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Abstract: The ‘Narcea rose’ is a recently described yet ancient rose cultivar of interest to the perfume
industry. Given its excellent adaptation to the conditions of the place where it was rediscovered, the
possibilities of its horticultural/industrial production have been under examination for some time.
The hydrodistillation process produces a red-to-brownish mixture of water and rose petals that could
contain compounds that could be used in other industrial procedures. Their recovery and further
utilization would reduce disposal costs and improve the sustainability of relevant industries. This work
reports the quantification, by high-performance liquid chromatography (HPLC–MS) and quadrupole
time of flight Q-TOF analyses, of the polyphenol content in the waste water. This waste was found to
contain high concentrations of quercetin, gallic acid and ellagic acid, as well as smaller concentrations of
kaempferol and its derivatives, all of which can influence plant, human and animal health.

Keywords: ancient cultivated rose; hydrodistillation; waste water; zero waste; flavonoids;
quercetin; health

1. Introduction

The ‘Narcea rose’ is an ancient rose cultivar that was recently rediscovered in a private
garden in the Cibea River Valley (situated in Cangas del Narcea, among the Cantabrian
Mountains of Asturias, northern Spain) [1]. Botanical and genetic studies have shown it
to be a natural hybrid of Rosa gallica and Rosa centifolia—and indeed it has characteristics
of both. However, it has red-purple petals [1], quite different to the light-pink-coloured
petals of the parental species. The Narcea rose is very well adapted to the mountainous
area in which it was found, where winters are very cold and solar radiation is variable
depending on altitude and orography. It blooms most intensely and with maximum scent
production in May. Interestingly, it appears to be little affected by disease and shows good
horticultural behaviour.

In recent years, the perfume industry has demonstrated growing interest in the use of
natural raw materials from sustainably produced crops. In addition, there is much interest
in their environmentally friendly transformation and production with zero waste, or at least
waste that can be recycled. In this regard, several papers have been published showing the
possible health-related [2,3] and animal feed [4] uses of the wastes produced during the
hydrodistillation of R. damascena.

The intensity and persistence of the aroma of rose essential oils is influenced by differ-
ent factors, including rose variety [5,6], the moment of petal collection, soil type and the
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cultivation practices to which the plants were subject [7–10]. Similarly, the polyphenol and
antioxidant contents of rose petals are strongly influenced by environmental, geographic
and edaphic factors [3,11].

The perfume industry uses two extraction techniques for rose materials: solvent
extraction and hydrodistillation. Solvent extraction gives rise to a solid known as ‘rose
concrete’ that, after treatment with alcohol to eliminate paraffins and other waxes, generates
an intensely scented liquid known as ‘absolute’. The waste generated in this process consists
of left-over rose petals impregnated with solvent but which still show their characteristic
colour (red, pink or purple, etc.). Solvent extraction is much quicker and more efficient, but
it requires more complex installations for the safe storage of the solvents needed. Further,
it produces more contaminating wastes that require proper disposal. Fortunately, solvent
extraction has been much improved in recent years, and to a large extent the solvents used
can be recovered and reused. Hydrodistillation, in contrast, uses no chemical contaminants,
although it does require a greater energy input. After 5–7 h of treatment, which provides
essential oils and rose water, a red-to-brownish waste (depending on the rose variety used)
is generated, composed only of water and petals. During hydrodistillation, volatile aromatic
compounds are extracted in the rising vapour of water and lipid droplets. Condensation
in the still’s serpentine coil produces two fractions: essential oil and rose water. The
polyphenols in the petals, given their water-soluble nature, remain in the waste water left
at the end of the process. In fact, some of these give the water its colour.

The leaves, flowers and fruits of certain members of Rosaceae have a long medicinal
and culinary history [3,12]. The hips of some species have been used for the treatment
of colds and influenza, inflammation and chronic pain [13], and in cosmetic preparations
for the skin [14,15]. Many of the medicinal properties of the genus Rosa lie in the high
concentrations of polyphenols found in different tissues and organs [16,17]. Studies on the
composition of Rosa rose hips [13,14,18,19] have shown that these organs are rich in bioac-
tive compounds, such as ascorbic acid, antioxidants and polyphenols such as anthocyanins
and flavonols. Rosa leaves [20,21] and preparations made from the petals [3,17,22–24] also
contain polyphenols, especially anthocyanins (cyanidins and peonidins) and flavonoids
(kaempferol, quercetin, procyanidins and proanthocyanidins). Göktürk-Baydar and Bay-
dar [25], who analysed the extracts of R. damascena green leaves and flowers (fresh and
withered), reported catechin and epicatechin to be the most abundant flavonols in the
leaves, and gallic acid (phenolic acid) to be the most abundant in the petals. The polyphenol
content of R. gallica petals explains the historic medicinal use of this species [20,23,24,26,27].

Polyphenols are secondary plant metabolites with a wide range of structures and
functions which possess at least one aromatic ring to which is bound one or more hydroxyl
groups. They are classed (and subclassed) depending on the number of phenolic rings
they possess and the structural elements these contain. Some are physiologically indispens-
able [28]; others have roles in the response to light or water stimulus and stress, etc. [29].
Since polyphenols accumulate in certain plant tissues, they may act as micronutrients
in the human diet, while their biochemical activities, for example, as antioxidants, anti-
inflammatory agents, anticancer compounds and antimutagenic agents [18,24,30], have an
influence on human health [31–34].

Studies have shown the beneficial effects of flavonols in animal and plant health. The
procyanidins, in particular, have been ascribed antifungal, antimicrobial and bactericidal
properties. It is believed that their bactericidal effect is greater against Gram-positive
bacteria, since the external membrane of these organisms lies close to the cytoplasmic
membrane [35,36]. Different authors [37–39] have indicated that they can be used as feed
additives for ruminants; flavonoids improve the production of volatile fatty acids and
reduce concentrations of ammonia and methane in the rumen. They also have a positive
effect on fermentation (antibiotic effect) and acidosis in the rumen, as well as on bloating.

The aim of the present work was to determine whether certain polyphenols of interest
are present in the waste water produced during the hydrodistillation of Narcea roses and
thereby provide further evidence of the potential industrial uses of this variety.
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2. Materials and Methods
2.1. Plant Material and Cultivation Conditions

The plant material used in this work was obtained from red-purple flowers from differ-
ent Narcea rose plants (Figure 1), all cultivated in the same plot (altitude 535 m) in the Cibea
River Valley (mean annual temperature 12.39 ◦C, mean absolute maximum temperature
28.21 ◦C, mean absolute minimum temperature 1.32 ◦C, annual rainfall 1217.15 mm). The
soil in this plot is a highly acidic loam with a moderate organic matter content and with
high available phosphate, medium assimilable potassium and mid-range exchangeable
magnesium values. Its ion exchange complex ratio is Ca:Mg:K = 70:14:16.
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Figure 1. A Narcea rose in flower.

2.2. Collection and Transport of Rose Flowers

Complete rose flowers (on 5 cm stems) were cut on 13 May 2020 from their bushes
early in the morning. The stems were stuck in water-soaked phenolic floral foam and the
samples were placed in a plastic-lined polystyrene box with a sealable lid. On the evening
of the same day, the samples were transported by car to the laboratory, where the next day
they were subjected to hydrodistillation.

2.3. Hydrodistillation and the Waste Water Produced

One-hundred-and-fifty grams of rose petals and 450 mL of distilled water were placed
in a compact Behr-KOL 2 apparatus with a 1000 mL capacity flask (Figure 2). Two hydrodis-
tillations were performed: one lasting 3 h and the other lasting 4 h. When complete, the
remaining contents of the flasks (water and rose petals) were filtered to separate the petals
from the now reddish waste water (Figure 3). Waste waters from 3 h and 4 h distillations
were then pooled in 500 mL flasks (in a single bottle), allowed to cool to room temperature
and then stored in a refrigerator at 4 ◦C. One week later (21 May) these samples were sent
to the Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) for analysis.
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Figure 3. (a) Flask containing petals and water-view during hydrodistillation. (b) Flask containing
waste water from the hydrodistillation process.

2.4. Waste Water Analysis

Upon arrival at the ICTAN (22 May), the samples were frozen at −80 ◦C until analysis.
After thawing, the samples were analysed without further dilution or processing to deter-
mine the contents of bioactive flavonoids most commonly cited for Rosa leaves and fruits,
i.e., cyanidin, kaempferol and quercetin, as well as their derivatives. Flavonols common in
plants, including catechin and the Procyanidin B1 (PB1) dimer, were also searched for, as
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were non-flavonoid polyphenols, such as benzoic acid and its derivatives gallic acid and
ellagic acid.

Polyphenols were analysed by high performance liquid chromatography–quadrupole
time-of-flight mass spectrometry (HPLC–MS Q-TOF). The HPLC–MS Q-TOF system in-
volved an Agilent 1200 series HPLC equipped with an Agilent ZORBAX Eclipse XDB-C18
column (Santa Clara, CA, USA) (4.6 mm × 150 mm × 5 µm) at 40 ◦C. The mobile phase
consisted of water containing 1% formic acid (A) and acetonitrile with 1% formic acid (B).
The elution gradient was 5% B at 0 min, 15% B at 20 min, 30% B at 30 min, 50% B at 35 min,
5% at 37 min and 5% at 40 min. The flow rate was 1 mL/min.

Compound identification/quantification was performed by MS and MS/MS Q-TOF
acquisition (2 GHz, low mass range (1700 m/z), negative polarity, drying gas 10 L 350 ◦C,
sheath gas 11 L 350 ◦C, nebulizer 45 psi, cap voltage 4000 V, fragment or voltage 150 V). A
collision energy of 20 V was used for all MS/MS experiments. Data capture and analysis
were performed using the Data Analysis B. 05.01 and Qualitative Analysis B. 07.00 routines
of the MassHunter Workstation software (Agilent Technologies, Waldbroon, Germany).

Identification and Quantification

The majority of the compounds that appeared in the HPLC chromatogram were
identified from their exact mass and fragmentation patterns. They were quantified by
making use of the negative polarity signal, extracting the (M-H) (the predomination) for
each compound. The quantification patterns used were those of:

• Cyanidin-glucoside (for the derivatives of cyanidin);
• Kaempferol-glucoside (for the derivatives of kaempferol); and
• Quercetin-glucoside (for the derivatives of quercetin and other less abundant compounds).

3. Results

Table 1 shows the majority of compounds identified and quantified, along with their
(M-H) values. The quantification pattern for quercetin-glucoside matched one of the
compounds identified, confirming its identity.

The most common compounds were quercetin and its derivatives (Figure 4), plus gallic
acid and ellagic acid. Among the quercetin derivatives, the most abundant was quercetin-
glucoside (quercetin-3-O glucoside), quercetin-rhamnoside and quercetin-galactoside.
Kaempferol-rhamnoside and kaempferol-galactoside were also detected.
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Table 1. Phenolic compounds identified in the waste water of Narcea rose hydrodistillations.

ANTHOCYANINS M-H Formula Score% MS/MS Fragment
Identity TR min Means

(µg/g) S.D

CYANIDIN-DIGLUCOSIDE 609.1461 C27H31O16 97.9 285 Cyanidin 6.9 13.45 3.01

FLAVONOLS 1 M-H Formula Score% MS/MS Fragment
identity

TR min Means
(µg/g)

S.D

KAEMPFEROL 285.0405 C15H10O6 97.6 34.2 13.76 2.53
KAEMPFEROL-PENTOSIDE 417.0827 C20H18O10 97.9 285 Kaempferol 27.6 13.76 0.70
KAEMPFEROL-PENTOSIDE 417.0827 C20H18O10 96.9 285 Kaempferol 28.2 37.99 1.88

KAEMPFEROL-RHAMNOSIDE 431.0984 C21H20O10 96.4 285 Kaempferol 28.8 52.04 5,90
KAEMPFEROL-HEXOSIDE (GALACTOSIDE) 447.0933 C21H20O11 98.9 285 Kaempferol 25.7 21.81 1.24

KAEMPFEROL-RUTINOSIDE 593.1301 C30H26O13 99.2 285 Kaempferol 31.9 15.34 2.46
TOTAL KAEMPFEROL DERIVATIVES 154.70 14.71

QUERCETIN 301.0354 C15H10O7 96.6 31.3 73,84 12.28
QUERCETIN-PENTOSIDE 433.0776 C20H18O11 94.8 301 Quercetin 25.1 50.73 4.40
QUERCETIN-PENTOSIDE 433.0776 C20H18O11 99.2 301 Quercetin 25.5 12.14 1.18
QUERCETIN-PENTOSIDE 433.0776 C20H18O11 96.2 301 Quercetin 26.1 155.96 5.25

QUERCETIN-RHAMNOSIDE 447.0933 C21H20O11 99.7 301 Quercetin 26.6 216.53 11.60
QUERCETIN-HEXOSIDE (GALACTOSIDE) 463.0882 C21H20O12 99.6 301 Quercetin 23.7 239.84 7.24

QUERCETIN-3-O-GLUCOSIDE 463.0882 C21H20O12 99.1 301 Quercetin 24.3 260.11 9.73
QUERCETIN-HEXOSIDE-RHAMNOSIDE 609.1250 C30H26O14 97.9 301 Quercetin 30.2 40.91 5.14

QUERCETIN-RUTINOSIDE 609.1461 C27H30O16 97.7 301 Quercetin 23.7 126.84 0.98
TOTAL QUERCETIN DERIVATIVES 1176.90 45.52

FLAVANOLS AND PHENOLICS ACID M-H Formula Score% MS/MS Fragment
identity TR min Means

(µg/g) S.D

CATEQUIN 289.0718 C15H14O6 97.8 9.7 39.82 1.35
PROCYANIDIN B1 577.1351 C30H26O12 94.9 8.1 12.54 0.62

ELLAGIC ACID 300.9990 C14H6O8 98.6 22.9 406.29 23.74
DERIVATIVE ELLAGIC ACID 425.0150 C20H10O11 97.4 300 Ellagic acid 27.7 250.21 32.95

GALIC ACID 169.0142 C7H6O5 81.1 2.9 726.96 23.47
TOTAL FLAVANOLS AND PHENOLICS ACID 1435.82 82.13

TOTAL µg/g sample 2780.87 145.37
[M-H]: Exact mass of the isotopes of an element; Formula: refers to neutral molecule; Score: Percentage of reliability of proposed formula according to exact mass and isotopic distribution;
MS/MS: Majority fragment in MS/MS fragmentation confirmed to be derived from one of the compounds; TR: Retention time; S.D.: Standard deviation. 1 Quercetin derivatives eluted
over three retention times and thus considered different isomers.
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The quercetin-3-O-glucoside eluted at Rt = 24.3 was confirmed by a pure standard.
The presence of a hexose in the molecule was confirmed by the loss of a mass of 162.05 in
the first case (Figure 4A), while the presence of a pentose in the molecule (Figure 4B) was
confirmed by a loss of 132.04. The fragment obtained with a mass of 301.03 confirmed the
presence of quercetin in both cases.

4. Discussion

Several authors have analysed the polyphenols in the petals of different rose species,
with particular interest in anthocyanins, these pigment compounds being responsible for the
red-to-purple petal hues of many rose types. In addition, these compounds have also been
reported in R. gallica and R. centifolia to show anti-inflammatory [38] and antimutagenic
properties [24], respectively.

Cunja et al. [20] studied the anthocyanins and flavonoids in the leaves and petals of
different species of Rosa and reported a clear correlation between anthocyanin content and
colour. The cyanidins (along with smaller quantities of peonidins and pelargonidins) were
reported to be the most abundant anthocyanins in species with pink flowers.

The Narcea rose has red-purple petals, and cyanidins were the most abundant antho-
cyanins in the waste water produced during the present hydrodistillation experiments—a
finding in agreement with that reported by Cunja et al. [20] for R. damascena. It may be this
compound that confers the red colour upon this waste water (Figure 3), even though it
is not the most abundant polyphenol. Ge and Ma [40], who studied the concentration of
anthocyanins in edible roses from Yunnan (China), reported cyaniding-diglucoside to be
the most abundant anthocyanin (making up 95% of all such compounds) and proposed
these roses as a source of natural pigments for the food industry.

Our data reveal flavonoids in greater quantities than the anthocyanins. These are
important bioactive compounds. Several authors report flavonols, especially derivatives of
quercetin and kaempferol, to be present in different species of rose [17,20,23]; the bacteri-
cidal and antiviral properties of these compounds have been examined in several recent
studies [17,41,42]. Other authors have confirmed the importance of these compounds in
animal health and concluded that the incorporation of flavonoids into milk and meat prod-
ucts could provide a way of increasing their consumption along with the health benefits
they are associated with (especially for people with low levels of flavonoids in their diet).

High concentrations of gallic and ellagic acids have been reported in the hips of other
roses [17,43]. Fascella et al. [19], who studied the hips of four rose species, reported the
most abundant polyphenols to be derivatives of catechin and galloyls (such as ellagic acid).
Other authors indicate that ellagic acid has an important antitumoral effect [44–48].

Like green tea, grapes, red berries, pomegranates, apples and pears, roses (and in
particular their leaves) are rich in flavan-3-ols (catechins, epicatechins and proanthocyani-
dins) [17,30]. However, in the waste water studied here, catechin and Procyanidin B1 (PB1)
were detected only in small amounts. It may be that they were degradate in the distilla-
tion compared to quercetin, kaempferol and their derivatives. This might be explained
by the fact that flavonols, being very polar, are left in the vapour. Moreover, since they
are thermosensitive, they become hydrolysed during the hydrodistillation process. Other
authors have reported high concentrations of these compounds in the petals of R. damascena
and other rose species [20,23,49], while Göktürk-Baydar and Baydar [25] indicated cate-
chin and epicatechin to be the most abundant phenolic compounds in the leaves of this
species. In the present work, the low concentration of these compounds in the waste
water might reflect a varietal characteristic. Forthcoming analyses of these compounds
in fresh petals should throw light on this. It might be that the time that elapsed between
the collection of the present flowers and their analysis affected the results obtained [50].
Some authors [9,51,52] indicate that roses need to be collected early in the morning and, if
possible, subjected to hydrodistillation immediately, in situ, if their aromatic compounds
are to be examined (during transport the flowers deteriorate and lose some of their volatile
aromatic compounds). Over longer collection-to-analysis times, it may be that polyphenols
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are lost, too, explaining the present near-absence of flavanol-3-ols. (Logistically, however,
it was impossible to analyse the present samples sooner after their collection.) Finally,
the very small amounts of these compounds detected in the present samples might be a
reflection of the latter’s treatment in the laboratory. All were stored at 4 ◦C for some days
before being frozen at −80 ◦C. The effects of handling should be thoroughly studied if the
waste water produced in hydrodistillation is to be used to obtain compounds of interest.

Schmitzer et al. [27] report that the concentration of phenolic compounds in petals
varies over the development of the flower and that buds contain many more quercetin
derivatives, catechins and much more gallic acid than do flowers in later stages of devel-
opment. Indeed, they indicate that there may be up to six times as much gallic acid in
buds then in open flowers. However, the quantity and quality of oils in the petals reaches a
maximum when the flowers are completely open [10].

In other crops, such as grapevine [53–55], the polyphenol content of the leaves is
strongly influenced by climatic and other environmental factors, such as temperature,
rainfall, altitude, soil type, crop management, fertilizer availability and collection time [56].
Petkova et al. [3] reported higher phenol and total flavonoid concentrations in water extracts
from organically cultivated roses, while Ginova et al. [11] reported total polyphenols and
oxidative activity to be higher with altitude. All these factors will need to be studied if oils
and rose water of maximum quality are to be extracted from the Narcea rose and the best
use is to be made of its hydrodistillation and other wastes.

5. Conclusions

In conclusion, the present work shows that waste water produced during the hy-
drodistillation of Narcea rose petals is rich in quercetin and its derivatives, gallic and
ellagic acids. Among the quercetin derivatives, the most abundant was quercetin-glucoside,
quercetin-rhamnoside and quercetin-galactoside. Kaempferol-rhamnoside and kaempferol-
galactoside were also detected. According to reports in the literature, many of these
compounds have antioxidant and other properties beneficial to health. The high concen-
tration of these compounds in this waste water render it suitable as a raw material for
developing nutraceutical, pharmacological, animal feed and even human and plant health
products. However, one of the best applications could be dermocosmetic production, which
could benefit from the water and the compounds inside. Protocols need to be developed to
take advantage of this polyphenol-rich water.
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