antifungal effects [111]. In fact, along with its isomers
geranial and neral, it also displayed various amounts of inhibitory effects against P. italicum
and Geotrichum candidum [112-114], as well as a-terpineol [115].

Other purified EOs have shown inhibitory effects against P. digitatum. Citronellal in-
hibited mycelial growth and spore germination in a dose-dependent manner, with a MIC of
1.60 uL mL~! and minimum fungicidal concentration (MFC) of 3.20 uL mL~1 [116]. When
assayed as encapsulated oil-in water nanoemulsions, eugenol, carvacrol and cinnamalde-
hyde displayed antifungal effects in a dose-dependent manner with MIC of 0.125 mg mL !
and MFC of 0.25 mg mL~!. Nanoemulsion coating reduced fruit decay, weight loss and
respiratory rate; degradation of soluble solids, vitamin C and titratable acids were de-
layed, while antioxidant enzyme activities were significantly increased and maintained
during postharvest storage [117]. Moreover, R-(L)-carvone completely inhibited mycelial
growth at a concentration of 1000 uL. L~! and caused approximately 60% inhibition at
500 uL L1, while 1,8-cineole was effective at 3000 puL L1, but inhibition decreased to 83%
at 2000 pL L~1; (D)-limonene was ineffective against this pathogen with only 50% inhibi-
tion achieved at 3000 uL L~ [118]. Otherwise, limonene has been reported for general
fungistatic properties as assayed on a panel of five test fungi; however, lower fungitoxicity
than the crude extract is indicative of synergistic action by other EO components [92,104].
The compound also showed direct anti-aflatoxigenic properties [85]. Thymol and carvacrol
exhibited strong antifungal activity against B. cinerea, with MIC and MFC of 65 mg L~! and
100 mg L~ for thymol, and 120 pL L~ and 140 uL L~! for carvacrol [119]. In another study
(D)-B-pinene, (L)-a-pinene, (L)-B-pinene, (D)-limonene and (L)-limonene displayed some
inhibitory effects against the gray mold agent [8]. Citral presented MIC of 0.5% on A. niger,
A. flavus and Fusarium sp., 2.0% on Penicillium sp. and 8.0% on Rhizopus sp., while eugenol
presented MIC of 2.0% on A. flavus and 4.0% on Penicillium sp., Fusarium sp. and Rhizopus
sp. [82]. Some of these products, such as D-limonene, have also displayed insecticidal and
acaricidal properties [9,120], which can result in a protective effect against insect pests both
in the field and in postharvest handling.

Some typical EO constituents, such as thymol, eugenol and geraniol, have been
recently assayed as nanoemulsions, displaying bactericidal or bacteriostatic effects against
the citrus pathogens Xanthomonas fuscans subsp. aurantifolii and X. citri subsp. citri [121].
Inhibitory effects against the latter were also documented for «-terpineol, citral, citronellal,
geraniol, linalyl acetate and linalool [68]. Particularly, the latter compound has been shown
to mediate resistance against bacterial canker in mandarin [122] and in transgenic sweet
orange [123].

As a counterpoint to the above favorable effects, another study pointed out that EOs
of C. limon, C. limonia, C. aurantifolia and C. latifolia enhance P. digitatum in vitro, and that
growth of the fungus was even stimulated by pure chiral volatile compounds from these
EOs, apart from citral and (+)-3-pinene [8]. Likewise, EOs of mandarin stimulated spore
germination and mycelium growth of P. digitatum and P. italicum at a low concentration, but
they were strongly inhibitory at a higher concentration [124]. This hormetic effect has been
also displayed by selected compounds of EOs, such as citral and linalool [125]. Indeed,
some evidence has been gathered that compounds in the EOs may act as odor cues for
attracting pest or inducing citrus plant pathogens. In fact, both P. digitatum and X. citri subsp.
citri were unable to infect the peel tissues of transgenic orange fruits with downregulation
of limonene synthase and reduced accumulation of limonene in the peel [126].

Contrasting results have also been obtained with reference to effects against the
Mediterranean fruit fly (Ceratitis capitata). In fact, EOs are generally considered as the
most critical resistance factor to medfly infestation of various citrus fruits. Toxic effects on
larvae were reported to be caused by treatments with EOs extracted from some varieties
of lemon, sweet and bitter orange. The two latter species, presenting a higher limonene
concentration, produced stronger effects, while presence of a-pinene and 3-pinene was
considered to account for the lower toxicity of lemon EOs [81]. Likewise, ether extracts
from lemon and grapefruit peel proved to be toxic to the eggs and larvae of both the medfly
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and the South American fruit fly (Anastrepha fraterculus), along with purified limonene
and citral. There were no or less significant differences in toxicity of extracts from ripe
and overripe fruit of both species [33]. As the ovipositional responses of female medflies
were investigated in dual-choice experiments, a significantly higher number of eggs was
laid into hollow oviposition hemispheres which had been pre-punctured with 1 pL of
peel oil from sweet orange, satsuma mandarin, bitter orange, grapefruit and lemon. The
latter had just a weak stimulatory effect, while sweet orange oil was the most active in
eliciting oviposition. Limonene stimulated oviposition, whereas linalool, a representative
compound of immature citrus fruit associated with high toxicity against immature stages
of fruit flies, had a significant deterrent effect. In further no-choice tests, females laid
about 23% fewer eggs in limonene 93% (that is the amount found in orange oil) and 60%
fewer eggs in limonene 93% plus linalool 3% (approximately 10-fold the amount found
in orange oil) mixtures, as compared to sweet orange oil. Hence, the limonene content
accounts, largely but not completely, for the ovipositional responses observed in sweet
orange oil, whereas high linalool proportions are capable of significantly masking and/or
disrupting its stimulatory effects [127]. Limonene, linalool and a-pinene induced toxicity to
adult medflies, with males being more sensitive than females. Sub-lethal doses of limonene
(LDyg) enhanced the lifespan of medflies when they were deprived of protein and positively
affected fecundity, implying positive effects of sub-lethal doses at least at certain stages;
hence, a general hormetic-like response [128]. Detrimental effects on oviposition were
observed on linalool-treated bitter oranges. Particularly, oranges that were offered to
females immediately after exposure to linalool received more oviposition stings and eggs
than those offered three days post-exposure. More flies were captured in traps placed on
untreated-control than on linalool-treated trees. Spraying and topical-droplet application
were more efficient than exposure to vapors of linalool in ethanolic solution [129]. Reduction
of oviposition was also observed on oranges treated with lemon EOs, with some differences
between oils extracted from the the two cultivars ‘Interdonato’ and ‘Lunario’, the first one
being more effective at lower dose [130]. Significant improvement was also observed on
the mating behavior of medfly males, after exposure to commercial EOs from peels of bitter
orange, mandarin orange, lemon and grapefruit; more particularly by doses of 12.5 or 25 pL.
of sweet orange oil. Moreover, a mixture of geraniol, a-pinene, limonene, f-myrcene and
linalool also determined mating advantages. Considering that this mixture did not contain
a-copaene, an EO known to enhance mating success, it could find alternative application in
view of a more cost-effective and efficient implementation of the sterile insect technique
in the integrated management of C. capitata [131]. Among the above compounds, further
studies have shown that linalool is particularly relevant in this attractive effect [132].

Matching what was previously reported for citrus pathogens, the general remark that
medflies are less attracted by low limonene-expressing fruit indicates that accumulation of
this main component of EOs in the peel of citrus fruit is involved in the successful trophic
interaction between fruit, insects and microorganisms. Hence, terpene downregulation has
been proposed as a strategy to generate broad-spectrum resistance against the pests and
pathogens of these crops. However, this issue requires careful thought, considering that
limonene is recognized to play a role in citrus defense against other pests, such as scales,
whiteflies and mealybugs [133].

The above-mentioned antioxidant properties of EOs, documented in the case of ex-
tracts from several citrus species [12,46-50], should also be considered with reference to
their preservative action on fruit in postharvest. EOs and other volatile organic compounds
(VOCs) have been proposed and routinely used as biofumigants for the treatment of several
food commodities, including fruit where postharvest deterioration caused by molds is
a general problem affecting trade and storage [134]. Citrus peel extracts are generally
recognized as safe products to be used for treatment of commodities, including wheat
seeds, where they do not cause adverse effects on germination [93], and in the fresh market
of fruit and vegetables as bioactive edible coatings [135]; the latter also in combination with
other effective products such as chitosan [98,136-138].
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5. The Role of Endophytic Fungi

Endophytes are recognized as a key factor impacting plant health. Moreover, by
influencing physiology of reproductive organs, they govern the process of fruit ripening,
with ensuing effects on quality and preservation during marketing [139]. On the other
hand, microbiome components functionally interact with each other in multiple ways,
in connection with factors such as the plant genotype, the developmental stages and the
environmental conditions [140].

It is generally accepted that many endophytic fungi effectively improve citrus plant
fitness by promoting growth and participating in defensive mutualism [141,142]. At leastin
part, the latter function is due to the capacity of the endophytic strains to release bioactive
metabolites. This property is not only referable to peculiar antimicrobial products, but also
to several compounds which are originally known as plant secondary metabolites, including
some belonging to the EOs [143]. Indeed, the long list of endophytic fungi reported in
this reference published in 2015 as able to directly synthesize these compounds should be
integrated with an even higher number of findings resulting from the manifold studies
carried out throughout the world in the last seven years, attesting the increasing awareness
of the importance of this component of biodiversity. Moreover, endophytes have been
found to be involved in biotransformation of products in EO fraction, as experimentally
demonstrated in the case of Piper aduncum [144]. On the other hand, biosynthesis of EOs by
some endophytes may be induced in the presence of plant pathogens. This is the case of a
strain of Trichoderma longibrachiatum producing cedrene, epi-f3-caryophyllene and nerolidol
in co-culture with Fusarium oxysporum [145].

With specific reference to Citrus spp., the ability of strains of Annulohypoxylon sp. from
C. aurantifolia to produce 1,8-cineole [146] and of Muscodor sp. from C. sinensis to synthesize
cis-, trans-a-bergamotene, cedrene, Z-3-farnesene and other volatile compounds which
collectively inhibit the agent of citrus black spot (Phyllosticta citricarpa) [147], confirms the
inference that endophytic fungi may effectively support and integrate the pool of products
synthesized by the host plant. The relevance of these findings is corroborated by a general
biosynthetic aptitude of xylariaceous fungi, which are widespread as endophytes and,
besides Muscodor (syn. Induratia) and Annulohypoxylon, include the genera Xylaria, Daldinia
and Hypoxylon (syn. Nodulisporium), also reported as EO producers [141].

A practical application derived from basic observations concerning these fungi has
been named mycofumigation [148]. It consists of the treatment of food commodities with
the volatile fractions of extracts from cultures of fungal strains containing antimicrobial
products which act by permeating the surrounding atmosphere during product storage.
The importance of this technique in postharvest handling of citrus fruits is intuitive, and
one practical experience reported for the endophytic isolate CMU-UPE34 of Nodulisporium
sp. is valuable for elucidating the expected impact on the product quality. In fact, this strain
was found to effectively inhibit growth of two citrus molds (P. digitatum and Penicillium
expansum) by releasing a mixture of 31 VOCs containing eucalyptol (1,8-cineole) and
terpinen-4-ol as the most abundant products [149]; these compounds act synergistically, as
it has been demonstrated against B. cinerea [150].

Fumigation of oranges with citral (20, 60 or 150 mL L~! in absorbent pads) in a closed
system, following application of conidia by puncturing, delayed the onset of sour rot by
G. candidum var. citri-aurantii at room temperature by 7-10 days and at 5 °C, by 13-30 days,
but had limited effect on blue and green mold, which developed faster on oranges wounded
by puncture than by abrasion. Volatile citral delayed the development of blue mold in
abraded, but not punctured, oranges stored at 5 °C. Phytotoxicity symptoms were observed
on the upper surface of some fruit close to or in direct contact with citral-soaked pads
at concentrations of 60 and 150 mL L~!. Citral residue was not detected in the rind of
fumigated oranges. Volatile citral applied at 60 mL L~! appeared to have potential for the
control of sour rot, although phytotoxicity was associated with high concentrations [151].

So far, limited data are available on the biosynthetic capacities of citrus endophytes.
Hence, supplementary work must be carried out to verify properties by the most common
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endophytic species and to assess if they can play a significant role in driving the ripening
process and preserving fruit quality both in the grove and in postharvest. Indeed, the direct
use of endophytic fungi may represent a more effective tool than the classic treatments with
selected chemicals, considering that these microbial associates are capable of continuously
releasing a bulk of substances acting in synergism, and that the concomitant presence of
multiple bioactive compounds may minimize the risk of induction of resistance in the
challenged pathogens.

6. Conclusions

In recent years, citrus essential oils have gained great popularity for applicative
usage in the food and cosmetic as well as the pharmaceutical industries, which has been
technically refined by the availability of several kinds of microformulations [152]. The
increasing demand underlines the opportunity to recycle citrus peels contained in wastes
from the food industry for their extraction [80,153,154]. However, the raw material is
qualitatively highly heterogeneous as it is influenced by several factors including the nature
and provenance of the fruit, genotype, soil type, climatic and cultural conditions. It has
been demonstrated that the chemical compositions of the citrus peels vary significantly
during ripening. For this reason, harvesting time is a critical parameter, especially because
EOs have an important role in the protection from postharvest fruit deteriorations. In fact,
EOs in the immature fruit stages have a higher effectiveness against pests and pathogens.
This evidence may be adaptatively interpreted with the necessity by the plant to protect
developing fruits; while in ripe fruits this need would no longer be relevant, considering
that they are destined either to be eaten by frugivorous animals or to fall to the ground
to allow seed dispersal [155]. Adaptative factors may also regard the capacity of some
endophytic associates to directly synthesize these products, which contribute to shaping
their ecological role as defensive mutualists. Undoubtedly, this aptitude deserves more
in-depth assessments in view of a possible exploitation for improving postharvest quality.
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