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Abstract: Previous research has shown that miR398 contributed to plant thermotolerance by silencing
its target gene COPPER/ZINC SUPEROXIDE DISMUTASE1 (CSD1) in Arabidopsis thaliana. However,
the phylogenesis of miR398 and CSD1 in Brassica crop and their role in regulating leaf cell death
under heat stress remains unexplored. Here, we characterized the homologous genes of miR398a
and CSD1 in Brassica rapa ssp. pekinensis (Chinese cabbage) and found miR398a abundance was
accumulated under heat stress (38 ◦C and 46 ◦C for 1 h) in Chinese cabbage, while the expression
level of its targets BraCSD1-1 and BraCSD2-1 were downregulated. To further explore their role
in heat response, we constructed the transgenic plants overexpressing artificial miR398a (aBra-
miR398a), Bra-miR398a target mimic (Bra-MIM398a), and BraCSD1-1 in Chinese cabbage for genetic
study. Under high temperatures, p35S::aBra-miR398a lines reduced the areas of leaf cell death and
delayed the leaf cell death. By contrast, p35S::Bra-MIM398a and p35S::BraCSD1-1 plants enlarged
the areas of leaf cell death and displayed the earliness of leaf cell death. Finally, we found that the
expression level of stress-responsive genes BraLEA76, BraCaM1, BraPLC, BraDREB2A, and BraP5CS
increased in transgenic plants overexpressing aBra-miR398a, which may contribute to their resistance
to heat-induced leaf cell death. Taken together, these results revealed the function of Bra-miR398a in
attenuating leaf cell death to ensure plant thermotolerance, indicating that the miR398-CSD1 module
could be potential candidates for heat-resistant crop breeding.

Keywords: Brassica rapa; cell death; CSD1; heat resistance; miR398

1. Introduction

As an integral part of the plant lifecycle, the death of cells, organs, and eventually the
whole plant is an age-dependent process. Programmed cell death (PCD) is an essential
process determining plant growth and development. It is divided into two broad categories:
developmentally regulated and environmentally induced and it plays a key role in the
self-destruction of cells damaged by stress factors [1–4]. The leaf is the primary photosyn-
thetic organ for energy harvesting and nutrient production at the growth and maturation
stages [5]. The visible yellowing and whitening are widely used to stage the progression
of senescence and leaf cell death [6,7]. Leaf senescence occurs at the final stage of leaf
development and precedes cell death. At the senescence stage, nutrients accumulated in
the leaves were relocated to other organs, such as developing seeds [5,7].

Horticulturae 2022, 8, 299. https://doi.org/10.3390/horticulturae8040299 https://www.mdpi.com/journal/horticulturae

https://doi.org/10.3390/horticulturae8040299
https://doi.org/10.3390/horticulturae8040299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com
https://orcid.org/0000-0002-5730-8802
https://doi.org/10.3390/horticulturae8040299
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com/article/10.3390/horticulturae8040299?type=check_update&version=1


Horticulturae 2022, 8, 299 2 of 14

Plant microRNAs are a group of endogenous, 20–24 nucleotides, small non-coding
RNAs, and play crucial roles in post-transcriptional regulation by binding its targeted mR-
NAs for cleavage or repressing translation [8–10]. miR398 is a conserved miRNA that was
identified in Arabidopsis thaliana by sequence analysis of stress-treated Arabidopsis thaliana
small-RNA libraries [11,12], which is encoded by three gene loci: MIR398a, MIR398b and
MIR398c, and miR398 has been mainly characterized based on the role of its target genes
CSD1 (SOD1 or Cu/Zn SUPEROXIDE DISMUTASE1), CSD2 (SOD2) and CCS (copper chap-
erone of CSDs) [13,14]. miR398 play key roles in developmental processes and multiple
stress responses [9,11,12,15]. CSD1 and CSD2 are the genes regulating the synthesis of
cytosolic Cu/Zn-SOD and chloroplast Cu/Zn-SOD, respectively [16]. The two Cu/Zn
superoxide dismutase enzymes are responsible for the dismutation of the toxic superoxide
to molecular oxygen and hydrogen peroxide in the cytosol by CSD1 or chloroplast by
CSD2 together with CCS, which are generally involved in abiotic stress responses [17]. As
a negative regulator of CSDs, miR398 is inhibited by oxidative stress during high light,
high concentration of heavy metal, or herbicide, resulting in the increase in their targeted
mRNAs CSD1 and CSD2 [18]. Under other stress, such as ozone fumigation, salt, Pseu-
domonas syringae infection, the abundance of miR398 was also downregulated, implying an
important post-transcriptional regulation role of miR398 in these stress responses [9,17–21].

High temperature, one of the most detrimental stresses in nature, is known to affect
almost all aspects of plants during growth, causing severe retardation in development and a
dramatic decrease in yield [22–24]. The ability to survive after direct extreme heat challenge
is termed basal thermotolerance, which is the foundation of all approaches carried by
plants to withstand or to acclimate to damage caused by heat [22]. Followed by exposure to
sub-lethal high temperatures, plants obtained the power to survive at lethal heat conditions,
referred to as acquired thermotolerance [22,25,26]. B. rapa is one of the most important leaf
vegetable crops, and Chinese cabbage is highly sensitive to heat stress [27]. On the other
hand, the premature leaf cell death of Chinese cabbage usually causes the losses of leaf yield
and quality [27]. We have found that enhancing miR398 processing results in stronger plant
thermotolerance in Arabidopsis thaliana [13]. In this study, we characterized the miR398 and
its target CSD1 in B. rapa and explored their function in plant thermotolerance-associated
leaf cell death. For this purpose, we studied the effects of expression levels of miR398 and
its targeted genes on leaf cell death in Brassica rapa ssp. pekinensis.

2. Materials and Methods
2.1. Plant Materials and Growth Condition

The seeds of B. rapa ssp. pekinensis (Bre) were used in our experiments [28]. All the
seeds including the Bre as wild-type and the transgenic plants were surface-sterilized and
sown on Petri dishes containing Murashige and Skoog (MS) medium [28]. After the Petri
dishes were sealed with Parafilm, they were stratified at 4 ◦C in the dark for at least three
days and then moved to a growth room and incubated under 16/8 h of light/darkness per
day at 22 ◦C. Ten days later, the seedlings were transplanted to soil (PINDSTRUP, Denmark,
Germany) in plastic pots and moved from a growth room to a greenhouse in the phytotron
at the Shanghai Institute of Plant Physiology and Ecology (16 h light/8 h dark). Plants
were watered at intervals of three to four days [28,29]. For detecting heat-responsive gene
expression, the plants were grown at 38 ◦C for 3 h and 6 h, respectively, or grown at 38 ◦C
and 46 ◦C for 1 h, respectively. For heat-induced leaf cell death measurement, plants were
treated with 45 ◦C for 12 h followed by 35 ◦C for 12 h. For the copper treatment experiment,
it is worth noting that MS contains trace amounts of copper, 0 µM represents no additional
copper added.

2.2. Cloning and Generation of Transgenic Plants

p35S::BraCSD1-1 construct was obtained by PCR using KOD-plus polymerase (ToYoBo,
Shanghai, China) with oligonucleotide pairs (BraCSD1-1S and BraCSD1-459A) as defined
in the Supplementary Table S1 and the cDNA of B. rapa as a template. PCR product was
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added to deoxyadenylic acid by rTaq (Takara, Beijing, China), and linked to PMD18T
vector, and then were digested with KpnI and XbaI and cloned in the KpnI and XbaI sites
of pCAMBIA2301.

For construct of p35S::aBra-miR398a, the artificial microRNA designer WMD delivers 4
oligonucleotide sequences (I to IV), which were used to engineer artificial microRNA into
the endogenous MIR319a precursor by site-directed mutagenesis (Supplementary Figure S1).
Plasmid pRS300 was used as a template for the PCRs, which contains the MIR319a precursor
in pBSK [13,30]. The amiRNA containing precursor is generated by overlapping PCR. The
first round of amplification fragments was obtained by PCR using KOD-plus polymerase
(ToYoBo, Shanghai, China) with the oligonucleotide pairs (amiRNA-A/aBra-miR398-IVa,
aBra-miR398-IIa/aBra-miR398-IIIs, and aBra-miR398-Is/amiRNA-B), respectively, as de-
fined in the Supplementary Table S1, and the pRS300 as a template. The second round of
amplification was obtained using KOD-plus polymerase (ToYoBo, Shanghai, China) with
the oligonucleotide pairs (amiRNA-A/amiRNA-B) as primers and three products from
the first round as a template. The products were digested with KpnI and XbaI and directly
cloned in the KpnI and XbaI sites of pCAMBIA2301 [30,31].

For construct of p35S::Bra-MIM398a, the first round of amplification were obtained
by PCR using KOD-plus polymerase (ToYoBo, Shanghai, China) with the oligonucleotide
pairs (IPS-1S-BamH1/Bra-MIM398a-Ia, Bra-MIM398a-IIs/IPS-522A-Sal1), respectively, as
defined in the Supplementary Table S1, and the IPS as template [32]. The second round am-
plifies were obtained by overlapping PCR using KOD-plus polymerase (ToYoBo, Shanghai,
China) with the oligonucleotide pairs (IPS-1S-BamH1/IPS-522A-Sal1) and products (first
round) as a template. The products were digested with BamHI and SalI and directly cloned
in the BamHI and SalI sites of pCAMBIA1301 [13,32]. Three constructs (p35S::BraCSD1-1,
p35S::aBra-miR398a, p35S::Bra-MIMR398a) were transformed to E-coli DH5α competent cells,
and then were delivered into Agrobacterium tumefaciens strain GV3101 (pMP90RK) using the
freeze-thaw method [33]. The recombinant plasmid was then inserted into B. rapa wild-type
plants (Bre) via the vernalization–infiltration method as previously described [34].

2.3. Heat Treatment and Measurement of Leaf Cell Death

The leaf with 25% of yellow color was designated as the onset of leaf senescence,
while the leaf with flaccid or dried over more than half was designated as the onset of leaf
cell death. The day for the onset of leaf senescence was regarded as the first day of leaf
senescence while the day for the onset of leaf cell death was regarded as the first day of leaf
cell death. The day for whitening of 100% leaf area was termed as the day of leaf death
while the day for whitening and browning of all leaves on the plant was regarded as the
day of plant death [6]. For heat stress of whole plants, two-week-old seedlings were moved
into the soil to grow to the five-leaf stage. Then, these plants were subjected to a heat stress
treatment of 45 ◦C for 12 h followed by 35 ◦C for 12 h, and then cultivated at 22 ◦C under
long-day conditions (16 h light/8 h dark). Finally, these plants were photographed and
analyzed on the 0th, 4th, and 8th days after the heat stress using ImageJ [27].

2.4. miRNA Isolation and Northern Blot Analysis

Total RNA was extracted from 10-day-old seedlings of all plants. Antisense sequences
of miR398 were synthesized and end-labeled as probes with biotin (TaKaRa, Beijing, China).
The RNA concentration was measured by Nanodrop spectrophotometer, and 15 µg of
RNA was fractionated on a 15% polyacrylamide gel containing 8 M urea and transferred
to a Nitran Plus membrane (Schleicher and Schuell). Hybridization was performed at
41 ◦C using hybridization buffer (ULTRAhyb Ultrasensitive Hybridization buffer, Ambion).
Autoradiography of the membrane was performed using the LightShift Chemiluminescent
EMSA Kit (Pierce). A synthesized U6 probe end-labeled with biotin (TaKaRa, Beijing,
China) was used for the quantity control of total RNA content between samples [13,35].
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2.5. 5′ RACE (Rapid Amplification of cDNA Ends)

RNA was obtained from 2-week-old seedlings, and 5‘ RACE was performed using
the RLM-RACE Kit (Invitrogen, Carlsbad, CA, USA) according to its instructions with
modification [28]. The 5‘ RACE PCR products were excised from the gel and cloned into a
pMD18T vector (Takara, Beijing, China) for sequencing. Gene-specific primers for 5′ RACE
PCR can be found in Supplementary Table S1.

2.6. Real-Time qRT-PCR

Plant tissues were homogenized in liquid nitrogen and total RNA was extracted from
the wild-type and transgenic plants using TRIzol (Invitrogen, Carlsbad, California, USA)
and treated with DNaseI (TaKaRa, Beijing China) to remove DNA contamination. Approxi-
mately 5 µg of RNA was used for reverse transcription with oligo (dT) primers or stem-loop
primers for real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) [36,37].
Real-time qRT-PCR was performed with the Bio-Rad iCycler Thermal CycleriQ5 Multi-
color Real-Time PCR machine (Bio-Rad) using iQ SYBR Green Real-Time PCR Supermix
(Bio-Rad) according to the manufacturer’s instructions [13,29]. The expression of 7 genes
(ACTIN1, ATCIN2, ACTIN3, ACTIN4, ACTIN8, ACTIN11, ACTIN12) were used as an inter-
nal control using degenerate primers [29], and comparative threshold cycle method was
used to determine relative transcript levels in real-time qRT-PCR [38]. Real-time PCR for
detecting and quantifying miRNAs was performed based on the published protocol [38].
Three biological replicates and three technical replicates were performed for each sample.
All the primers used in this study were listed in Supplementary Table S1.

2.7. Sequence Alignment and Phylogenetic Analysis

Arabidopsis thaliana and B. rapa pre-miR398 sequences were downloaded from the
miRBase (https://www.mirbase.org/search.shtml, accessed on 1 March 2022). Arabidopsis
thaliana AtCSD1, AtCSD2 and AtCCS protein sequences were downloaded from the Ara-
bidopsis Information Resource (https://www.arabidopsis.org/, accessed on 1 March 2022).
The homologous proteins in Chinese cabbage were identified based on HMM search from
Brassicaceae Database (BRAD, http://brassicadb.cn, accessed on 1 March 2022). Multiple
alignments of these protein sequences from Arabidopsis thaliana and Brassica rapa were per-
formed using ClustalW and GeneDoc [39]. Unrooted phylogenetic trees were constructed
from the aligned protein sequences using the neighbor-joining method in MEGA 6.0 with
minor modifications [40], and bootstrapping was carried out with 1000 iterations.

2.8. Degradome Analysis

The degradome data (SRR2149955) from flower bud of B. rapa ssp. pekinensis [41] was
downloaded from NCBI. The degradome was analyzed as previously described [42]. Briefly,
the adaptor was removed from raw reads using the tool cutadapt with default parameter
settings [43]. The trimmed reads were mapped to BraCSD1-1 cDNA sequence using STAR
mapper with default parameter [44]. The 5′ monophosphate (5′P) end reads were extracted
and plotted around the miR398 cleavage site at BraCSD1-1 using a customized R script.

2.9. Statistical Analysis

Statistical significance was calculated by two-tailed Student’s t-test and error bars
indicate SE. p value < 0.05 were considered to be statistically significant.

3. Results
3.1. Characterization of the miR398 and Its Targets Genes in B. rapa

In Arabidopsis thaliana, MIR398 gene family consists of MIR398a, MIR398b, and MIR398c,
while their mature miRNA target genes are AtCSD1, AtCSD2, and AtCCS [13,14]. Through
alignment of Arabidopsis thaliana miR398 and its target genes with B. rapa genomic sequences,
we found four Bra-MIR398 genes and six Bra-miR398-targeted homologous genes in B.
rapa ssp. pekinensis. Based on their DNA sequence similarity, Bra-MIR398a homologs were

https://www.mirbase.org/search.shtml
https://www.arabidopsis.org/
http://brassicadb.cn
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named as Bra-MIR398a-1 and Bra-MIR398a-2, and Bra-MIR398b homologs were regarded as
Bra-MIR398b-1 and Bra-MIR398b-2 (Figure 1A, Table 1 and Supplementary Table S2). It is
worth noting that, the 21-nt mature miRNAs produced from MIR398a and MIR398b con-
tained 1 nt (T/G) difference at the 3′ end in both Arabidopsis thaliana and B. rapa (Figure 1A).
Based on the phylogenic analysis, the miR398-targeted homologous proteins in heading Chi-
nese cabbage were regarded as BraCSD1-1 (Bra031642), BraCSD1-2 (Bra018596), BraCSD2-1
(Bra034394), BraCSD2-2 (Bra011971), BraCCS-1 (Bra016768), and BraCCS-2 (Bra026968),
respectively, (Figure 1B, Table 1, and Supplementary Table S1). Next, to explore the tissue
distribution of mature miR398a, we collected root, stem, cauline leaves, and inflorescence
from the B. rapa accession Bre to determine Bra-miR398a abundance in different tissues
using northern blotting. The result indicated that Bra-miR398a was accumulated in all
these tissues and was most abundant in cauline leaves (Figure 1C).
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solid lines. Asterisks represent 10 bp from the previous number. (B) Unrooted phylogenetic trees
of miR398 targets based on their protein sequences in Arabidopsis thaliana and B. rapa. (C) Northern
blotting showing mature miR398 abundance in different tissues of Bre plants.
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Table 1. miR398 and its target genes in B. rapa.

miR398 and Targets in Arabidopsis thaliana Homologous Genes in B. rapa

ath-miR398a Bra-MIR398a1/a2
ath-miR398b Bra-MIR398b1/b2
ath-miR398c

AtCSD1 (At1g08830) BraCSD1-1 (Bra031642)
BraCSD1-2 (Bra018596)

AtCSD2 (At2g28190) BraCSD2-1 (Bra034394)
BraCSD2-2 (Bra011971)

AtCCS (At1g12520) BraCCS-1 (Bra016768)
BraCCS-2 (Bra026968)

3.2. Response of Bra-miR398a and Its Target Genes to Heat Stress in B. rapa

In Arabidopsis thaliana, mature miR398 is increased under high temperature [45], while
in B. rapa ssp. chinensis (non-heading Chinese cabbage), both mature miR398a and miR398b
were declined under heat shock [46]. To investigate the response of Bra-miR398a to heat
stress in B. rapa ssp. pekinensis (heading Chinese cabbage), we used northern blot to
detect its accumulation after being treated at 38 ◦C for 3 h and 6 h, respectively. We
found that Bra-miR398a was induced at 38 ◦C for 3 h, but the accumulation decreased
after treatment at 38 ◦C for 6 h (Figure 2A). Consistent with Arabidopsis thaliana, the
miR398 target site at BraCSD1-1 is located at 5′UTR with three mismatches. To confirm
the miRNA cleavage at BraCSD1-1, 5′ RACE PCR followed by sequencing was used to
detect 5′ monophosphate (5′P) end of mRNA degradation intermediates, and the 5′P end
of RNAs were frequently detected at positions 10 to 11 of the target region complementary
to miR398 (Figure 2B). Consistently, high-throughput degradome profiling from B. rapa ssp.
pekinensis [41] also showed enrichment of 5′P end reads at miR398 cleavage stie of BraCSD1-
1 (Supplementary Figure S2). Using real-time qRT-PCR, we validated that the mature Bra-
miR398a were accumulated after treatment at both 38 ◦C and 46 ◦C for 1 h (Figure 2C), while
the expression of Bra-miR398-targeted BraCSD1-1 and BraCSD2-1 were downregulated
(Figure 2C). Taken together, we found that Bra-miR398a were accumulated under heat
stress in heading Chinese cabbage.



Horticulturae 2022, 8, 299 7 of 14

Horticulturae 2022, 8, x FOR PEER REVIEW 7 of 15 
 

 

(Figure 2B). Consistently, high-throughput degradome profiling from B. rapa ssp. pekinen-
sis [41] also showed enrichment of 5′P end reads at miR398 cleavage stie of BraCSD1-1 
(Supplementary Figure S2). Using real-time qRT-PCR, we validated that the mature Bra-
miR398a were accumulated after treatment at both 38 °C and 46 °C for 1 h (Figure 2C), 
while the expression of Bra-miR398-targeted BraCSD1-1 and BraCSD2-1 were downregu-
lated (Figure 2C). Taken together, we found that Bra-miR398a were accumulated under 
heat stress in heading Chinese cabbage. 

 
Figure 2. The response of miR398 and its target genes to heat stress. (A) Northern blotting showing 
miR398 abundance under high temperature (38 °C for 3 h and 6 h). (B) 5′ RACE PCR showing the 
cleavage sites of BraCSD1-1. Numbers indicate the fraction of cloned PCR products terminating at 
the position. (C) Real-time PCR showing relative abundance of Bra-miR398a and its target genes 
under 22 °C, 38 °C, and 46 °C for 1 h. The asterisks indicate a significant difference (* represents p < 
0.05) (Student’s t-test). 

3.3. Bra-miR398a Aids in the Prevention of Leaf Death and Plant Death 
As an integral part of plant development, senescence is directly influenced by various 

exogenous (environmental) factors such as high/low temperatures, drought, ozone, biotic 
stress, and endogenous (internal) cues including different phytohormones and reproduc-
tive development as well as development age of the leaf and plant [47]. The visible yel-
lowing and whitening are widely used to stage the progression of senescence and leaf cell 
death [6,7]. However, the factors involved in aging are poorly understood. To test whether 
miR398 was involved in leaf cell death, we constructed transgenic plants in the back-
ground of Bre, overexpressing Bra-miR398a (p35S::aBra-miR398a) using the backbone of 
MIR319a gene (Supplementary Figure S2), overexpressing Bra-miR398a target mimic 
(p35S::Bra-MIM398a) by modifying the miR398 complementary sequences in IPS1 [32] 
(Supplementary Figure S2) and overexpressing one of the miR398 target gene BraCSD1-1 
(p35S::BraCSD1-1), using the vernalization–infiltration method [34]. As shown in Figure 
3A, the miR398 abundance was increased in p35S::aBra-miR398a lines (1#, 2#) while the 
expression levels of BraCSD1-1 were up-regulated in p35S::Bra-MIM398a (3#, 5#) and 
p35S::BraCSD1-1 plants (2#, 5#) (Figure 3A). 

Figure 2. The response of miR398 and its target genes to heat stress. (A) Northern blotting showing
miR398 abundance under high temperature (38 ◦C for 3 h and 6 h). (B) 5′ RACE PCR showing the
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the position. (C) Real-time PCR showing relative abundance of Bra-miR398a and its target genes
under 22 ◦C, 38 ◦C, and 46 ◦C for 1 h. The asterisks indicate a significant difference (* represents
p < 0.05) (Student’s t-test).

3.3. Bra-miR398a Aids in the Prevention of Leaf Death and Plant Death

As an integral part of plant development, senescence is directly influenced by various
exogenous (environmental) factors such as high/low temperatures, drought, ozone, biotic stress,
and endogenous (internal) cues including different phytohormones and reproductive develop-
ment as well as development age of the leaf and plant [47]. The visible yellowing and whitening
are widely used to stage the progression of senescence and leaf cell death [6,7]. However, the fac-
tors involved in aging are poorly understood. To test whether miR398 was involved in leaf cell
death, we constructed transgenic plants in the background of Bre, overexpressing Bra-miR398a
(p35S::aBra-miR398a) using the backbone of MIR319a gene (Supplementary Figure S2), overex-
pressing Bra-miR398a target mimic (p35S::Bra-MIM398a) by modifying the miR398 complemen-
tary sequences in IPS1 [32] (Supplementary Figure S2) and overexpressing one of the miR398
target gene BraCSD1-1 (p35S::BraCSD1-1), using the vernalization–infiltration method [34]. As
shown in Figure 3A, the miR398 abundance was increased in p35S::aBra-miR398a lines (1#, 2#)
while the expression levels of BraCSD1-1 were up-regulated in p35S::Bra-MIM398a (3#, 5#) and
p35S::BraCSD1-1 plants (2#, 5#) (Figure 3A).

To accurately score and characterize the timing and extent of leaf senescence and leaf
cell death in whole plants, we measured yellowing and whitening areas of the fourth leaf,
counted the number of leaves with cell death in the order of occurrence, and defined leaf cell
death and plant survival rates. To demonstrate the processes of leaf cell death, we treated
the Bre, p35S::aBra-miR398a (1#, 2#), p35S::Bra-MIM398a (3#, 5#), and p35S::BraCSD1-1 (2#,
5#) plants with 45 ◦C 12 h followed by 35 ◦C 12 h, and then the plants were moved into a
greenhouse at 22 ◦C under long-day conditions (16-h light/8-h dark) for further growth,
along with photographing and analysis on the 0th, 4th, and 8th days, respectively. The
growth of the p35S::Bra-MIM398a (3#, 5#) and p35S::BraCSD1-1 (2#, 5#) were significantly
weaker than that of the Bre on the fourth day after the high-temperature treatment, while
the growth of the p35S::aBra-miR398a (1#, 2#) were markedly stronger than that of the Bre
(Figure 3B,D). The leaf senescence and leaf cell death of p35S::Bra-MIM398a (3#, 5#) and
p35S::BraCSD1-1 (2#, 5#) plants appeared much earlier than the wild-type while the degree
of leaf cell death was much higher (Figures 3D and 4). As expected, the yellowing and
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whitening area of leaves of the p35S::aBra-miR398a (1#, 2#) were smaller than that of the Bre
(Figures 3B and 4).
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Figure 3. The expression levels of miR398 and BraCSD1-1 and survival rates of the transgenic plants under
heat stress. (A) Real-time PCR showing relative abundance of miR398 and relative expression BraCSD1-1
in the transgenic plants. The asterisks indicate a significant difference (* represents p < 0.05) (Student’s
t-test). (B) Bre and p35S::aBra-miR398a (1#, 2#) plants were photographed and recorded on the fourth and
eighth day after high-temperature treatment (45 ◦C 12 h followed by 35 ◦C 12 h). (C) Survival rates of Bre,
p35S::aBra-miR398a (1#, 2#), p35S::Bra-MIM398a (3#, 5#), and p35S::BraCSD1-1 (2#, 5#) plants. The asterisks
indicate a significant difference (* represents p < 0.05) (Student’s t-test). (D) Bre, p35S::Bra-MIM398a (3#,
5#), and p35S::BraCSD1-1 (2#, 5#) plants were photographed and recorded on the fourth and eighth day
after high-temperature treatment (45 ◦C 12 h followed by 35 ◦C 12 h).
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Figure 4. Leaf cell death under high-temperature treatment (45 ◦C 12 h followed by 35 ◦C 12 h). The
result showed that the percentage of yellow (senescence) and white (cell death) leaf areas, percentage
of white leaf areas, percentage of the dead leaves, number of days to senescence, number of days
to leaf cell death, and number of days to leaf death of Bre, p35S::aBra-miR398a (1#, 2#), p35S::Bra-
MIM398a (3#, 5#), and p35S::BraCSD1-1 (2#, 5#) plants. More than 20 leaves for each treatment were
harvested and measured from the fourth node of plants. The asterisks indicate a significant difference
(* represents p < 0.05) (Student’s t-test).

Leaf cell death is usually followed by leaf death and plant death. Under high-
temperature stress, Bre leaves died after 14 days (Figure 4), and survival rates of Bre plants
were over 20% (Figure 3C). The leaves of the p35S::Bra-MIM398a (3#, 5#) and p35S::BraCSD1-
1 (2#, 5#) plants died on the 10th day after being subjected to high-temperature stress
(Figure 4), and the survival rate of the plants was ~15% (Figure 3C). However, the leaves of
p35S::aBra-miR398a (1#, 2#) plants died on the 16th day after the high-temperature stress
treatment (Figure 4), and the survival rate of the plants was 35% (Figure 3C). Compared to
the wild-type, the p35S::aBra-miR398a (1#, 2#) plants showed a later leaf death, fewer dead
leaves, and higher survival rate, but the p35S::Bra-MIM398a (3#, 5#) and p35S::BraCSD1-1
(2#, 5#) plants were completely opposite. These results indicated that heat stress acceler-
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ated leaf senescence and leaf cell death, but the accumulation of MIR398a can alleviate
this process.

3.4. Bra-miR398a Regulated Heat-Induced Leaf Cell Death Independent with
Cu2+-Mediated Pathway

miR398 is strictly regulated by Cu2+ levels [21]. We surveyed the germination and
growth of p35S::aBra-miR398a (1#, 2#), p35S::Bra-MIM398a (3#, 5#), and p35S::BraCSD1-1
(2#, 5#) plants on solid MS with 75 µM and 150 µM Cu2+ concentrations, respectively. The
seedlings of the wild-type and all the transgenic lines were injured heavily under Cu2+

stress with 150 µM. However, the leaf color of p35S::aBra-miR398a, p35S::Bra-MIM398a,
and p35S::BraCSD1-1 transgenic plants were not different from that of the wild-type under
Cu2+ stress (Figure 5). The p35S::aBra-miR398a transgenic plants were more resistant to
high temperature, but showed similar sensitivity to the high level of Cu2+ as compared
to wild-type, suggesting that Bra-miR398a potentially affected the heat-induced leaf cell
death independent with Cu2+-mediated pathway.
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3.5. Stress-Related Marker Genes Were Upregulated by Bra-miR398a

To further explore the role of Bra-miR398a in leaf cell death, we analyzed expression
levels of some stress-related marker genes by real-time PCR. P5CS1 gene is a rate-limiting
enzyme in the biosynthesis of proline and enhances osmotic stress tolerance in trans-
genic plants [48]. DREB2A is a dehydration-responsive element-binding protein in plants
and then activates genes that are involved in detoxification, water, and ion movement
and chaperone functions [49–52]. Under high temperature, BraLEA76, BraCaM1, BraPLC,
BraDREB2A, and BraP5CS were upregulated in p35S::aBra-miR398a plants (1#, 2#) (Figure 6).
In addition, the expression of BraLEA76, BraCaM1, and BraPLC were downregulated in
35S::Bra-MIM398a (3#, 5#) (Figure 6). These results indicated that Bra-miR398a mediated
heat-induced leaf cell death possibly through these stress-related genes.
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Expression of BraLEA76, BraCaM1, BraPLC, BraDREB2A, and BraP5CS in Bre, p35S::aBra-miR398a
(1#, 2#) and p35S::Bra-MIM398a (3#, 5#) plants at 38 ◦C for 1 h, respectively. The asterisks indicate a
significant difference (* represents p < 0.05) (Student’s t-test).

4. Discussion

miR398 is one of the miRNAs known to be involved in stress responses of the plant [53].
Enhancing of miR398 processing results in stronger plant thermotolerance [13]. In another study,
the level of miR398 increased in the early senescence stage in Arabidopsis thaliana leaves [54]. It
implies that leaf senescence and leaf cell death are related to plant thermotolerance. In this study,
we provided evidence that Bra-miR398a attenuated heat-induced leaf cell death by silencing
of BraCSD1-1 gene in B. rapa. B. rapa ssp. chinensis and B. rapa ssp. pekinensis are two different
sub-species of Brassica and the cold-resistant variety of B. rapa ssp. chinensis (Wut) is more
sensitive to high temperatures as compared to B. rapa ssp. pekinensis (Bre) [46]. We found the
heat response of miR398 in these two cultivars was different. The genetic variation in the MIR398
promoter or its trans-regulatory transcription factors may contribute to the difference in the
expression level of miR398 in these two sub-species. For heat stress of the whole plant, we chose
45 ◦C for 12 h followed by 35 ◦C for 12 h, which is to simulate continuous high temperature,
given temperature is decreased at night. With global warming and less arable land [55], and
for some high-latitude regions, it is of great significance to explore the tolerance of crops to
extremely high temperatures.

Originally, we found that genetic manipulation of Bra-miR398a levels may modify
the process of heat-induced leaf cell death in B. rapa. This conclusion is supported by the
phenotype and statistical data of Bre, p35S::Bra-MIM398a, p35S::BraCSD1-1, and p35S::aBra-
miR398a plants, as well as the expression of stress-related marker genes under heat stress.
A premature senescence and leaf cell death phenotype was observed in p35S::Bra-MIM398a
and p35S::BraCSD1-1 plants while the senescence and leaf cell death was postponed in
p35S::aBra-miR398a plants. Importantly, p35S::aBra-miR398a plants were concurrent with
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higher survival rates under heat stress while the plants’ high expression levels of BraCSD1-
1 (p35S::BraCSD1-1) concomitant with lower survival rates. Our results suggested that
BraCSD1-1 in plants might be a transcription factor and might have functions beyond a
simple superoxide dismutase. In addition, the plants of Bra-miR398a overexpression up-
regulates the expression of stress-related genes, BraLEA76, BraCaM1, BraPLC, BraDREB2A,
and BraP5CS under high temperature. Together, these results showed that BraCSD1-1
positively regulates senescence onset and progression under heat stress, while Bra-miR398a
postpones these characteristics.

Several growth and development related genes also affect senescence to convey the
developmental timing and implement the right timing of senescence. Although these genes
might not be considered as specific regulators of senescence, it is very useful to understand
the mechanism and downstream genes that implement these decisions, which contribute to
the engineering plant senescence for diverse applications. Our findings indicated that Bra-
miR398a is a strong candidate to control programmed cell death by inducing senescence.
We believe that Bra-miR398a acts as a sensor for the unfavorable environmental condition
to prevent senescence to keep the progeny safe by sensing the developmental age of the
plant and transferring that information to this module further to help miR398/CSD1 ensure
the right timing of senescence and cell death. Senescence has a crucial impact on the final
crop of agricultural products, in the sense that a longer growth period directly enhances the
final yield by prolonging photosynthesis, so by detecting the genes which are important in
this pathway, we can improve the final yield in many important crops.
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