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M.; Antunović Dunić, J.; Varga, I.;
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Abstract: This study examined the photosynthetic responses of two sunflower hybrids to elevated
temperatures and excess light intensity in the flowering stage by measuring the chlorophyll a fluores-
cence (ChlF) under morning and afternoon field conditions to determine the photosynthetic pigment
contents and the relative accumulation of photosynthetic proteins. The morning environmental
conditions were considered optimal, while the afternoon was characterised by elevated temperatures
and excess light intensity. The minimum fluorescence intensity (F0), the electron-flux-reducing end
electron acceptors at the photosystem I acceptor side per reaction centre (RE0/RC), and the D1 protein
had significant, high, and positive correlations with the environmental conditions, which indicates
that they were the most useful in the sunflower-stress-response research. In hybrid 7, the elevated
temperatures and the excess light intensity resulted in the inactivation of the oxygen-evolving com-
plex, which was indicated by the positive L, K, and J steps, the increase in the maximum quantum
yield of PSII (TR0/ABS), the decrease in the electron transport further than the primary acceptor QA

(ET0/(TR0-ET0)), the reduction in the performance index (PIABS), and the higher relative accumu-
lation of the light-harvesting complex of the photosystem (LHCII). Hybrid 4 had smaller changes
in the fluorescence curves in phases O–J and J–I, and especially in steps L, K, J, and I, and a higher
PIABS, which indicates a more efficient excitation energy under the unfavourable conditions. As
the tested parameters were sensitive enough to determine the significant differences between the
sunflower hybrids in their photosynthetic responses to the elevated temperatures and excess light
intensity in the flowering stage, they can be considered useful selection criteria. The development
of more adaptable sunflower hybrids encourages sustainable sunflower production under stressful
growing conditions.
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1. Introduction

Sunflower (Helianthus annuus L.) is a high-value, widespread oilseed. It is considered
to be an important raw material for the production of oil and many other food and nonfood
products. Sunflower production is influenced by many different environmental factors that
interact, and that often cause plant stress. Because extreme temperature variations, sunlight
intensity, quality variations, as well as uneven precipitation patterns that are accompanied
by changes in the wind intensity and cloudiness are becoming more frequent [1], studies
that investigate the relationship between plants and unfavourable weather conditions are
becoming more and more important, and they enable the prediction of plant responses.
The environmental factors that play major roles in plant stress are high temperatures,
excess light, and drought. According to García-López et al. [2], sunflower is moderately
tolerant to drought and heat stress. It is most sensitive to heat from early flowering to grain
filling. Growing sunflower at elevated temperatures reduces its growth, which is reflected
in the specific leaf mass, the leaf surface, and the soluble protein content [3]. Among
the physiological processes, photosynthesis [4] is the most susceptible to the negative
impact of heat. In addition to heat, the high light intensity can also negatively affect
photosynthesis [5].

At the end of the 20th century, significant progress was made by using modern optical
methods and techniques to study photosynthetic processes [6], among which one of the
most commonly used methods is the determination of the chlorophyll a fluorescence (ChlF).
The ChlF provides insight into the photosynthetic apparatus status and function, the
efficiency of photosystem II (PSII), and the electron transport chain function [7]. Many
authors have used ChlF parameters to study the effect of stress on plants [5,8–11].

Acclimatisation to different environments is interrelated to photosynthetic adjustment,
which consequently affects the biochemical and physiological processes, the growth, and
the yield [12]. Most plants show a significant ability to adjust photosynthesis to temperature
and light fluctuations. Elevated temperatures negatively affect cell division and expansion,
and they are one of the main stresses that stimulate protein degradation and that cause
tissue senescence or death [13]. The decrease in photosynthesis occurs not only because
of changes in the flow of energy through PSII, which is extremely sensitive to elevated
temperatures, but also because of the reduced content of the pigments in leaves [14]. PSII
damage that is caused by elevated temperatures occurs mainly at the oxygen-evolving
centre (OEC), and so even slightly increased temperatures cause its deactivation [15].
Although an increase in light intensity can gradually increase the photosynthetic rate,
reactive centres absorb more light when the intensity of the light is high (i.e., when there is
more light than can be used in photochemistry). The remaining energy is dissipated as heat
and fluorescence. If the energy is not utilised or if it is dissipated, it causes photooxidative
stress and it increases the level of reactive oxygen species (ROS) [16]. High light intensity is
the cause of numerous other disorders in plants besides photodamage, photoactivation, and
photoinhibition. One of these disorders is the degradation of photosynthetic proteins. It has
been proven that the accumulation of the light-harvesting complex of PSII (LHCII) is related
to the chlorophyll a and b ratio, and that it depends on daily weather fluctuations [17].
Protein D1, which is an essential part of the photosynthetic apparatus, is also sensitive to
stress [18]. Excess light causes D1 protein phosphorylation, which results in degradation,
de novo protein synthesis, and protein incorporation into PSII [19]. The accumulation of the
cytochrome f protein is also crucial because the c6f protein complex connects to PSII and to
photosystem I (PSI) with cyclic and linear electron transfer [20]. Another significant protein
that is directly related to temperature is Rubisco. Its abundance changes under stress [21].

As the global weather changes, extreme weather conditions that occur in the estival
afternoons during the most critical sunflower developmental stages are becoming more
frequent. Such conditions can often cause short-term temperature and light stress in sun-
flower plants, which are reflected as changes in the ChlF parameters [10]. Although plants
can show a significant ability to adjust photosynthesis to temperature and light fluctuations
through daily changes during plant growth, there are those that are less tolerant. Therefore,
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the timely determination of the stress occurrence and the stress tolerance and the elimi-
nation of stress-susceptible genotypes are of great importance for plant production. This
study aimed to differentiate genotypes on the basis of their photosynthetic responses to
elevated temperatures and excess light intensity in the flowering stage by measuring the
ChlF, the photosynthetic pigment contents, and the relative accumulation of photosynthetic
proteins in the field (i.e., in their ambient environments). The synergic effect of elevated
temperatures and excess light, which are known to be correlated with sunflower leaf stress
and to cause the most problems in many production areas, were determined in the after-
noon hours during the sunflower flowering stage. Knowing the specific reactions of the
individual hybrids to adverse environmental conditions allows breeders to better under-
stand the characteristics of the material during selection, which also increases the breeding
programme’s success. Since this study is a part of the sunflower breeding programme, and
since it compares the responses of different hybrids to the conditions that are known to
affect the metabolism in plants, it is important to select superior material. On the basis of
the abovementioned, it was hypothesised that one hybrid would be more adaptable to the
elevated temperatures and excess light determined in the chosen afternoons, and that it
would show minor daily changes in the tested parameters.

2. Materials and Methods
2.1. Plant Material

The experiment was conducted at the Agricultural Institute Osijek (Osijek, Croatia)
on two sunflower hybrids. The hybrids differed in pedigree and in agronomic properties
(plant height, head diameter, yield potential), but they had similar maturation times. The
hybrids were chosen on the basis of the results of previous trials [22,23]. Hybrid 4 has been
recognised and has been widely spread throughout the sunflower production in Croatia
in recent years. The producers accept it because of its high seed quality and seed yields
under various growing conditions, which shows its stability and wide adaptability. Hybrid
7 is an experimental material that stood out in multiyear microtrials, with good overall
agronomic qualities and high oil content. A comparison of the difference in the response
mechanisms of these two hybrids to unfavourable environmental conditions (elevated
temperature and excess light intensity) will be beneficial for determining the direction of
future breeding programmes.

The sowing was performed with manual hand planters (two seeds per hill) at a
4 cm depth in four 5 m-long rows, with a 70 cm distance between the rows, and a 23 cm
distance within the rows (45◦32′ N, 18◦44′ E; 94 m altitude), in four replications. The
final density was 6.29 plant/m2. A randomised complete block experimental design was
used. The soil analysis determined that the soil texture was silty clay loamy, and it is
classified as anthropogenic Eutric Cambisol. The physical and chemical properties in the
upper soil layer of the soil were: 64.7% silt; 32.5% clay; 2.8% sand; a pH in K2O of 7.3;
a pH in H2O of 7.9; P2O5 > 41 mg/100 g; N: 0.16%; K2O > 40 mg/100 g; CaCO3: 0.9%;
Al (mobile): 0.26 mg/100 g; and a humus content of 2.18%. During the experiment, all
of the agrotechnical measures were performed by following the recommendations and
requirements of sunflower cultivation.

2.2. Weather Conditions

The minimum, maximum, and mean air temperatures, the solar radiation intensity, and
the precipitation for the ten days preceding the measurement and sampling are shown in
Supplementary Table S1 in order to provide more insight into the environmental conditions
that the photosynthetic apparatus needed to adapt to. The temperature, solar radiation, and
precipitation measurements were recorded every 10 min (0–24 h), after which the average
values per day were calculated.

The measurements were made on a cloudless day (4 August) during the flowering
stage, in the morning (7:30–9:00 am) and in the afternoon (12:30–2:00 pm). These two mea-
surement times were selected to quantify the photosynthetic apparatus reaction to and
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the changes in the physiological parameters under the elevated temperature and excess
light conditions that were determined to be characteristic of the early afternoon hours,
compared to the lower temperatures and low light conditions that were determined to
be characteristic of the early morning hours (optimal conditions). The mean air tempera-
ture and the solar radiation during the measurement and sampling in the morning were
27.6 ◦C and 332.3 W/m2, respectively. In the afternoon, they were 35.7 ◦C and 830.2 W/m2,
respectively. The mentioned afternoon temperature and solar radiation were previously
found to be the causes of changes in the photosynthetic efficiency [5,10]. The temperatures,
the solar radiation intensities, and the precipitation were recorded by a command and
data-acquisition station near the experiment.

2.3. Chlorophyll a Fluorescence (ChlF)

The ChlF was determined during the flowering stage (according to Schneiter and
Miller [24], in the R5.5 stage) by a plant efficiency analyser (Handy PEA, Hansatech,
Norfolk, UK). The youngest (upper) developed sunflower leaves were used for the ChlF
measurements. A leaf is considered developed if it is larger than 4 cm [24]. The measure-
ments were carried out in the middle two rows of each hybrid in the morning (7:30–9:00 am)
and afternoon hours (12:30–2:00 pm), and in their ambient environments. The ChlF was
determined on 12 leaves per hybrid (three leaves × four replicates) under field conditions.
Before measuring the ChlF, the sunflower leaves were adapted to the dark for 30 min and
were subjected to dark conditions, during which the electron transfer in the photosynthetic
electron transport chain ceases. There is no water oxidation in PSII (i.e., at the OEC), as
there is no charge separation at the reaction centre in darkness. After tissue illumination,
the obtained information on the intensity of the ChlF during one second is displayed on
the OJIP curve. Different environmental conditions can cause the appearance of additional
steps in the ChlF OJIP transients [6]. The ChlF transients were induced by using a pulse of
saturating red light (peak at 650 nm, 3200 µmol m−2 s−1). The JIP parameters that were
calculated from the recorded data are shown in Supplementary Table S2.

A double normalisation of the OJIP transients was made between the O and P steps.
The logarithmic time scale was used for presenting the relative variable fluorescence:
WOP = (Ft − F0)/(FJ − F0). The K, L, J, and I steps were presented as the variable fluores-
cence: WOK = (Ft − F0)/(FK − F0), WOJ = (Ft − F0)/(FJ − F0) WOI = (Ft − F0)/(FI − F0),
and WO50 = (Ft − F0)/(F50 − F0) plotted with difference kinetics: ∆WOK = WOK − (WOK)ref,
∆WOJ = WOJ − (WOJ)ref, ∆WOI = WOI − (WOI)ref, and ∆WO50 = WO50 − (WO50)ref. The
measurements under the morning conditions were used as the reference values of (WOK)ref,
(WOJ)ref, (WOI)ref, and (WO50)ref.

2.4. Laboratory Analyses

In total, the eight youngest leaves per hybrid on which the ChlF was determined were
sampled for their photosynthetic pigments and for protein analysis. Before the biochemical
analyses, the composite sample was homogenised into a powder by using liquid nitrogen.

2.4.1. Photosynthetic Pigment Content Determination

About 0.05–0.1 g of plant tissue, which was previously homogenised by liquid nitrogen
with the addition of magnesium hydroxide carbonate, was extracted by 1 mL of cold acetone.
The extraction procedure was repeated six times until the plant tissue was completely
discoloured. Supernatants were pooled and used for the spectrophotometric measurement
of the absorbance at 470, 645, and 662 nm. Acetone was used for the blank. The content of
the photosynthetic pigments was calculated by using the appropriate extinction coefficients,
according to Lichtenthaler [25]. The chlorophyll a/b and the chlorophyll a + b/Car were
calculated as well. Five replicates were performed per the condition of each genotype.
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2.4.2. SDS-PAGE and Immunodetection

The relative protein accumulation was determined by sodium dodecyl sulfate-polyacry-
lamide gel electrophoresis (SDS-PAGE). About 0.5 g of plant tissue was extracted with
1 mL of buffer, heated to 80 ◦C. The buffer consisted of 0.13 M Tris/HCl (pH = 6.8), 4.6%
SDS, 16% glycerol, and 0.01 M dithiothreitol. The protein concentration was determined
according to Bradford [26]. The protein extract contained 10 or 30 µg of protein, depending
on the protein detected. For the detection of the Rubisco large subunit (LSU), a sample
containing 10 µg of protein and 1 µg of loading buffer was applied to the gel, and for the
other proteins (Lhcb2, D1, and cytochrome f ), 30 µg of protein and 2 µg of buffer were
used. After the separation with 12% SDS-PAGE [27], the proteins were transferred from
the gel to the nitrocellulose membrane (Bio-Rad) in semidry conditions by using Biometra
Fastblot B43 [28]. For the immunodetection, the specific primary antibodies against LHCII
(anti-Lhcb2, Agrisera), D1 of Photosystem II (anti-PsbA, Agrisera), cytochrome f (anti-Cyt f,
Agrisera), and Rubisco LSU (anti-RbcL, Agrisera), and then secondary antibodies (Donkey
anti-rabbit IgG-HRP, Santa Cruz Biotechnology, Dallas, TX, USA), were used. Primary and
secondary antibodies were diluted in a buffer in ratios of 1:5000 and 1:10,000, respectively.
According to the manufacturer’s instructions, a commercial chemiluminescence detection
substrate (Lumi-Light Western Blotting Substrate, Roche, Basel, Switzerland) was used to
incubate the membranes. After that, protein bands were detected on ECL films (AGFA,
Mortsel, Belgium), according to the standard procedure. ImageJ software was used for
the protein band quantification. Three replicates were performed per the condition of
each genotype.

2.5. Data Analyses

The ChlF parameters were calculated and visualised in Microsoft Excel, according to
Strasser et al. [7]. A one-way ANOVA was used for determining the statistical differences
between the hybrids under the morning and afternoon conditions of the ChlF (n = 12) and
pigment-content (n = 5) measurements, which were followed by the Tukey’s post hoc honest
significant difference (HSD) test at p < 0.05. The correlations among the JIP parameters, the
pigment content, the photosynthetic proteins, the sunflower hybrids, and the environmental
conditions were explored by principal component analysis (PCA) at p < 0.05. Before the
PCA analysis, the data were standardised. The PCA was performed by using a correlation
matrix of the average values after autoscaling. The mean values ± standard deviations in
the table are used for presenting the data.

3. Results and Discussion
3.1. Fluorescence Transient Curves

The raw fluorescence induction curves showed a high deviation between the hybrids
measured in the morning and in the afternoon, where a notable change in the OJIP-curve
shape occurred in hybrid 7 (Figure 1a). The double O–P normalised curves, which show
the measurement values of hybrids 4 and 7 under the morning conditions, had the typical
form of a normalised OJIP curve (Figure 1b), while the curves that were measured in the
afternoon altered significantly. A similar shape was found in peach leaves when exposed
to high (more than 35 ◦C) temperatures [29].

The O–J phase, which is also known as the light-dependent phase, represents the
2 ms increase in the OJIP curve. This phase provides information about the excitation
energy transfer between the PSII RCs and PSI [30]. It reveals the difference between the
measurements under the morning and afternoon conditions, which is seen as the rise in the
fluorescence curves for both hybrids. Still, the increase was more pronounced for hybrid
7, which is a consequence of reducing the primary plastoquinone (QA) acceptor [31]. The
J–I phase is characterised by a partial reduction in the pool of plastoquinones, which is
unlike the I–P phase, which represents the reduction in the PSI’s acceptor side [32]. It is
evident from Figure 1b that the curves in the J step are more pronounced for hybrid 7;
however, in the I step, the curves are the same for both hybrids and for both conditions.
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Brestic et al. [33] found a decrease in the fluorescence transient intensity in the J–I phase,
followed by an I–P phase increase, which was confirmed in this investigation as well.
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Figure 1. (a) Raw fluorescence induction curves, and (b) double O–P normalised OJIP curves of
chlorophyll a fluorescence kinetics of dark-adapted leaves of sunflower hybrids 4 and 7 under the
morning (M) and afternoon (A) conditions. WOP = (Ft − F0)/(FP − F0) represents normalised OJIP
transient data between steps O and P. Each curve represents the average kinetics of 12 replicates
per condition.

A more precise image of the O–P phase’s fluorescence intensity can be obtained from
the individual representations of the normalised O–K, O–J, O–I, and O–50 curves. They
clearly differentiate between the L, K, J, and I steps among the tested hybrids (Figure 2).

Under the synergic effect of elevated temperatures and excess light, the L step’s
appearance at 150 µs reflects the positive transient values in both hybrids (Figure 2a), which
signify the weaker energy connectivity and stability of the PSII units [32]. Under the same
conditions, the rise in the kinetic fluorescence of the K, J, and I steps has positive curve
amplitudes for both hybrids; however, higher amplitudes in all the steps were determined
for hybrid 7 (Figure 2b–d). The positive curve amplitudes at step K (300 µs) indicate an
impaired PSII antenna function during the electron flow, which was due to an increased
reduction rate of the QA of the primary PSII electron acceptor, which indicates impaired
OEC function [34]. Furthermore, steps J (2 ms) and I (30 ms) explain the reduction in
the plastoquinone pool between PSII and PSI [35]. Although many studies confirm the
occurrence of the K and L steps under high temperatures [29,33] and high light intensity [36],
numerous authors report their occurrence in other stress conditions as well. The described
reactions of sunflower hybrids 4 and 7 in the individual steps concur with the synergic
effect of the elevated temperatures and the excess light that was determined in apple
cultivars [5].
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ing (M) and afternoon (A) conditions. WOK = (Ft − F0)/(FK − F0) represents normalised transient data 
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represents normalised transient data between steps O and 50 (I step); (d) plotted as difference kinet-
ics (ΔWO50 = WO50 − (WO50)ref) in the 0.05–50 ms time range. Each curve represents the average kinetics 
of 12 replicates. Measurements in morning conditions were used as reference values of (WOK)ref, 
(WOJ)ref, (WOI)ref, and (WO50)ref. Curve lines with marker points show WOK, WOJ, WOI, and WO50 (pri-
mary axis), and curve lines without marker points show ΔWOK, ΔWOJ, ΔWOI, and ΔWO50 (secondary 
axis). 
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Figure 2. Chlorophyll a fluorescence transient curves in sunflower hybrids 4 and 7 under the morning
(M) and afternoon (A) conditions. WOK = (Ft − F0)/(FK − F0) represents normalised transient data
between steps O and K (L step); (a) plotted as difference kinetics (∆WOK = WOK − (WOK)ref) in the
0.05–0.3 ms time range. WOJ = (Ft − F0)/(FJ − F0) represents normalised transient data between
steps O and J (K step); (b) plotted as difference kinetics (∆WOJ = WOJ − (WOJ)ref) in the 0.05–2 ms
time range. WOI = (Ft − F0)/(FI − F0) represents normalised transient data between steps O and
I (J step); (c) plotted as difference kinetics (∆WOI = WOI − (WOI)ref) in the 0.05–30 ms time range.
WO50 = (Ft − F0)/(F50 − F0) represents normalised transient data between steps O and 50 (I step);
(d) plotted as difference kinetics (∆WO50 = WO50 − (WO50)ref) in the 0.05–50 ms time range. Each
curve represents the average kinetics of 12 replicates. Measurements in morning conditions were
used as reference values of (WOK)ref, (WOJ)ref, (WOI)ref, and (WO50)ref. Curve lines with marker
points show WOK, WOJ, WOI, and WO50 (primary axis), and curve lines without marker points show
∆WOK, ∆WOJ, ∆WOI, and ∆WO50 (secondary axis).

3.2. Chlorophyll JIP-Test Parameters

The results of the JIP-test parameters and the photosynthetic pigments in the morning
and afternoon conditions are shown in Table 1.

The afternoon F0 measurements (when all the PSII RCs were open) increased in both
hybrids compared to the values under the morning conditions, and with a more pro-
nounced increase for hybrid 7. Contrary to the F0 values, the Fm values decreased because
of the synergic effect of the elevated temperatures and excess light for both hybrids, and
they represented their maximal intensity when all of the PSII RCs were closed. Accord-
ing to Schansker et al. [37], the fluorescence increase between steps F0 and Fm indicates
QA reduction. These two parameters calculate the TR0/ABS, which demonstrates the
likelihood that the absorbed photon energy can be trapped by PSII RCs [38]. Under the
morning conditions, the TR0/ABS values were similar for hybrids 4 and 7; however, they
decreased in the afternoon in both hybrids, which indicates PSII damage [15]. It has been
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proven that, under heat and light stress, the F0 values typically increase, while the Fm and
TR0/ABS values decrease. This result was confirmed in the research by Mihaljević et al. [5].
Misra et al. [39] define the decrease in the maximum quantum efficiency of PSII, which is
calculated by the TR0/ABS as photoinhibition.

Table 1. Mean values and standard deviations of JIP parameters (n = 12) and photosynthetic pigment
contents (n = 5) in sunflower hybrids 4 and 7 in morning and afternoon conditions.

Hybrid 4 Hybrid 7

Parameters Morning Afternoon Morning Afternoon

Minimum fluorescence intensity (F0) 267.50 ± 8.51 b 348.75 ± 25.09 a 223.75 ± 7.31 c 341.83 ± 28.87 a
Maximum fluorescence intensity (Fm) 1740.92 ± 67.50 a 1591.83 ± 104.15 b 1416.75 ± 99.07 c 1115.58 ± 92.91 d

Relative variable fluorescence at 150 µs
(VL step) 0.54 ± 0.01 b 0.54 ± 0.02 b 0.54 ± 0.01 b 0.56 ± 0.02 a

Relative variable fluorescence at 300 µs
(VK step) 0.36 ± 0.02 c 0.39 ± 0.03 b 0.40 ± 0.02 b 0.44 ± 0.03 a

Relative variable fluorescence at 3 ms (VJ step) 0.24 ± 0.02 d 0.40 ± 0.03 b 0.28 ± 0.02 c 0.58 ± 0.03 a
Relative variable fluorescence at 30 ms (VI step) 0.46 ± 0.05 ab 0.45 ± 0.03 b 0.50 ± 0.05 a 0.47 ± 0.03 ab

Maximum quantum yield of PSII (TR0/ABS) 0.85 ± 0.01 a 0.78 ± 0.01 b 0.84 ± 0.01 a 0.69 ± 0.03 c
Density of active PSII reaction centres (RCs) per

cross section (RC/CS0) 157.84 ± 7.44 b 173.32 ± 12.43 a 119.35 ± 6.53 d 135.53 ± 10.54 c

Density of RC on chlorophyll a basis (RC/ABS) 0.59 ± 0.03 a 0.50 ± 0.04 b 0.53 ± 0.03 b 0.40 ± 0.04 c
Flux ratio trapping per dissipation (TR0/DI0) 5.51 ± 0.19 a 3.58 ± 0.30 b 5.34 ± 0.45 a 2.28 ± 0.31 c

Electron transport further than primary
acceptor QA (ET0/(TR0-ET0)) 3.16 ± 0.26 a 1.53 ± 0.20 c 2.61 ± 0.26 b 0.73 ± 0.10 d

Performance index (PIABS) 10.26 ± 0.66 a 2.73 ± 0.48 c 7.44 ± 1.20 b 0.67 ± 0.17 d
Quantum yield for reduction in end electron
acceptors at the PSI acceptor side (RE0/ABS) 0.60 ± 0.04 c 0.72 ± 0.03 b 0.58 ± 0.04 c 0.87 ± 0.07 a

Probability that an electron from the electron
transport chain is transferred to reduce end
electron acceptors at the PSI acceptor side

(RE0/ET0)

0.71 ± 0.05 c 0.92 ± 0.04 b 0.69 ± 0.06 c 1.26 ± 0.11 a

Electron-flux-reducing end electron acceptors at
the PSI acceptor side per RC (RE0/RC) 0.78 ± 0.09 b 0.87 ± 0.10 ab 0.79 ± 0.10 b 0.92 ± 0.12 a

Electron transport from PQH2 to final PSI
acceptors (RE0/(ET0-RE0)) 2.54 ± 0.51 b 15.95 ± 11.20 a 2.33 ± 0.60 b −5.83 ± 2.98 c

Performance index for energy conservation
from exciton to the reduction in PSI end

acceptors (PItotal)
26.09 ± 5.89 b 40.21 ± 22.01 a 16.97 ± 3.80 b −4.22 ± 3.26 c

Chlorophyll a (Chl a) 1.38 ± 0.02 b 1.49 ± 0.03 a 1.46 ± 0.02 a 1.37 ± 0.01 b
Chlorophyll b (Chl b) 0.32 ± 0.01 c 0.35 ± 0.01 b 0.37 ± 0.00 ab 0.37 ± 0.01 a

Total chlorophyll a + b (Chl a + b) 1.70 ± 0.02 c 1.85 ± 0.03 a 1.83 ± 0.02 a 1.74 ± 0.01 b
Total carotenoids (Car) 0.40 ± 0.00 bc 0.45 ± 0.01 a 0.41 ± 0.01 b 0.40 ± 0.00 c

Ratio of chlorophyll a and b (Chl a/b) 4.37 ± 0.20 a 4.21 ± 0.04 a 3.99 ± 0.06 b 3.70 ± 0.06 c
Ratio of total chlorophyll content and

carotenoids (Chl a + b/Car) 4.24 ± 0.01 c 4.09 ± 0.03 d 4.47 ± 0.05 a 4.39 ± 0.03 b

According to Tukey’s HSD test, means with the same letters are not significantly different at p < 0.05.

The values of the VL remained unchanged in hybrid 4, and they increased in hybrid 7,
while the VK and the VJ increased in both hybrids when they were measured in the
afternoon. However, hybrid 4 had lower baseline values compared to hybrid 7. The elevated
VJ in both hybrids indicate that the QA reoxidation was limited, which resulted in reduced
QA accumulation and decreased electron transport [7]. The described trend of the VL, the
VJ, and the VK under heat and light stress was also observed in common fig leaves [8].
The VI showed no significant change in both hybrids under the afternoon conditions
compared to the morning conditions, which indicates that the mentioned parameter is
not directly related to the changes in PSII [38]. The RC/CS0 increased in both hybrids
when they were measured in the afternoon, which indicates that the inactivation of a
particular number of reaction centres did not occur. Hybrid 4 had higher RC/CS0 values
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than hybrid 7, but the stress still had more impact on hybrid 7. According to other studies
that have been conducted on wheat [40] and quinoa [41], stress conditions reduced the
RC/CS0 values, which directly affected the TR0/ABS and caused its reduction. The RC/CS0
did not affect the TR0/ABS in this study because the TR0/ABS values decreased despite
the increased RC/CS0. All of the above leads to the conclusion that sunflower has a
partially different defence reaction of the photosynthetic apparatus to the synergic effect of
elevated temperatures and excess light compared to other plant species, at least in terms
of the RC/CS0 parameter, which was concluded previously by Çiçek et al. [42] as well.
Furthermore, numerous studies have shown that the most sensitive parameters of the
JIP-test are the PIABS and the PItotal [5,43]. The PIABS and its components significantly
decreased under the synergic effect of elevated temperatures and excess light. Hybrid
4 had a higher PIABS, RC/ABS, and ET0/(TR0-ET0) than Hybrid 7. The hybrids had similar
TR0/DI0 and PItotal under the morning conditions. The PItotal parameter includes the
PIABS with its components (RC/ABS, TR0/DI0, and ET0/(TR0-ET0)) and the probability
of the PSI reducing its end acceptors (RE0/(ET0-RE0)) [32]. The RE0/(ET0-RE0) shows
the efficiency of the processes that involve PSI and its ability to reduce its end acceptors.
Contrary to the other stress parameters, the PItotal increased in hybrid 4 and decreased
in hybrid 7, while the RE0/(ET0-RE0) proved to be the most sensitive component of the
PItotal, as it had the largest changes in its values. The sensitivity of the RE0/ET0 was noted
earlier by Pavlović et al. [9], who tested brassicas for salt stress, and by Viljevac Vuletić and
Španić [43], who investigated leaf senescence in winter wheat. The results described above
are similar to those observed in Zoysiagrass leaves that were exposed to cold stress [44],
and in nutrient-deficient maise and tomato plants [45]. Çiçek et al. [42] obtained positive
and negative PItotal values, and they examined the impact of drought on sensitive and
tolerant sunflower hybrids. In this study, the tendency of PSI under the synergic effect
of elevated temperatures and excess light is presented through the following parameters:
the RE0/ABS, the RE0/ET0, and the RE0/RC. These parameters showed no significant
differences between the hybrids under the morning conditions. At the same time, they
increased in the afternoon in both hybrids, which reflects the electron flow from the PQH2 to
the PSI end electron acceptors. An increase in the RE0/ET0 values under heat stress occurs
when fewer electrons are donated to reduce the PQH2 [8,46]. Similarly, Arslan et al. [47]
report that the RE0/ABS, the RE0/ET0, and the PItotal were reduced by drought in all
sunflower lines. By testing peach leaves for heat stress at three levels (25, 30, and 35 ◦C),
Martinazzo et al. [29] proved that increasing the temperature increases the values of the
RE0/RC and the RE0/ABS, while the RE0/ET0 remains the same.

3.3. Photosynthetic Pigment Content

Hybrid 4 had lower chlorophyll a and b (Chl a and b) and carotenoid (Car) contents
than hybrid 7 under the morning conditions. The elevated temperatures and the excess light
under the afternoon conditions increased the photosynthetic pigment content in hybrid 4,
while their amount decreased (except for Chl b) in hybrid 7 (Table 1). Gupta et al. [48]
conclude that the decrease in the chlorophyll in wheat seedlings resulted from thylakoid
membrane damage that was caused by high temperatures. This study indicates that hy-
brids 4 and 7 have a different adaptation of the light-harvesting complex (LHC) under
the synergic effect of elevated temperatures and excess light. On the other hand, a signif-
icant reduction in the Car in hybrid 7 reduced the photosynthetic efficiency because the
carotenoids protect the chlorophyll from photooxidative destruction [49]. Therefore, the
car-content increase in hybrid 4 as a result of the synergic effect of the elevated tempera-
tures and excess light in the afternoon indicates the initiation of the photoprotective plant
defence mechanism for the avoidance of photooxidation, which is further confirmed by the
reduction in the ratio of the total chlorophyll content and carotenoids (Chl a + b/Car).
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3.4. Photosynthetic Proteins

The LHCII protein is very important for the speed of the adaptation of plants to
changes in the light intensity, which results in the relative accumulation of proteins and
in changes in the organisation of the antenna position. In this way, plants simultaneously
regulate the light absorption and the nonphotochemical dissipation of the excess excitation
energy. According to Chen et al. [50], light and heat stress cause the LHCII super-complexes
to disassemble, which indicates more susceptibility to stress compared to the other protein
complexes in the thylakoid membrane. The antenna complex’s main protein structure for
the LCHII is made up of Lhcb2 proteins that bond 45–60% of the pigment molecules (Chl a,
Chl b, and carotenoids). In the present experiment, the elevated temperature and the excess
light resulted in an accumulation of the LHCII protein in both hybrids, which correspond
to the changes in the photosynthetic pigment contents of leaves, as demonstrated by
Oguchi et al. [51]. Furthermore, Tanaka and Tanaka [52] conclude that the accumulation of
LHCII depends on the content of Chl b. In this research, the accumulation of the LHCII
increased during the synergic effect of elevated temperatures and excess light, and more so
for hybrid 7 than for hybrid 4 (Figure 3). Mlinarić et al. [8] and Tanaka and Tanaka [52] have
determined that higher LHCII accumulation is related to higher Chl b content. This was also
confirmed here because hybrid 7 had a higher Chl b content and Chl a/b and higher LHCII
accumulation than hybrid 4 (Table 1 and Figure 3) under the synergic effect of elevated
temperatures and excess light. In hybrid 7, the Chl b content remained stable despite the
stress, but the LHCII increased significantly. A higher LHCII protein accumulation during
heat and light stress was also confirmed in wheat [50].

One of the main reaction centres in PSII is transmembrane subunit protein D1 (coded
genome psbA), which is the most susceptible to environmental stress of all of the PSII
complex components [53]. Su et al. [54] claim that the D1 protein is the target place
for heat and light stress action. According to Chan et al. [55], heat and/or light stress
stimulate ROS synthesis in the thylakoid membranes, which damages the D1 protein.
Although other studies note the decrease in the D1 protein that is due to the synergic
effect of elevated temperatures and excess light [54], this was not the case here. The D1
protein was higher in the afternoon than in the morning, and especially in hybrid 4, which
indicated that the ROS did not affect the D1 protein (i.e., that the cell oxidation damage
was partly prevented). Hybrid 4 showed weaker dynamics between the degradation
and the biosynthesis of the D1 protein compared to hybrid 7, as was evidenced by the
D1 protein level in the morning, which was much lower in hybrid 4 in the post-stress
period (i.e., recovery overnight). The D1 protein accumulation is more affected by the light
intensity than by the temperature. According to Guo et al. [56], a higher light intensity
causes increased protein phosphorylation. More recent studies indicate that the high
D1 protein reactivity under unfavourable high-light-intensity conditions is not just the
result of the photoinhibition processes. Its function is to protect PSI from the high flow
of the electrons that are generated in PSII that could cause oxidation damage [57]. This
is confirmed in the research by Vojta et al. [58]. They report the parallel existence and
activity of different electron flow routes in the electron transport chain that prevent excess
ROS synthesis.

Besides the D1 protein, the daily fluctuations in the temperatures and the insolation
affect cytochrome b6f complex proteins as well. The membrane cytochrome b6f protein
complex connects PSI to PSII through electron connections [20]. During the synergic effect
of elevated temperatures and excess light, sunflower hybrid 4 accumulated more cyt f
proteins than hybrid 7. The relative cyt f protein accumulation during high light intensity
is one of the most sensitive components of electron transport [59]. According to Hojka [60],
plants adapt to high light intensity by increasing cyt f protein synthesis, but the change
amplitudes depend on the species. Higher cyt f accumulation under high-light-intensity
conditions was confirmed by Yamori et al. [61] on spruce, and by Pavlovič et al. [62] on
tobacco leaves.
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Figure 3. The relative accumulation of photosynthetic proteins: (a) light-harvesting complex of pho-
tosystem II—(LHCII); (b) D1; (c) cytochrome f (cyt f); and (d) Rubisco large subunit—(Rubisco LSU) 
in sunflower hybrids 4 and 7 (H4 and H7) under the morning (M) and afternoon (A) conditions. 
Lines in graphs represent mean values ± standard deviations of three replicates (n = 3). 
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tive correlation with the F0, the RE0/RC, and protein D1, which means that these parame-
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Figure 3. The relative accumulation of photosynthetic proteins: (a) light-harvesting complex of
photosystem II—(LHCII); (b) D1; (c) cytochrome f (cyt f ); and (d) Rubisco large subunit—(Rubisco
LSU) in sunflower hybrids 4 and 7 (H4 and H7) under the morning (M) and afternoon (A) conditions.
Lines in graphs represent mean values ± standard deviations of three replicates (n = 3).

The photosynthesis efficiency during heat and light stress depends on the stomatal
conductivity and on the CO2 diffusion, which affect the activation of the ribulose-1,5-
biphosphate (RuBP) carboxylase/oxygenase enzyme that is known as Rubisco [63]. It
is well known that the CO2 diffusion and the Rubisco activity in RuBP carboxylation
affect the photosynthetic rate. Rubisco mainly affects the efficiency of PSII and the relative
electron transport through CO2 fixation [64]. The same was confirmed in the research by
Chen et al. [48], who investigated the effect of simultaneous heat and light stress conditions
on wheat. In the afternoon conditions, the Rubisco LSU accumulation increased in hybrid 4,
while it decreased in hybrid 7, which may indicate differences in the ROS accumulation,
as ROS cause the degradation and fragmentation of the Rubisco LSU. Chen et al. [50]
and Zivcak et al. [65] confirm that Rubisco LSU is deactivated under heat and light stress
conditions, while Mlinarić et al. [14] report that high temperatures and excess light at
noon did not affect the Rubisco LSU accumulation. Lu et al. [66] studied the impact
of high temperatures on tomatoes. They confirm that high temperatures promoted the
transcription of the Rubisco LSU, which was accompanied by a substantial reduction in the
photosynthetic capacity, and by a slight inhibition of the Rubisco activity.
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3.5. Principal Component Analysis

The presented and discussed relationships between the environmental conditions, the
hybrid sensitivities, and the tested parameters were summarised and visualised with the
principal component analysis (PCA) (Figure 4).
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Figure 4. Biplot of principal component analysis of chlorophyll a fluorescence, photosynthetic pig-
ment contents, and photosynthetic proteins in hybrids 4 and 7 (blue colour) under the morning and
afternoon conditions (red colour). JIP parameters: minimum fluorescence intensity (F0); maximum
fluorescence intensity (Fm); relative variable fluorescence at 150 µs (VL step); relative variable fluores-
cence at 300 µs (VK step); relative variable fluorescence at 3 ms (VJ step); relative variable fluorescence
at 30 ms (VI step); maximum quantum yield of PSII (TR0/ABS); density of active PSII reaction centers
(RCs) per cross section (RC/CS0); density of RC on chlorophyll a basis (RC/ABS); flux ratio trapping
per dissipation (TR0/DI0); electron transport further than primary acceptor QA (ET0/(TR0-ET0));
performance index (PIABS); quantum yield for reduction in the end electron acceptors at the PSI
acceptor side (RE0/ABS); probability that an electron from the electron transport chain is transferred
to reduce end electron acceptors at the PSI acceptor side (RE0/ET0); electron-flux-reducing end
electron acceptors at the PSI acceptor side per RC (RE0/RC); electron transport from PQH2 to final
PSI acceptors (RE0/(ET0-RE0)); and performance index for energy conservation from exciton to the
reduction in the PSI end acceptors (PItotal). Photosynthetic pigment content: chlorophyll a (Chl a);
chlorophyll b (Chl b); total chlorophyll a + b (Chl a + b); total carotenoids (Car); ratio of chlorophyll a
and b (Chl a/b); and ratio of total chlorophyll content and carotenoids (Chl a + b/Car). The relative
accumulation of photosynthetic proteins: light-harvesting complex of photosystem II (LHCII); D1;
cytochrome f (cyt f ); and Rubisco large subunit (Rubisco LSU).

The two principal components (PCs) explained 87.22% of the total variability. PC1 and
PC2 were responsible for 56.27% and 30.95% of the variability. The RE0/ABS, the TR0/ABS,
and the ET0/(TR0-ET0) positively contributed to PC1. A negative contribution to PC1 was
determined for the VJ, the RE0/ET0, and the LHCII. The Chl a + b/Car, the VI, and hybrid 7
positively contributed to PC2. According to the correlation coefficients, the synergic effect
of the elevated temperatures and excess light was in a highly significant positive correlation
with the F0, the RE0/RC, and protein D1, which means that these parameters could be
useful as stress indicators for sunflowers. Furthermore, the RE0/RC is in a significant,
strong, and positive correlation with the VJ, the RE0/ABS, the RE0/ET0, the LHCII, and D1,
while it is in a significant, strong, and negative correlation with the TR0/ABS, the TR0/DI0,
the ET0/(TR0-ET0), and the PIABS (Supplementary Table S3), which is evident from the
position of the mentioned parameters in the PCA biplot (Figure 4). D1 is in significant,
strong, and positive correlation with the RE0/RC and the LHCII, while the correlations
with the TR0/DI0, the ET0/(TR0-ET0), and the PIABS were significant, strong, and negative
(Figure 4 and Supplementary Table S3). These relationships indicate that increases in the
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VJ, the RE0/ABS, the RE0/ET0, the RE0/RC, and the LHCII, as well as decreases in the
TR0/ABS, the TR0/DI0, the ET0/(TR0-ET0), and the PIABS can be signs that sunflower
plants are under stress. Furthermore, the parameters that are in significant correlation
can be used interchangeably, which simplifies and speeds up the analysis process. The
association of the ChlF parameters with the environmental conditions was previously
studied and confirmed by Pavlović et al. [9], Mihaljević et al. [5], and Viljevac Vuletić and
Španić [43].

4. Conclusions

Although most of the tested parameters changed as expected during the elevated
temperatures and excess light that were determined in the afternoon hours, only the F0,
the RE0/RC, and D1 revealed significant, high, and positive correlations with the environ-
mental conditions, which indicates their usefulness in sunflower-stress-response research.
Some other chlorophyll fluorescence parameters (VJ, TR0/ABS, TR0/DI0, ET0/(TR0-ET0),
RE0/ABS, RE0/ET0, RE0/RC) and photosynthetic proteins (LHCII and D1) can be used as
indicators of the physiologic changes that are caused by elevated temperatures and excess
light as well, although they are only indirectly associated with environmental conditions.

According to the tested parameters, hybrid 4 appeared more adaptable to the elevated
temperatures and excess light that were determined in the afternoon hours than hybrid 7.
The better adaptability of hybrid 4 is evident from the smaller changes in the fluorescence
curves in phases O–J and J–I, and especially in steps L, K, J, I, and by the higher PIABS
values under the afternoon conditions. The photosynthetic apparatus of hybrid 7 can be
considered to be more susceptible to the tested unfavourable weather conditions than
that of hybrid 4 because of the significant impairment of its functionality, as is indicated
by the positive L, K, and J steps, the increase in the TR0/ABS, and the decrease in the
ET0/(TR0-ET0), which caused the reduction in the PIABS. The more pronounced stress
effect in hybrid 7 was confirmed by the higher relative accumulation of the LHCII potential
as well. The determination of the photosynthetic efficiency, pigments, and proteins could
be a useful selection criterion for the development of sunflower hybrids that are highly
tolerant to elevated temperatures and excess light, which encourages sustainable sunflower
production under stressful growing conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae8050392/s1, Table S1: Temperature and solar radiation
ten days before measurements of chlorophyll a fluorescence; Table S2: Measured and calculated
chlorophyll a fluorescence parameters according to Strasser et al. [7] and Yusuf et al. [32]; Table S3:
Correlation coefficients among analysed traits and environmental conditions in sunflower hybrids.
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