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Abstract: Grapevine trunk diseases (GTDs) are among the most important problems that affect the
longevity and productivity of vineyards in all the major growing regions of the world. They are
slow-progression diseases caused by several wood-inhabiting fungi with similar life cycles and
epidemiology. The simultaneous presence of multiple trunk pathogens in a single plant together with
the inconsistent GTDs symptoms expression, their isolation in asymptomatic plants, and the absence
of effective treatments make these diseases extremely complex to identify and eradicate. Aiming
to gain a better knowledge of GTDs and search sustainable alternatives to limit their development,
the present work studied the fungal community structure associated with GTDs symptomatic and
asymptomatic grapevines, following a metagenomic approach. Two important cultivars from the
Alentejo region with different levels of susceptibility to GTDs were selected, namely, ‘Alicante
Bouschet’ and ‘Trincadeira’. Deep sequencing of fungal-directed ITS1 amplicon led to the detection
of 258 taxa, including 10 fungi previously described as responsible for GTDs. Symptomatic plants
exhibited a lower abundance of GTDs-associated fungi, although with significantly higher diversity
of those pathogens. Our results demonstrated that trunk diseases symptoms are intensified by a
set of multiple GTDs-associated fungi on the same plant. The composition of fungal endophytic
communities was significantly different according to the symptomatology and it was not affected
by the cultivar. This study opens new perspectives in the study of GTDs-associated fungi and their
relation to the symptomatology in grapevines.

Keywords: Vitis vinifera; high-throughput sequencing; mycobiome; endophytes; fungal diseases;
trunk pathogens

1. Introduction

Vitis vinifera L. is affected by several diseases with grapevine trunk diseases (GTDs)
being the most widespread [1], influencing the productivity and longevity of vineyards in
all the main growing regions of the world and causing great economic losses [1–3]. They
are caused by wood-inhabiting fungi, namely, by 133 species described to date, belonging
to nine families and 34 genera, with similar etiology and epidemiology [4–6]. The GTDs
complex includes specific diseases such as Black foot disease, Botryosphaeria dieback,
Esca, Eutypa dieback, Petri disease, and Phomopsis dieback [1,3–7]; these are categorized
as slow-progression diseases with symptoms sometimes taking several years to appear
after infection, making early detection difficult [8]. Black foot and Petri diseases typically
occur in young grapevines (aged five years or younger), while Botryosphaeria dieback,
Esca, Eutypa dieback, and Phomopsis dieback are usually found in older grapevines [7–9].
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General symptoms of GTDs include leaf chlorosis, wood discoloration and necrosis, delayed
bud-break, stunted growth, reduced vigour, canker formation, dieback, and the eventual
death of symptomatic grapevine plants (Figure 1) [7–10]. This disease complex can be
divided into different syndromes: tiger stripe foliar symptoms and apoplexy, depending on
symptoms, vine age, pathogens involved, and environmental factors [9,11]. The apoplexy
form involves complete wilting of grapevine canopies, leaves, and stems within a few
days, leading to sudden grapevine death, while tiger stripe symptoms are milder, with
interveinal discolorations and necrosis on leaf blades, affecting all or part of the grapevine
foliage [9,12]. Nevertheless, some plants may remain only with foliar symptoms for many
years, reaching apoplexy after the collapse of the entire plant hydraulic system, which
occurs most frequently during hot days each year [9,13].
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Figure 1. Grapevine trunk diseases general symptoms: wood discoloration and necrosis (A), inter-
veinal discolorations, chloroses and necrosis on leaf blades, affecting all or part of the grapevine
foliage (B–D), stunted growth (E), dieback, and the eventual death of symptomatic grapevines (F).
Pictures were taken in the frame of this study.

Grapevines can be simultaneously infected by different trunk pathogens through
multiple infection opportunities that take place throughout a season and over the years [3].
Moreover, the inconsistent GTDs symptoms expression from year to year and the presence
of these fungi in asymptomatic plants seem to indicate that some of GTDs-associated fungi
act as latent pathogens [8,14]. In the asymptomatic phases of their life cycle, these fungi
live as endophytes (saprobes, mutualists, or latent pathogens), and, at a specific point,
they modify their behaviour and become pathogenic, leading to the expression of disease
symptoms [15]. The transition from endophytic to pathogenic phases can be due to abiotic
or biotic stress conditions [14,16]. Under stress, fungal growth is accelerated, and colonisa-
tion thresholds are reached sooner than under normal conditions [15]. Furthermore, when
multiple GTDs-associated fungi are present within a grapevine, these thresholds could
be reached earlier [8]. The simultaneous presence of multiple fungal species in a single
plant also makes disease diagnosis difficult [3,4,17,18]. Currently, no effective treatments
are known to control GTDs [3,4], since the use of effective chemical products against GTDs
fungi was banned in Europe due to implemented European laws concerning pesticide
restrictions [19–22]. Disease control is only possible through disease prevention and mitiga-
tion [14,23]; thereby, it is necessary to develop alternative, effective, and environmentally
safe control strategies with minor impacts for human health. A recent study used a new
low-copper-based formulation with good results in decreasing the incidence of GTDs in
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treated grapevines over the years, with no harmful effects on the microbiota and on the
grapevine physiology [24].

Grapevine currently plays a key role in the economy of many countries; it is one
of the most cultivated crops worldwide, with a total vineyard area of 7.3 mha [25] and
numerous applications such as fresh table grape, dried fruit, and wine production [3]. Por-
tugal is currently among the eleven major wine producers in the world, with 6.4 million hL
produced, in a total vineyard area of 194 kha [25], and the Alentejo (south of Portugal)
is the second largest wine-producer region in the country. Apart from the economic
impact, this culture also presents significant environmental, social, and landscape im-
portance in many countries. The study of fungal microbiota associated to GTDs, which
constantly interact with each other and the grapevine, will facilitate the understanding of
their complex interactions [26–28]. Knowledge of the composition of fungal communities
in different cultivars associated with the presence or absence of symptoms can also aid the
discovery of potential antagonists that can be exploited to design new effective biological
strategies for disease management, resulting in more sustainable production systems [28].
The biological control using fungal endophytes has been the focus of several studies,
which have already shown some beneficial effects against some important pathogens in
Vitis vinifera [29–33], but further research is still required to limit the development of these
diseases. Recent studies using metagenomic approaches have been used to investigate the
grapevine microbiome and have allowed a deeper insight into endophytic microbial com-
munity changes [18,34–48]. High-throughput sequencing technologies (HTS), combined
with more efficient bioinformatics tools, have demonstrated significant improvements in
the quality of results with reduced costs, revolutionising plant pathology [34].

Aiming to gain a better knowledge of GTDs, this work intended to investigate the fun-
gal community structure (species richness and diversity) of symptomatic and asymptomatic
grapevines to GTDs using HTS technology. Several factors may influence grapevine suscep-
tibility to GTDs, mainly climate, vine age, soil fertilisation, rootstock, and cultivar [48–50].
In this sense, two important red grape cultivars from the Alentejo region were selected,
‘Alicante Bouschet’ and ‘Trincadeira’. These cultivars, despite comprising 17.2% and 15.8%
of the total red grape vineyard area in this region, respectively [51], reveal different patterns
of susceptibility to GTDs with distinct severity of foliar symptoms, with ‘Alicante Bouschet’
being more susceptible and ‘Trincadeira’ less susceptible [32]. Therefore, it was questioned
whether the richness and diversity of the fungal communities associated with GTDs vary
(i) according to the presence or absence of symptoms and (ii) among the cultivars to better
understand the underlying mechanisms associated with the expression of trunk diseases
symptoms. The need for new strategies for GTDs management and the lack of information
on grapevine fungal microbiota, as well as on the susceptibility of cultivars to these diseases,
led to this study.

2. Materials and Methods
2.1. Study Site and Sample Collection

This study focused on a cordon-pruned conventional 17-year-old vineyard propagated
on 1103P rootstock and located in the Alentejo region (south of Portugal) (38◦31′58.2” N,
8◦00′53.1” W). The vineyard is managed under Integrated Pest Management (IPM) rules
with a drip irrigation system. The sampled field has a history of trunk diseases, with many
symptomatic grapevines, and is influenced by the Mediterranean climate. The mean annual
temperature is 15.8 ◦C, the annual rainfall is 676 mm, and the soil is mostly of schist and
calcareous origin.

In the early summer of 2019, 10 cm long spurs of symptomatic and asymptomatic
plants for GTDs were collected from cv. ‘Alicante Bouschet’ and cv. ‘Trincadeira’. Four
plants were randomly selected within each cultivar, two of them with GTDs symptoms
and two asymptomatic. Therefore, total samples correspond to four plants from each
symptomatology and four plants from each cultivar. The GTDs symptoms were as observed
in Figure 1. Asymptomatic plants did not present visible GTDs symptoms on the wood
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and leaves. After sample collection, spurs were stored at 4 ◦C and further processed within
the next 48 h. To suppress epiphytic microorganisms on the field-collected samples, spurs
were surface disinfected, according to Varanda et al. [30], the rhytidome was removed, and
cortical scrapings from cuttings were grounded into powder, separately for each sample,
using sterile mortars and pestles, aiding the process with liquid nitrogen, and were stored
at −80 ◦C until further analysis.

2.2. DNA Extraction and Sequencing

DNA extraction was performed using the CTAB (hexadecyltrimethylammonium
bromide) method [52], with some modifications [30,53–56]. For each sample, total DNA
was extracted from ca. 500 mg of the previously obtained plant material powder and
DNA concentration was determined by using a Quawell Q9000 micro spectrophotometer
(Quawell Technology, Beijing, China). DNA integrity was evaluated by 1.5% agarose gel
electrophoresis and then samples were sent for next-generation sequencing (NGS) in Stab
Vida, Lda. (Caparica, Portugal). The amplicon chosen to analyse the fungal community
through metagenomic approach targets was the internal transcribed spacer 1 (ITS1) region.
Library construction was performed using the Illumina metagenomic sequencing library
preparation protocol and the generated DNA fragments were sequenced on the lllumina®

MiSeq platform using 300 bp paired-end sequencing reads.

2.3. Bioinformatics Procedure

After sequencing, the generated raw data (3,386,406 reads) were downloaded and
processed using QIIME2 v.2019.10 [57,58] and were denoised using the DADA2 plug-in [59].
Due to the target amplicon size, the plug-in was applied using single-read mode. Sequences
were trimmed and quality filtered, full-length duplicate sequences were removed, and
reads were sorted by abundance. In the case of ITS sequences, these were clustered followed
by chimera filtering using the UNITE database as a reference. The reads were organised in
features, which are essentially units of observation, named Operational Taxonomic Units
(OTUs), and then classified by taxon using a fitted classifier. The scikit-learn classifier was
used to train the classifier using the UNITE (release 8.0) database, with a clustering thresh-
old of 97% similarity. For classification purposes, only OTUs containing at least 10 sequence
reads were considered. The processed OTU table was composed of 1,168,974 reads from
258 OTUs (available in Table S1).

2.4. Statistical Data Analysis

Fungal diversity profiling data containing the total number of OTUs, total number
of OTUs excluding GTDs-associated fungi, and total number of GTDs-associated fungi
were generated to test separately for each factor: “symptomatology” (symptomatic and
asymptomatic plants) and “cultivar” (‘Alicante Bouschet’ and ‘Trincadeira’).

Univariate and multivariate analyses were performed using the PRIMER v6 soft-
ware [60] with the permutational analysis of variance (PERMANOVA) add-on package [61],
to detect significant differences (p < 0.05) in the relative levels of the fungal microbiota,
regarding the number of OTUs, for both factors. A one-way PERMANOVA was applied to
test the hypothesis that significant differences existed within the “symptomatology” and
“cultivar” groups. PERMANOVA analyses were carried out with the following one-factor
design: “symptomatology”, symptomatic and asymptomatic (two levels, fixed), with four
replicates from each level of symptomatology, and “cultivar”, ‘Alicante Bouschet’ and ‘Trin-
cadeira’ (two levels, fixed), with four replicates from each cultivar. PERMANOVA analysis
was conducted on a Bray–Curtis similarity matrix [62]. If the number of permutations was
lower than 150, the Monte Carlo permutation p was used. Whenever significant interaction
effects were detected, these were examined using a posteriori pairwise comparisons, using
9999 permutations under a reduced model. The similarities in fungal microbiota, regarding
the number of OTUs, in “symptomatology” and “cultivar” were plotted by PCO using the
Bray-Curtis similarity measure.



Horticulturae 2022, 8, 288 5 of 21

Alpha-diversity was determined using five diversity indexes (Margalef, Shannon,
Pielou’s, Fisher, and Simpson), and the differences among factors were calculated using a
PERMANOVA analysis based on the OTUs dataset.

Taxonomic profile graphics were analysed within the Marker Data Profiling module
of MicrobiomeAnalyst [63], implementing the R version 3.6.1 (accessed on 29 April 2021).
OTUs that occurred less than two times were removed from the full dataset. Features that
appeared in only one sample were excluded. Unless mentioned, default settings were used
for all procedures.

3. Results
3.1. Grapevine Fungal Microbiota Overview

Deep sequencing of fungal-directed ITS1 amplicon led to the detection of 1,168,974
high-quality reads distributed in 258 unique features (OTUs), 215 of which were assigned to
genus level and 157 to species level, covering 82.07% and 42.04% of total reads, respectively.
The overall composition is summarised in Table 1. The average number of reads per sample
was 146,122, which allowed an adequate sequencing depth to unravel the complexity of the
grapevine fungal microbiota. The Alpha rarefaction curve obtained with species richness
is shown in Figure S1. Among the 258 annotated OTUs, 54 of them were represented in
relative abundance (RA) greater than 0.10%, while the remaining 204 were considered rare
taxa (RA < 0.10%). Considering only the OTUs assigned to genus or species level, 41 taxa
with RA upper than 0.10% were identified (Table 2). From the 41 most abundant taxa,
33 were not detected in all samples, and among these, four only appeared in one sample
(singletons). This fact highlights the high variability often encountered when comparing
individual plants. The grapevine fungal microbiota were characterised by the presence
of both ascomycetes and basidiomycetes (174 and 82 taxa, with 75.34% and 24.06% RA,
respectively).

Table 1. Overview of grapevine fungal microbiota composition.

Kingdom Phylum Class Order Family Genus Species

% Sequences 100 99.40 99.19 99.05 91.86 82.07 42.04
Classified OTUs 258 256 253 249 236 215 157
Identified taxa 1 2 17 46 102 157 157
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Table 2. Taxonomic classification of the most abundant taxa (with relative abundance ≥0.10%), identified to genus or species level, their ecology and/or pathogenic
potential, and relative abundance in GTDs symptomatic and asymptomatic plants and in the studied grapevine cultivars (‘Alicante Bouschet’ and ‘Trincadeira’).

Phylum Family Genus/Species Ecology and/or
Pathogenic Potential

Relative Abundance (%)

Symptomatology Cultivar

Symptomatic
Plants

Asymptomatic
Plants

‘Alicante
Bouschet’ ‘Trincadeira’

Ascomycota Botryosphaeriaceae Diplodia sp. * pathogen [18,64] 0.38 10.22 6.95 3.65
Neofusicoccum cordaticola * pathogen [64] 0.13 10.16 10.29 –

Cladosporiaceae Cladosporium sp. endophyte; saprophyte [18,64] 5.98 2.07 4.44 3.61

Mycosphaerellaceae Mycosphaerella tassiana endophyte; pathogen [45,64] 5.43 2.23 3.46 4.20

Neodevriesiaceae Neodevriesia capensis unknown 2.00 × 10−3 0.10 2.00 × 10−3 0.10

Teratosphaeriaceae
Catenulostroma hermanusense saprophyte [64] 0.27 – 0.27 –
Devriesia pseudoamericana saprophyte [64] 0.20 0.01 0.20 0.01
Recurvomyces mirabilis unknown 0.10 – – 0.10

Amorosiaceae Angustimassarina acerina saprophyte [18] 0.09 0.01 0.07 0.04

Didymosphaeriaceae Pseudopithomyces chartarum endophyte; pathogen;
saprophyte [65,66] 0.10 0.12 0.06 0.17

Spegazzinia tessarthra unknown 0.09 0.02 1.00 × 10−3 0.11

Lentitheciaceae Keissleriella sp. unknown 0.12 – 0.03 0.09

Phaeosphaeriaceae Neosetophoma samararum unknown 0.07 0.06 0.06 0.07

Pleosporaceae

Alternaria sp. endophyte; pathogen [18,64] 5.88 0.86 4.44 2.31
Alternaria metachromatica endophyte; pathogen [67] 0.59 0.21 0.29 0.51
Paradendryphiella arenariae unknown 0.13 – 0.05 0.07
Stemphylium sp. endophyte [64] 0.80 1.67 0.48 1.99
Chalastospora gossypii endophyte [64] 0.40 0.03 0.36 0.08

Aspergillaceae Aspergillus sp. endophyte; pathogen;
saprophyte [64] 0.10 0.01 0.02 0.09

Penicillium lapidosum unknown 0.09 0.07 0.04 0.11

Phaeomoniellaceae Neophaeomoniella niveniae unknown 0.11 – 0.11 –

Erysiphaceae Erysiphe necator pathogen [64] 2.45 0.07 1.39 1.13

Sclerotiniaceae Monilinia laxa saprophyte [64] 0.94 0.05 4.00 × 10−3 0.99
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Table 2. Cont.

Phylum Family Genus/Species Ecology and/or
Pathogenic Potential

Relative Abundance (%)

Symptomatology Cultivar

Symptomatic
Plants

Asymptomatic
Plants

‘Alicante
Bouschet’ ‘Trincadeira’

Diaporthaceae Diaporthe sp. * pathogen [18,64] 0.20 0.31 0.50 0.01

Nectriaceae
Fusarium sp. pathogen; saprophyte [64] 2.08 0.14 0.10 2.12
Gibberella intricans pathogen; saprophyte [64] 1.62 0.03 1.62 0.02

Amphisphaeriaceae Discostroma sp. pathogen [64] 0.64 0.03 0.57 0.10

Basidiomycota Typhulaceae Typhula sp. saprophyte [64] 0.29 – 0.29 –

Malasseziaceae Malassezia restricta unknown 0.12 0.03 0.04 0.12

Sporidiobolaceae Sporobolomyces roseus endophyte [68,69] 1.56 0.67 0.53 1.69

Cystofilobasidiaceae Cystofilobasidium macerans unknown 0.18 0.07 0.17 0.09

Mrakiaceae
Mrakia sp. unknown 5.17 1.16 1.51 4.82
Udeniomyces pyricola unknown 0.17 – 3.00 × 10−3 0.17

Filobasidiaceae

Filobasidium chernovii unknown 1.49 0.77 1.46 0.80
Filobasidium magnum endophyte [69] 0.23 0.13 0.15 0.21
Filobasidium wieringae unknown 4.19 2.56 2.04 4.70
Filobasidium sp. endophyte [69] 0.94 0.14 0.28 0.80

Holtermanniales incertae sedis Holtermanniella takashimae unknown 0.10 – 0.10 –

Bulleribasidiaceae
Vishniacozyma dimennae unknown 0.10 0.05 0.09 0.06
Vishniacozyma victoriae endophyte [69] 0.86 0.53 0.89 0.50

Phaeotremellaceae Gelidatrema spencermartinsiae unknown 0.15 0.08 0.14 0.08
* Taxa associated with grapevine trunk diseases. The ecology and/or pathogenic potential of the most abundant taxa in the studied grapevines is based on the available literature, for
grapevines or other plant species.
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The most abundant families within the Ascomycota phylum were Botryosphaeriaceae
(20.89%), Aureobasidiaceae (8.14%), and Cladosporiaceae (8.09%); within the Basidiomycota
phylum they were Filobasidiaceae (10.46%), Mrakiaceae (6.49%), and Sporidiobolaceae (2.97%).
Diplodia sp. and Neofusicoccum cordaticola, two members of the Botryosphaeriaceae, previ-
ously described as responsible for GTDs, were the most abundant taxa (with 10.60% and
10.29% RA, respectively). Other trunk disease pathogens, Hormonema sp., Phaeomoniella
chlamydospora, Cadophora luteo-olivacea, Diaporthe sp., Truncatella sp., Cryptovalsa ampelina,
Diatrype stigma, and one pathogenic basidiomycete, Stereum hirsutum, were also detected in
lower abundance (≤0.51%), totalling ten GTDs-associated fungi, which together comprised
nearly 21.49% of the total fungal density. OTUs that were not included in the previous
group were classified as “endophytes”, microorganisms that live entirely within plant
tissues without causing any apparent symptoms of disease to the host [30]. Since this
study intended to assess the impact of GTDs-associated fungi, all the remaining fungi that
were identified (other pathogens and other fungi without any previously described activ-
ity on grapevine plants) were considered as endophytes. Cladosporium sp., Alternaria sp.,
Clonostachys rosea, and Trichoderma atroviride were some of those endophytes that were
found in the grapevine tissues.

3.2. The Influence of Symptomatology on Grapevine Mycobiome
3.2.1. Diversity and Richness of the Fungal Microbiota

The comparison of the fungal community in symptomatic and asymptomatic plants
showed that a total of 83 taxa (95.90% RA) were detected in both groups, demonstrating the
existence of a core grapevine mycobiome. Only 44 taxa were unique to asymptomatic plants
(0.61% RA) and the remaining 131 were unique to symptomatic plants (3.49% RA). The
average of the total OTUs number± standard error (SE) was 92.75± 15.97 for symptomatic
plants and 52.25 ± 5.25 for asymptomatic ones (Figure 2). PERMANOVA analysis revealed
significant differences (p = 0.03), highlighting a higher diversity of fungal species in symp-
tomatic grapevines. The compositional similarities of fungal microbiota between samples
were estimated using Principal Coordinates Analysis (PCO), combined with a Bray-Curtis
dissimilarity. The PCO ordination showed that the first two components (PCO1, 97.80% and
PCO2, 2.20%) accounted for the total variability of the data (Figure 2). Regarding the fungal
richness, for the symptomatic plants, the mean number of reads (±SE) was 168,631 ± 8125,
and for asymptomatic it was 123,613 ± 21,515. In this case, the PERMANOVA analysis
revealed no significant differences (p = 0.19).
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Alpha-diversity analysis did not identify significant differences at the OTU level
in terms of richness and evenness when comparing the fungal communities between
both symptomatic and asymptomatic plants. Diversity indexes revealed a high similarity
between samples. In fact, the PERMANOVA analysis showed no significant differences
among both groups for each of the five diversity indexes (Margalef, p = 0.75; Shannon, p = 0.09;
Pielou’s, p = 0.29; Fisher, p = 0.76; and Simpson, p = 0.14).

Cladosporium sp., Alternaria sp., and Mycosphaerella tassiana were the most common
fungi found in symptomatic plants, with 5.98%, 5.88%, and 5.43% RA respectively. In
asymptomatic plants, Diplodia sp. and N. cordaticola were the most abundant, with 10.22%
and 10.16% RA, contrasting with 0.38% and 0.13% RA in symptomatic plants, respectively
(Table 2). The relative abundance of the top 10 fungal species detected across all samples is
represented in Figure 3. However, only the 215 OTUs assigned to the genus or species level
were considered.
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3.2.2. GTDs-Associated Fungi

Symptomatic plants presented 3079 ± 1749 mean reads of GTDs-associated fungi,
while asymptomatic ones revealed a significantly higher average with 80,662± 22,079 reads
(p = 0.01; Figure 4). Nevertheless, symptomatic plants exhibited greater diversity of GTDs
phytopathogenic fungi when compared with asymptomatic plants. PERMANOVA showed
significantly higher values of OTUs for the symptomatic grapevines (p = 0.03; Figure 5). In
plants with symptoms, the mean number of OTUs (±SE) was 5.33 ± 1.20, and in plants
without symptoms it was 1.67 ± 0.33. A total of nine fungi were detected in symptomatic
grapevines, while in asymptomatic plants only four were identified (Figure 6). Diplodia sp.,
N. cordaticola and Diaporthe sp. were found in both symptomatic and asymptomatic plants.
Hormonema sp., P. chlamydospora, C. luteo-olivacea, Truncatella sp., C. ampelina, and D. stigma
were detected solely in symptomatic plants, while S. hirsutum was only found in asymp-
tomatic plants, although with residual abundance.

3.2.3. Endophytic Community

A total of 80 OTUs of the remaining fungal community were identified in both symp-
tomatic and asymptomatic plants (74.50% RA). Cladosporium sp., M. tassiana, Alternaria sp.,
Mrakia sp., and Fusarium sp. are some examples. Only 43 taxa were unique to asymp-
tomatic grapevines, such as Cystobasidium sp. and Cordyceps bassiana (0.60% RA), and the
remaining 124 were solely detected in symptomatic grapevines (24.90% RA), as verified
for Typhula sp. and Catenulostroma hermanusense. The mean number of OTUs (±SE) was
88.50 ± 14.85 for symptomatic plants and 51.00 ± 5.31 for asymptomatic ones (Figure 7).
PERMANOVA analysis revealed significant differences (p = 0.03), highlighting a higher
diversity of endophytes in symptomatic grapevines, as has already been seen for the overall
fungal community. Regarding the richness of the endophytic community, a significantly
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higher (p = 0.0009) number of reads in symptomatic plants was observed, with the mean
number of reads being (±SE) 166,310 ± 9506 compared with the asymptomatic ones with
the mean number of 63,117 ± 8561 (Figure 8).
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3.3. The Influence of Cultivars on Grapevine Mycobiome
3.3.1. Diversity and Richness of the Fungal Microbiota

The mycobiome of cv. ‘Trincadeira’ and cv. ‘Alicante Bouschet’ presented a total of
90 common taxa (86.58% RA), while 58 were exclusive of cv. ‘Trincadeira’ (0.96% RA) and
110 of cv. ‘Alicante Bouschet’ (12.46% RA), demonstrating the existence of a core grapevine
mycobiome. For cv. ‘Trincadeira’, the least susceptible to GTDs, the mean number of
OTUs (±SE) was 65.75 ± 4, and for cv. ‘Alicante Bouschet’, the most susceptible to GTDs,
the mean number of OTUs (±SE) was 79.25 ± 23. PERMANOVA analysis revealed no
statistical differences in terms of fungal diversity (p = 0.76). Regarding fungal richness,
for cv. ‘Trincadeira’, the mean number of reads (±SE) was 133,341 ± 26,612, and for
cv. ‘Alicante Bouschet’ it was 158,903 ± 7041. No significant differences were detected
in terms of richness between both cultivars (p = 0.55). Alpha-diversity analysis did not
identify significant differences at the OTU level in terms of richness and evenness when
comparing the fungal communities between both cultivars. Diversity indexes revealed a
high similarity between samples. PERMANOVA analysis showed no significant differences
among both groups for each of the five diversity indexes (Margalef, p = 0.21; Shannon, p = 0.40;
Pielou’s, p = 0.30; Fisher, p = 0.20; and Simpson, p = 0.30).

Mrakia sp., Filobasidium wieringae, M. tassiana, Diplodia sp., and Cladosporium sp. were
the most common fungi, with RA over 3%, in cv. ‘Trincadeira’. In cv. ‘Alicante Bouschet’,
N. cordaticola, Diplodia sp., Cladosporium sp., Alternaria sp., and M. tassiana were dominant
(RA > 3%) (Table 2). The relative abundance of the top 10 fungal species detected across all
samples, regarding cultivar, is shown in Figure 9.
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3.3.2. GTDs-Associated Fungi

A total of nine GTDs-associated fungi were identified in cv. ‘Alicante Bouschet’ and
five in cv. ‘Trincadeira’. Diplodia sp., Hormonema sp., Diaporthe sp., and C. ampelina were
found in both cultivars. N. cordaticola, P. chlamydospora, C. luteo-olivacea, Truncatella sp.,
and D. stigma were detected exclusively in cv. ‘Alicante Bouschet’, while S. hirsutum was
only found in the ‘Trincadeira’ cultivar (Figure 10). The mean number of OTUs (±SE) was
1.25 ± 0.75 for cv. ‘Trincadeira’, and for cv. ‘Alicante Bouschet’ it was 4.00 ± 1.47. Although
the mean number of OTUs in both cultivars was found to be numerically different, it was
not enough to be statistically significant (p = 0.35). Considering the GTDs-associated fungal
richness, cv. ‘Alicante Bouschet’ showed a higher mean number of reads compared with
cv. ‘Trincadeira’. The most susceptible cultivar, ‘Alicante Bouschet’, presented 52,036 ± 28,677
mean reads, while the least susceptible, ‘Trincadeira’, presented a lower mean number
of reads, 10,769 ± 10,516. Nevertheless, PERMANOVA analysis showed no statistically
significant differences (p = 0.35).
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3.3.3. Endophytic Community

Endophytic fungal communities found in both cultivars were characterised by similar
diversity and richness. A high percentage of taxa was detected simultaneously in both
cultivars (75.44% RA), corresponding to 86 taxa, among which were Cladosporium sp.,
Alternaria sp., and Fusarium sp.; only 57 taxa were unique to cv. ‘Trincadeira’, such as
Beauveria sp., and C. bassiana (0.95% RA). The remaining 104 were detected solely in
cv. ‘Alicante Bouschet’ (23.61% RA), such as Typhula sp., C. hermanusense, and Cystobasidium sp.

The mean OTUs number (±SE) was 64.25± 3.45 for cv. ‘Trincadeira’ and 75.25 ± 21.23
for cv. ‘Alicante Bouschet’ with no statistically significant differences detected (p = 0.80).
Regarding the richness of the endophytic community, a similar number of reads in both
cultivars, 122,560 ± 30,563 for the least susceptible cultivar and 106,867 ± 31,038 for the
most susceptible, was verified. PERMANOVA analysis showed no significant differences
among taxa for their differential abundance when comparing both cultivars (p = 0.71).

4. Discussion

This study described the composition (richness and diversity) of the endophytic fun-
gal communities associated with GTDs symptomatic and asymptomatic grapevines of
two cultivars from the Alentejo region, ‘Trincadeira’ and ‘Alicante Bouschet’. The chosen
cultivars are important highly used in wine production in this region, conferring valuable
traits to wine and are present in the list of cultivars with the European nomenclature of Pro-
tected Designation of Origin (PDO). Moreover, these cultivars clearly demonstrate different
levels of susceptibility to trunk diseases among them [32]. The present meta-analysis of
the grapevine fungal microbiome considered two parameters (presence/absence of GTDs
symptoms and cultivar) and elucidated some issues preventing a full understanding of the
etiology of this disease complex, providing some guidelines about the underlying factors
associated with the expression of trunk diseases symptoms.

The continuous development of high-throughput sequencing technologies, associated
with an increasing accessibility, allowed, either through the lower cost of these methods
or the simplification of the processes involved, the sequencing of distinct metagenomes
and, among them, the grapevine fungal microbiome. Although the ITS region has some
limitations in identifying highly specific genera, such as Aspergillus, Cladosporium, Fusarium,
Penicillium, and Trichoderma, which have narrow or no barcode gaps in their ITS regions,
it is still the primary fungal barcode marker for molecular identification [70,71]. In this
study, a total of 258 taxa were detected, corroborating the diversity also verified in similar
studies in grapevines using a NGS approach [18,37,41,64]. Furthermore, 60.85% of the
total OTUs identified were assigned to species level. Overall fungal microbiota comprised
the presence of both ascomycetes and basidiomycetes, with about 75% and 24% RA, re-
spectively. The predominance of ascomycetes fungi over the basidiomycetes identified
in this study is consistent with other endophytic studies concerning grapevine and other
crops [18,28,30,33,37,43,55,72,73]. Within the Ascomycota phylum, the Botryosphaeriaceae was
the most representative family (20.89% RA), especially due to Diplodia sp. and N. cordaticola,
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the most frequent GTDs-associated fungi among fungal microbiota. Moreover, Aureobasidiaceae
and Cladosporiaceae, together with the Botryosphaeriaceae, comprised the main families of
the grapevine endophytic mycobiota [72]. As expected, numerous GTDs-associated fungi
were identified, as frequent (Diplodia sp., N. cordaticola, and Diaporthe sp.) or as rare taxa
(Hormonema sp., P. chlamydospora, C. luteo-olivacea, Truncatella sp., C. ampelina, D. stigma,
and S. hirsutum), totalling 10 trunk-disease pathogens, which together constituted nearly
21.49% of the total fungal density. These pathogens are involved in diseases commonly
seen in mature and older grapevines, such as Botryosphaeria dieback, Esca, Eutypa dieback,
and Phomopsis dieback, as is the case of the vineyard under study [8,9,32]. Some fungal
genus/species often involved in GTDs complex, such as Eutypa lata, Neofusicoccum parvum,
Phaeoacremonium spp., Fomitiporia spp., and Ilyonectria or closely related species [8,18], were
not detected. However, it should be taken into consideration that the plant tissue analysed
may influence the presence/absence of some fungal species [18].

The abundance of fungal endophytes was mostly comprised of frequent taxa (96.64%
RA) rather than rare species, meaning that many species were repeatedly isolated and are,
apparently, characteristic in grapevine, regardless of the presence/absence of symptoms
or the cultivar. In general, the fungi isolated in this study have been previously reported
in other studies as grapevine endophytes [18,30,73]. This result may be related to the fact
that some endophytes become specialised on plant tissues and occupy a specific ecological
role in the plant but, nevertheless, the colonisation of some rare species (RA < 0.10%)
may occur [30].

Leaf symptoms are frequently associated with an advanced stage of infection, although
this is not always clear due to the lack of homogenous symptoms across all leaves, their
discontinuity, possible unidentified causal agents, and their roles and associations [9]. Al-
though wood necrosis is present as a latent infection, GTDs leaf symptoms may be absent
for many years, and then can fluctuate from year to year [74]. Since GTDs symptoms can
be inconstant, it is interesting to understand whether there is a link between the fungal
communities of the grapevine wood and the expression of leaf symptoms of GTDs. A total
of 83 taxa within the fungal community (95.90% RA) were detected in both symptomatic
and asymptomatic plants. These results suggest, as already been mentioned, that grapevine
mycobiome is partially conserved. Although a higher diversity of fungal species was
observed in symptomatic grapevines, no statistical differences were revealed regarding
fungal richness between both symptomatic and asymptomatic plants. Other microbial
ecology studies in symptomatic and asymptomatic grapevines reported opposite results,
highlighting that the diversity of fungal communities was not affected by the manifestation
of leaf symptoms [18,26,43,75]. Elena et al. (2018) characterised the grapevine fungal com-
position and diversity, in Spain, and did not find differences between fungal communities
in symptomatic and asymptomatic plants [75]; Bruez et al. (2014), in France, also did not
find differences between the endophytic microflora of both symptomatic and asymptomatic
grapevines [26]. This fact may be related to the grapevine part sampled, health status of
the wood, plant age, soil, cultivars, climate, and other environmental factors, which would
have influenced the development of the fungal communities.

Cladosporium sp., Alternaria sp., and M. tassiana were the most common fungi in symp-
tomatic plants. These species are usually the main fungal components of endophytic
communities in grapevine, as well as in other plants [28,30,45,55,76,77], although no visible
symptoms of plant disease are associated with these species in the studied grapevines.
This fact proposes that the induction of disease by these species may depend not just
on their presence, but also on the influence of the community or other plant factors [45],
suggesting that these species are latent, behaving as plant endophytes. Whilst little is
known about their associations with known pathogens, some fungal endophytes have
revealed potential as biological control agents against GTDs-associated fungi and other
grapevine pathogens [26,76,78]. Unexpectedly, asymptomatic plants revealed an abun-
dance of GTDs-associated fungi significantly higher when compared with the symptomatic
ones, with Diplodia sp. and N. cordaticola being the most abundant ones. Due to the reported
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isolation of these fungi from asymptomatic tissues [17], it is thought that some of GTDs
phytopathogenic fungi may act also as latent pathogens [8,14], being able to survive, for
part of their lives, as endophytes without causing any apparent symptoms to the host, but
may become pathogenic under specific physiological or environmental conditions [79,80].
However, many of the hypotheses addressing the transition from endophytic to pathogenic
phases remain untested. One of these may be the occurrence of biotic and/or abiotic
stresses, which increase host susceptibility, facilitating the transition; other includes endo-
phyte changes, including single point mutations, the transfer of virulence genes, and/or
virus infections causing change to a pathogenic state [8]. Moreover, early infections or
co-existence with other endophytic microorganisms, particularly those with biocontrol
activity, which, either by the competition for nutrient and space or by the production of
secondary metabolites, inhibit fungal growth, can also explain the long latency time of
trunk diseases [75,77,81]. The presence of these fungi in asymptomatic grapevines can
be quite problematic for growers, as infections can unnoticed spread in the field or in
nurseries [82–84]. On the other hand, symptomatic grapevines exhibited a significantly
greater diversity of GTDs phytopathogenic fungi (p = 0.03). A total of nine fungi were de-
tected in symptomatic grapevines (Diplodia sp., N. cordaticola, Diaporthe sp., Hormonema sp.,
P. chlamydospora, C. luteo-olivacea, Truncatella sp., C. ampelina, and D. stigma), while in asymp-
tomatic plants only four were identified (Diplodia sp., N. cordaticola, Diaporthe sp., and
S. hirsutum). These results corroborate previous reports referring that GTDs symptoms
are intensified by a set of multiple GTDs-associated fungi within a grapevine [8,11]. The
main argument supporting this hypothesis is the action of phytotoxic compounds (toxins
or secondary metabolites) produced by several fungi which would be released in the sap
flow, disseminated, and reach the foliage [9,13,85]. The inciting factors could be a change in
the micro-environment conditions, a fungal progression to infect previously healthy wood
and functional parts, or an ineffective cellular response of the leaf tissues to the entering
toxins [9,86–88]. In this context, with different fungi present in the same plant, there exists
more competition between them and more phytotoxic compounds are released, which
leads to more severe leaf symptoms. Furthermore, when grapevines become stressed,
fungal growth is accelerated, and colonisation thresholds are reached sooner than under
normal conditions [3,10,14,16]; therefore, the presence of multiple GTDs-associated fungi
leads to an earlier reaching of these thresholds [8]. Nevertheless, several questions remain;
it is not known if one or potentially all of these compounds cause symptoms and the
threshold concentrations inducing toxicity have not yet been determined [9]. Changes
in the plant morphology and physiology, as well as in biochemical functions, were also
assessed as possible factors in the development of foliar symptoms. Ascorbate-Glutathione
cycle was considered likely to be involved in grapevine susceptibility to fungi associated
with the Esca complex [89]. Other hypotheses can contribute for the appearance of leaf
symptoms, such as the disturbance of sap flow to the leaves on given xylem pathways
altered by fungi, which is described as ‘hydraulic dysfunction’ [85,90,91], and annual infec-
tions by some fungi through pruning or green wounds [23,92]; however, more research is
required to develop this hypothesis and to unravel the processes underlying colonization
by these fungi [93].

It is important to consider that several factors can shape the grapevine microbiome
and increase/decrease the susceptibility to GTDs, such as seasonality, climatic conditions,
surrounding flora, cultural practices, plant genotype, plant age, and presence of pathogens,
rootstock, and cultivar [48,50,85,92–96]. In addition, biotic and abiotic stresses might also
be playing an important role in the expression of GTDs symptoms [97]. The relation-
ships between the microbiota present on a plant can be more or less favourable to fungal
pathogenicity [98]. Several studies suggest that interactions within the community of
GTDs-associated fungi, as well as the grapevine physiology and the environment, can
strongly affect the behaviour of each fungus [99,100]. Understanding the triple impact of
host-pathogens-environment is critical to explain the evolution of trunk diseases [101]. De-
spite the similarities in the endophytic fungal community found in both symptomatic and
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asymptomatic grapevines, significant differences were observed between both, highlighting
a higher diversity of endophytes in symptomatic grapevines, as has already been seen for
the overall fungal community, as well as a significant higher abundance. Identification
of the endophytic fungal community is essential not only to describe the fungi present in
grapevines, but also to understand their relationships with GTDs-associated fungi and their
potential as effective biocontrol agents so that control strategies may be developed. The
role of endophytic communities in pathogen defence is attained through different mecha-
nisms, namely the competition with pathogens for the same ecological niches in terms of
nutrients and space; the production of secondary metabolites that inhibit fungal growth;
the induction of systemic acquired resistance, through the accumulation of pathogenesis-
related proteins; and the expression of plant defence genes [30,72]. The lower diversity and
richness of endophytic fungi found on asymptomatic plants may lead to an increase of the
development and expression of GTDs-associated fungi. However, symptoms are not visible,
suggesting potential interactions between endophytes and GTDs-phytopathogenic fungi
within a grapevine [26,29,76,78,102]. Cystobasidium sp., C. bassiana and other fungi found on
asymptomatic grapevines may interact with the GTDs-associated fungi to mask or inhibit
pathogen activity, which means that the endophytic community may constitute a source of
biocontrol agents useful to regulate important grapevine diseases. The role of endophytes
in GTDs symptoms expression still needs further research. Summing up, symptomatic
and asymptomatic plants revealed differences in terms of endophyte fungal richness and
diversity, GTDs fungal richness and diversity, and in terms of overall fungal diversity.

Overall results from comparison between cv. ‘Trincadeira’ (least susceptible to GTDs)
and cv. ‘Alicante Bouschet’ (most susceptible) showed that the fungal communities of both
cultivars did not differ significantly. Similar results were reported by Pancher et al. [76],
using culture-dependent approaches with the ‘Chardonnay’ and ‘Merlot’ cultivars, while
some other studies revealed differences in fungal communities when different grapevine
cultivars were compared [30,43,48,72,103,104]. All these studies focused on a single culti-
var in each vineyard and did not consider differences between cultivars on a same field.
Differences on fungal composition of the different cultivars may be related to the different
plant breeding and selection processes which cultivars have been exposed to, to differences
in phenological stages, to different sugar content, pH, and nutrient composition, to the
presence and abundance of secondary metabolites produced by the different cultivars, or
to the biogeography [30,43]. Additionally, it should be noticed that the cultivars used in
the present study belong to the same experimental field, which eventually may define
the similarity on the grapevine endophytic community. In fact, it would be interesting to
understand the reason that leads to visual differences among them regarding the symp-
tomatology of trunk diseases. One of the hypotheses would be a greater diversity of
GTDs-associated fungi in the most susceptible cultivar, which was not verified. Although
the mean number of OTUs in both cultivars was found to be numerically different (nine
in cv. ‘Alicante Bouschet’ and five in cv. ‘Trincadeira’), it was not statistically significant,
as well as the GTDs fungal composition between cultivars. Additionally, the outcome of
the statistical analyses of the mycobiome of cv. ‘Trincadeira’ and cv. ‘Alicante Bouschet’
revealed that the endophytic fungal communities were not affected by the cultivar. With-
out differences found in grapevine fungal composition among these cultivars, studies
concerning grapevines’ differential gene expression are crucial to better understand the
underlying mechanisms associated with the expression of trunk diseases symptoms. Key
functional genes differentially expressed in response to different biotic stresses, notably
during pathogen attack, have been identified in several plant species [50,105,106]. Un-
derstanding the vast fungal diversity in grapevines and the plant-pathogen interactions
will indicate future research directions to advance understanding and management of
GTDs and facilitate the development of sustainable and effective control strategies for
grapevine protection.
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5. Conclusions

The present study allowed an adequate sequencing depth to unravel the complexity
of the grapevine fungal communities of the selected cultivars in a 17-year-old vineyard
in the Alentejo region (south of Portugal) and updated the information on the richness
and diversity of GTDs-associated fungi and their relationship with the symptomatology
in plants. The results here presented, when we compared GTDs symptomatic vs. asymp-
tomatic plants, revealed that the existence of the symptoms depends on the presence of
multiple GTDs-associated fungi within a grapevine, reinforcing the importance of exploring
fungal biodiversity in grapevine cultivars. The identified grapevine fungal communities
comprised beneficial and phytopathogenic fungi that might have a significant impact on
grapevine production. Endophytes found on asymptomatic grapevines may be playing
an important role and should be further explored as antagonists of GTDs pathogens and
possibly developed as effective biocontrol agents. This study contributes to a better un-
derstanding of plant-pathogen interactions and to the achievement of a better knowledge
of GTDs and their expression, contributing to the mitigation and control of these diseases
with such a high economic impact.
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