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Abstract: Textural attributes of apple impact consumers’ acceptance of the fruit, and are frequently
measured by researchers and industry experts to evaluate the fruit quality at different stages of
production and marketing. Various instruments are used to conduct these textural evaluations in
research and industry settings. The application of different instruments makes the comparison
and integration of results extremely difficult. The main objectives of this study were to compare
data obtained from three widely used textural instruments, investigate their relationships with each
other and with sensory evaluations, and develop models to convert data among instruments. Three
penetrometers were included in the study: (1) Fruit Texture Analyzer (FTA); (2) Mohr Digi-Test-2
(MDT-2); and (3) TA.XTplus Texture Analyzer (TA.XTplus). Eight apple varieties with a range of
textural attributes were selected. Eleven sensory judges evaluated three apple slices (1/8 apple)
from each variety. The instrumental measurements were conducted on 10 apples per instrument
from each variety, with two measurements on each apple. Results of principal component analysis
indicated that 95.82% of the variation in the texture data could be explained using only two principal
components. Linear and nonlinear regression models were developed to convert data obtained from
an instrument to those from other instruments.

Keywords: apple; fruit texture; penetrometer; model development; sensory evaluation

1. Introduction

Apple texture is considered a very important quality factor by customers and impacts
their purchase decisions, especially during repeat purchases [1–3]. Results of a conjoint
analysis demonstrated the importance of the apple texture on the overall liking of the
fruit [4]. As a result, apple textural attributes are considered in evaluating the quality of
the products at different stages of the supply chain from production to marketing [5]. In
addition, apple firmness and starch-iodine test are considered the best harvest time deter-
minants [6]. Apple breeding programs also consider sensory and instrumental firmness in
the selection of new varieties [7,8].

Genetic, agronomic, and environmental factors impact the internal and external apple
quality parameters, including firmness [9]. Some of the pre-harvest factors affecting the
apple firmness include: (i) differences among varieties and within their strains [10,11];
(ii) differences in the cell number, size and shape, and it was shown that fruits with
greater cell numbers and smaller cell size were firmer while fruits with larger cell size
had softer texture [5,10,12–15]; (iii) the number of seeds in fruit which was reported to
be correlated negatively with firmness [13]; (iv) maturation which was reported to be
correlated negatively with firmness [16]; (v) apple tree vigor factors including the crown
diameter and height and the trunk girth which showed negative correlations with the
fruit firmness [17]; (vi) thinned trees with a lower crop load produced heavier and firmer
fruits with higher dry matter [18,19]; (vii) fruit nutrient concentrations, especially N, K, Ca,
and Mn levels, were proven to be correlated with fruit firmness [19,20]; (viii) differences
among rootstocks [21]; (ix) deficit irrigation reported to be positively correlated with

Horticulturae 2022, 8, 269. https://doi.org/10.3390/horticulturae8030269 https://www.mdpi.com/journal/horticulturae

https://doi.org/10.3390/horticulturae8030269
https://doi.org/10.3390/horticulturae8030269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com
https://orcid.org/0000-0002-1697-6054
https://doi.org/10.3390/horticulturae8030269
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com/article/10.3390/horticulturae8030269?type=check_update&version=2


Horticulturae 2022, 8, 269 2 of 18

apple firmness [22] and Reid [23] demonstrated the importance of the timing of water
reduction on apple firmness; (x) different growth regulators showed different impacts
on the firmness [24]; (xi) differences were reported in the texture of fruit harvested from
various altitudes [25]; and (xii) long-term data demonstrated that climate change and
global warming have resulted in earlier blooming in apples and the production of less firm
apples [26]. In addition, different post-harvest practices can affect the texture quality of
the fruit [27–30]. For example, storage type and duration can impact the perceived textural
attributes of the fruit [27].

Different types of penetrometers have been used widely to measure the texture quality
of fruits for decades [29]. Their instructions differ; for example, some of them require the
fruit to be peeled for the test while others can conduct the evaluation on intact fruits [31,32].
The recommended probe size and penetration depth vary, and the generated data are not
the same [31,32].

Flesh firmness is considered an important attribute in the evaluation of the perfor-
mance of different varieties in apple selection programs [33]. The performance of different
firmness penetrometers was evaluated in previous studies with the main objective of
evaluating the influence of operators in the use of handheld penetrometers and earlier
computerized instruments [34–36]. The use of digital penetrometers has been more com-
mon nowadays which eliminates the influence of the operator and provides more accurate
and precise information about the fruit texture. Nevertheless, the use of different digital
penetrometers across different research studies and settings has resulted in difficulties in
the comparison, compatibility, and integration of the results from one laboratory to another
one or from research to industrial laboratories and vice versa. This not only can cause
challenges in the use of the available information but can also create dilemmas for the
long-standing programs such as breeding programs, with decades of selection data [37],
and fruit quality assessment programs in integrating data obtained from different fruit
supply chain sectors.

The main objectives of this study were to compare the data obtained from three widely
used textural instruments, investigate relationships between the obtained parameters,
validate the instrumental measurements with sensory evaluations, and develop practical
models to convert data among the studied instruments.

2. Materials and Methods
2.1. Apple Varieties

Eight apple varieties with a broad range of textural attributes were selected for the
purposes of this study (see Table 1). The broad range of the studied textural attributes
permits the application of the results to many established and new varieties [31].

All fruit was produced based on commercial practices and harvested at commercial
maturity [38]. The apple varieties were sourced from either an experimental orchard at
Summerland Research and Development Centre (SuRDC) or orchards in the same region,
not retail outlets [31]. All fruits were “orchard run” and had not been sorted, waxed, or
packaged using commercial packinghouse practices. The fruit was sorted at the Sensory
Laboratory to minimize size and color variations within each variety and to remove any
damaged fruit [31,32]. The apples were stored in air at 1 ± 0.5 ◦C and 72 ± 2% RH for
2–4 weeks, grouped into two lots of four varieties considering the harvest time, and were
warmed to room temperature overnight prior to testing. Testing for one lot was completed
all within one week and the other lot was completed all within the subsequent week.
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Table 1. Apple varieties included in the study, information about their harvest timing and visual
appearance.

Variety Harvest Timing Group Appearance of Sorted Fruit

McIntosh Early 25–75% red over-color with green ground-color
Silken Early 0–5% red over-color with yellow/green ground-color, and russet filled stem bowl

SuRDC2 1 Early 60–90% red over-color with slight greenish to yellow ground-color, and russet filled stem bowl
Aurora Golden Gala Early Slightly greenish to yellow color, and russet filled stem-bowl

Ambrosia Mid/late 60–90% red over-color with yellow ground-color
Fuji Mid/late 80–95% red over-color with yellow ground-color, and russet

Red Delicious Mid/late 95% red over-color with yellow ground-color, and slight stripe
Pink Lady® Mid/late 70–95% red over-color with slight greenish to yellow ground-color

1 SuRDC2 is a new unnamed selection from the Tree Fruit Breeding and Germplasm Development Program at
Summerland Research and Development Centre (SuRDC) in Summerland, BC, Canada.

2.2. Sensory Assessments

Investigating the relationships of the instrumental measurements with sensory at-
tributes can assist in the interpretation of the instrumental data [30–32]. Sensory judges
(n = 11) were recruited from the staff at SuRDC based on their interest, availability, and
previous experience. The panel consisted of four men and seven women ranging in age
from 19 to 56 years. The attributes were selected and defined based on ballot training
techniques [39]. The panelists were either experienced in conducting the apple texture eval-
uations or received training before conducting the experiments [31,32]. In addition, prior
to the formal assessments, all judges practiced scoring each of the apples in an orientation
session. Ten apples per variety were available for the training sessions.

Apple varieties were assessed in triplicate in individual sensory booths under red light
using Compusense five® (Compusense Inc., Guelph, ON, Canada) software. The triplicate
assessments of four apple varieties were completed in one sitting based on descriptive
analysis techniques with selected attributes [40]. Fifteen sorted apples per variety were
available for the sensory tests (i.e., five apples per replication per variety). Two apple
slices (1/8 apple) were excised from each sun/shade transition zone of an apple (i.e.,
four slices per apple), coded with three-digit numbers, and presented in random order
on white trays [31,32]. Judges received one slice but were free to ask for more samples if
required. Food standards were presented in 1 oz. plastic cups simultaneously. Attribute
intensities were scored on 100-unit unstructured line scales with low, high, and mid-point
marked as identified in Table 2.

Table 2. Sensory attributes, definitions, and food standards for sensory profiling.

Attribute Definition Food Standard

Crispness The amount of sound produced by the apple flesh when the sample is first bitten
with the front teeth. Banana at 0 units; celery at 90 units

Hardness The resistance to compression by the apple flesh when the sample is placed on the
back teeth and the teeth are compressed. Assess after repeated chewing. Medjool date at 10 units; carrot at 90 units

Skin toughness The relative ease of breakdown of skin in the mouth during chewing with the back
teeth to prepare the apple for swallowing. Green pepper at 50 units

The study was conducted according to the guidelines of the Tri-Council Policy State-
ment, Ethical Conduct for Research Involving Humans, and approved by the Human
Research Ethics Committee of Agriculture and Agri-Food Canada (HERC Reference Num-
ber: Amendment to 2018-F-003 Bejaei). Informed consent was obtained from all panelists
involved in the study.

2.3. Instrumental Measurements

The texture of eight apple varieties was assessed using three instruments: (1) Fruit
Texture Analyzer or FTA (Güss Manufacturing Ltd., Strand, South Africa); (2) Mohr Digi-
Test-2 or MDT-2 (Mohr and Associates Inc., Richland, WA, USA); and (3) TA.XTplus Texture
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Analyzer or TA.XTplus (Stable Micro Systems Ltd., Godalming, UK). Ten apples per variety
per instrument were used in this study (i.e., 240 apples from eight varieties).

Following each instrument’s instructions, measurements using FTA and MDT-2 were
conducted on peeled samples while the TA.XTplus measurements were conducted on un-
peeled samples. Two penetrations were conducted with each instrument in the sun/shade
transition zones at the equatorial region of an apple.

The maximum firmness was measured on peeled fruit using the FTA fitted with an
11.1 mm diameter Magness-Taylor probe, penetrated to a depth of 10 mm and reported in
pound-force (Table 3). The MDT-2 was also equipped with an 11.1 mm Magness-Taylor
probe, and eight parameters were reported (Table 3) from region 1 (between 0–~8 mm)
and region 2 (from 8 to ~15 mm between region 1 and the core) [32,41]. The TA.XTplus
instrument was fitted with an 8 mm stainless steel probe which penetrated to a depth of
10 mm [31]. Then, Exponent software (Stable Micro Systems Ltd., Godalming, UK) was
utilized to calculate five texture parameters [31] as shown in Table 3. All three instruments
used cylindrical probes and were operated in compression mode with a load cell of 30 kg
and a trigger force of 0.1 N.

Table 3. List of parameters, abbreviations, and units of measure associated with the instrumental
measurements.

Instrument Parameter Unit Description

Fruit Texture Analyzer (FTA) 1 MaxForce Pound-force
(lbf) The maximum flesh firmness

Mohr Digi-Test-2 (MDT-2) 2

M1 lbf Maximum firmness for region 1 2

A1 lbf Average force for region 1
M2 lbf Maximum firmness for region 2 2

A2 lbf Average force for region 2
E2 lbf Average force of last 20 readings in region 2

C0 Inch (in) Creep deformation or relaxation rate of fruit material measured at
the beginning of region 2

Cn Unit less Crispness measurement (a composite variable)
QF Unit less Quality factor (weighted some of several MDT-2 parameters)

TA.XTplus Texture Analyzer 3

Fs Newton (N) The maximum force required to rupture apple skin and flesh
Ws Nmm Work to rupture skin and flesh

Grad N/mm The gradient on the force-distance curve between 20% and 80% of
Fs to measure the slope of the firmness

D mm The probe position at Fs

Ff N The average force required to puncture the flesh between 4.5 mm
and 9.5 mm a

1 FTA (Güss Manufacturing Ltd., Strand, South Africa) measurements were conducted on peeled fruit; 2 MDT-2
(Mohr and Associates Inc., Richland, WA, USA) measurements were conducted on peeled fruit, and region 1 refers
to the first ~8 mm of the puncture and region 2 refers to an area between ~8 mm and ~15 mm; and 3 TA.XTplus
(Stable Micro Systems Ltd., Godalming, UK) measurements were conducted on intact fruit.

2.4. Data Analysis

All statistical tests in the current study discussed below were conducted using JMP
software (JMP® PRO, Version 16.1.0, SAS Institute Inc., Cary, NC, USA), at α = 0.05 signifi-
cance level.

Two penetrations per fruit were conducted with each instrument. As a result, before
analyzing the data, a mean value was calculated for each instrumental parameter per
apple sample, and the results were included in Dataset #1 (n = 80 per instrument). Then,
standardized values for the instrumental measurements (from Dataset #1) and the sensory
evaluations (i.e., Dataset #2 with n = 264) were screened to identify outliers per parameter.
Only one z-value above |3.21| was identified, from the TA.XTplus Grad parameter, and
removed from the instrumental Dataset #1 before calculating the descriptive statistics and
mean standardized values per parameter.
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Dataset #3 was created from the mean variety averages of Datasets #1 and #2. Then, it
was utilized in conducting a principal component analysis (PCA) test to explore the main
tendencies of variation among the studied parameters. Instrumental measurements and
sensory evaluations were considered as the output and supplementary variables in the
PCA test in JMP software, respectively. PCA treats all variables simultaneously and models
the data to develop a few significant principal components and residuals. PCA made it
possible to study the relationships among the parameters with the principal components
on a biplot. The principal components contain the systematic variability present in the
data [42].

The centering and scaling options for PCA are selected by default in the JMP software.
As a result, all variables are centered and scaled to have the mean of 0 and standard
deviation of 1 and are placed on an equal basis relative to their variation [43]. This is
important to make sure that the differences in the units of measurement do not affect the
results.

At the next stage, models were developed to convert each instrument type’s parame-
ters to each other using Dataset #1 by considering data from an instrument as the predictor
(i.e., X variable) and measurements from another instrument as the output (i.e., Y vari-
able). Appropriate regression tests were selected considering the number of X variables,
and the nature of the relationship between the studied variables (i.e., linear or nonlinear).
Outliers were identified before finalizing the models based on the Studentized residuals,
and multicollinearity problems were avoided by considering the variance inflation factor
(VIF) scores. Nevertheless, VIF scores were not reported for single linear regression (SLR)
models because there is only one X variable in the model. However, they were reported for
multiple regression models.

The best fit models were selected considering coefficient of determination or R2,
R2

Adjusted, F-ratio, root mean square error (RMSE), coefficient of variation (CV), VIF, 95%
confidence intervals (CI), and 5-fold cross-validation R2. CV is indicative of the model fit,
and the higher the CV, the greater the dispersion in the variable [44]. In model development,
CV is calculated by replacing the standard deviation term with the root mean square
deviation (RMSD) in the CV equation. In addition, a 95% CI for regression coefficients
means that there is a probability of 95% that the CI range contains the true value of
the coefficient estimates. If the range between the upper limit and lower limit of CI for
regression coefficients does not include zero, that indicates that the impact of the parameter
is consistent and reliable.

Standardized coefficients (STd Betas) were also reported for each regression model.
The studied parameters were standardized to a mean of 0 and a variance of 1 to calculate
STd Betas. These values can be compared with each other as they lack a measurement unit.

The K-fold cross validation method (K = 5) was selected to validate the results of all
developed regression models in the current study. In this method, the data are partitioned
into K subsets (folds). Then, the model is developed using data from all subsets except one,
and the developed model is tested on the subset that was not used in the development of
the model to validate the model, fitting a total of K models [45]. The k-fold cross-validation
method was selected to make efficient use of the dataset.

The achieved statistical power (1-β), the probability of rejecting a false null hypothesis,
was also calculated using G*Power 3 software [46] for the developed regression models
with the sample size of 80 and the type I error level (α) of 0.05. The accepted statistical
power was set at 0.8 [47] to determine if the applied tests were able to identify genuine
effects when they existed.

3. Results and Discussion
3.1. Descriptive Statistics

A summary of the instrumental (from Database # 1) and sensory (from Database #
2) parameters are presented in Table 4. Results indicated that the study included apple
varieties with diverse textural profiles because the reported attribute ranges were broad.
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The selection of appropriate varieties was important so that the models that were developed
later to convert the data from one instrument to another one can be used for many different
apple varieties that have textural characteristics within the range reported in Table 4. In
addition, increasing the data range width is effective in increasing the certainty in regression
slope [48].

Table 4. Minimum, maximum, mean, and standard deviation of the sensory evaluations and instru-
mental measurements.

Data Source Parameter Minimum Maximum Mean SD

Sensory evaluations 1

(n = 264)

Crispness 11 87.5 53.18 20
Hardness 2 87 40.84 23.23

Skin toughness 16 94 49.73 14.81

Fruit Texture Analyzer (FTA) 2 (n = 80) MaxForce 9.04 23.69 15.01 4.01

Mohr Digi-Test-2 (MDT-2) 3 (n = 80)

M1 7.59 20.07 12.95 3.27
A1 5.54 13.72 9.07 2.1
M2 11.27 27.84 18.39 4.9
A2 9.66 22.41 15.1 3.75
E2 9.35 25.64 16.7 4.7
C0 0 0.09 0.02 0.02
Cn 59.32 534.04 217.03 106.96
QF −102.44 145.14 30.88 66.94

TA.XTplus Texture Analyzer 4 (n = 80)

Fs 15.28 43.63 25.36 7.02
Ws 43.89 100.66 64.57 15.43

Grad 1.98 4.16 2.99 0.58
D 51.11 198.8 95.47 34.13
Ff 22.35 56.26 36.9 9.29

1 Three sensory attributes with the definitions provided in Table 2; 2 one parameter (i.e., MaxForce) was measured
using Fruit Texture Analyzer (FTA) as described in Table 3; 3 eight parameters (i.e., M1, A1, M2, A2, E2, C0, Cn
and QF) were measured using Mohr Digi-Test-2 (MDT-2) as described in Table 3; and 4 five parameters (i.e., Fs,
Ws, Grad, D, and Ff ) were measured using TA.XTplus Texture Analyzer (TA.XTplus) as described in Table 3.

Standardized responses for the sensory attributes and instrumental measurements
of texture for each variety are shown in Figure 1a–d. Standardized values were visu-
alized in the radar charts to compare the parameters visually without the influence of
their measurement units. The differences in the texture of different apple varieties were
expected [10,11]. The charts demonstrated similarities between the sensory flesh hardness
evaluations (Figure 1a) and the flesh firmness data measured using all three instruments.
The only variable measured by FTA (i.e., MaxForce; Figure 1b) showed a very similar pat-
tern to the sensory hardness data, and that was the same with six parameters reported by
MDT-2 (i.e., M1, A1, M2, A2, E2, and QF; Figure 1c) and the Ff parameter measured by
TA.XTplus (Figure 1d). Musacchi and Serra [9] discussed that the measurements obtained
from the apple flesh (identified as region 2 by Mohr [41]) represent eating experience and
are correlated with consumer acceptance of the fruit. FTA and MDT-2 samples were peeled,
but intact samples were penetrated with TA.XTplus and the presence of the skin have
probably resulted in obtaining diverse data compared to the data obtained from the other
two instruments.

3.2. Principal Component Analysis (PCA)

The PCA was conducted using Dataset #3 which included means per variety for
all studied variables to obtain an overview of the data and interpret the multi-source
dataset [42]. Results of the PCA using 14 instrumental measurements indicated that
95.82% of the variation in the data could be explained using only two principal components
(Figure 2), with 79.25% and 16.57% of the variation explained by PC 1 and PC 2, respectively.
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Figure 1. Standardized data for each of the apple varieties; (a) three sensory attributes with the
definitions provided in Table 2; (b) one parameter from Fruit Texture Analyzer or FTA (i.e., MaxForce)
as defined in Table 3; (c) eight parameters from Mohr Digi-Test-2 or MDT-2 (M1, A1, M2, A2, E2, C0,
Cn and QF) as described in Table 3; and (d) five parameters from TA.XTplus Texture Analyzer or
TA.XTplus (i.e., Fs, Ws, Grad, D, and Ff ) as described in Table 3.

The vectors for MDT-2 A2 (99.65%), MDT-2 A1 (99.38%), MDT-2 M2 (99.17%), MDT-2
QF (98.71%), MDT-2 E2 (98.64%), MDT-2 M1 (98.62%), FTA MaxForce (98.43%), TA.XTplus
Ff (97.55%), MDT-2 Cn (90.84%), TA.XTplus Fs (88.67%), TA.XTplus Grad (81.95%), and
MDT-2 MC0 (−88.33%) were heavily associated with PC 1 (loadings inside parentheses),
and explained the majority of the variation in the samples. PC 1 was positively and strongly
correlated with sensory hardness (r = 0.996) and crispness (r = 0.92), as obvious from
the correlation coefficients reported for the supplementary variables. All of the variables
loaded heavily on PC 1 and the correlated sensory attributes refer to ‘flesh firmness’. In
comparison, the vectors for D and Ws were heavily associated with PC 2 (with loadings
of 96.76% and 89.97%, respectively), and explained 16.57% of the variation in the samples.
PC 2 was positively correlated with the sensory attribute of skin toughness (r = 0.63) and
variables loaded on this component collectively described “skin strength”. Bejaei et al. [31]
also investigated the relationships between TA.XTplus parameters and sensory attributes of
texture in a different study and reported similar PCA findings. MDT-2 and FTA did not
contribute considerably in PC 2. The dimension was developed mainly based on the data
from two TA.XTplus variables (i.e., D and Ws).

TA.XTplus measurements can represent consumer eating experience more closely
because the samples are intact and the skin strength is considered in the measurements.
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The MDT-2 Cn parameter was developed to explain crispness in apples [41] and it strongly
correlated with the sensory crispness data in this study.

Figures 1 and 2 demonstrated differences in the texture of apple varieties included
in this study. McIntosh and Red Delicious varieties had softer flesh while Pink Lady®

and SuRDC2 varieties showed greater firmness than the remaining apple varieties in
the present study. Other studies reported similar textural characteristics for the same
apple varieties [31,32,49]. Fruit texture is considered a very important quality factor
in determining consumer acceptance and is used in identifying fruit storability [1,50].
Consumers perceive the sensory textural attributes of fruits by hand or mouth [51].

Fruit firmness is mainly determined by cell size and shape, cell wall structure and
composition, cell-to-cell adhesion, and turgor pressure status (i.e., the force exerted by the
osmotic pressure of the protoplast) [52,53]. Lapsley et al. [10] reported differences in the cell
size, shape, density, and degree of cell adhesion among apple varieties. Smaller cell sizes
and more angular-shaped cells are associated with denser tissue and less airspace [10,54]. In
addition, tricellular junctions in firm apples were rich in highly esterified pectin resulting in
denser tissue, stronger cell adhesion, and smaller airspace [54]. Ng et al. [54] demonstrated
that differences in the texture of apple varieties resulted from variations in the development
of cell wall structures at the early stages of fruit growth (as early as the cell expansion
phase). Cell adhesion and separation during ripening play a major role in the texture
characteristics of apples [53]. Fruit texture softens as the fruit ripens, and the speed of
softening varies in different apple varieties [52–54].
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based on the data from two TA.XTplus variables (i.e., D and Ws). 

TA.XTplus measurements can represent consumer eating experience more closely be-
cause the samples are intact and the skin strength is considered in the measurements. The 
MDT-2 Cn parameter was developed to explain crispness in apples [41] and it strongly 
correlated with the sensory crispness data in this study. 

Figures 1 and 2 demonstrated differences in the texture of apple varieties included in 
this study. McIntosh and Red Delicious varieties had softer flesh while Pink Lady® and 

Figure 2. Principal component analysis (PCA) biplot calculated using standardized mean values of
one Fruit Texture Analyzer (FTA) parameter (i.e., MaxForce in orange color), eight Mohr Digi-Test-2,
MDT-2 (MDT-2) parameters (i.e., M1, A1, M2, A2, E2, C0, Cn and QF in pink color), and five TA.XTplus
Texture Analyzer (TA.XTplus) parameters (i.e., Fs, Ws, Grad, D, and Ff in green color) as described in
Table 3. All instrumental variables are identified by red lines. Sensory textural attributes (crispness,
hardness, and skin toughness in blue color) are identified by blue lines and positioned on this plot
using correlation analysis. Apple varieties are presented in grey color.
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3.3. Models to Convert MDT-2 and TA.XTplus Data to FTA Data

SLR, MLR, and nonlinear regression models were considered to convert MDT-2 and
TA.XTplus data to FTA data.

3.3.1. Converting MDT-2 Data to FTA Data

Standardized results in Figure 1 indicated that six parameters reported by MDT-2
were almost similar to those reported by the FTA MaxForce parameter. Thus, each one of
those MDT-2 variables could be used in an SLR model as an X variable to convert MDT-2
data to FTA MaxForce data. The best fit model was developed using the M1 variable, and
the multicollinearity problems were avoided by including only one predictor variable in
the model. No outliers were detected using the Studentized residual plot.

The linear effect of the MDT-2 M1 parameter explained a significant proportion
of the variance in the FTA MaxForce variable: F(1, 78) = 394.25, p < 0.0001, R2 = 0.83,
R2

Adjusted = 0.83, RMSE = 1.64, Power = 1.00. The CV score in this test was considered
good (10.93%), and 5-fold cross-validation R2 for the model was 0.82. Table 5 shows the
developed model, standard errors of parameter estimates, Std Beta, and their t-statistics
and p-values.

Table 5. Model to convert MDT-2 data to FTA MaxForce data.

Output 1 Predictor 1 Model Standard Error Std Beta 2 t-Statistics Prob > |t| Lower 95% CI 3 Upper 95% CI

MaxForce
Intercept 0.51 +

(1.12 × M1)
0.75 0 0.68 0.5 −0.99 2.01

M1 0.06 0.91 19.86 <0.0001 1.01 1.23

1 MaxForce and M1 parameters as described in Table 3; 2 Std Beta: standardized beta coefficient; and 3 CI:
confidence intervals for regression coefficients.

The probe sizes and shapes of these two instruments were the same, and both required
peeled samples and recorded the MaxForce and M1 data in lbf. Considering the high R2,
lower RMES, satisfactory power of the test, good CV, high cross-validation power and the
fact that the reported CI range for M1 did not include zero, the model presented in Table 5
for the conversion of MDT2 data to FTA data is considered highly reliable, consistent and
reproducible. As a result, it is recommended for practical applications.

3.3.2. Converting TA.XTplus Data to FTA Data

In calculating the FTA data with TA.XTplus variables using forward stepwise regres-
sion, Ff variable had the lowest p-value and was selected and then the D parameter with
the second-lowest p-value was selected to be included in an MLR model. The other three
parameters were not significantly contributing to the model after the inclusion of the first
two variables. As observed from the PCA results these two variables were loaded on two
different dimensions (Section 3.2). The Ff parameter was heavily loaded on the flesh firm-
ness dimension similar to the MaxForce parameter, however, the D parameter was loaded
on the skin strength dimension. The considerable contribution of the skin toughness on the
overall apple firmness was demonstrated by Grotte et al. [55] by conducting penetration
tests with peeled and unpeeled apples.

An outlier was detected based on the Studentized residual plot, and as a result, the
data were reanalyzed after the removal of the outlier.

The linear effect of TA.XTplus Ff and D parameters explained a significant proportion
of the variance in the FTA MaxForce variable: F(2, 76) = 542.44, p < 0.0001, R2 = 0.87,
R2

Adjusted = 0.86, RMSE = 1.45, Power = 1.00. The Ff parameter explained more variation
in the output variable than the D parameter. The CV was also considered very good
(9.6%), and 5-fold cross-validation R2 for the model was 0.86. Table 6 shows the parameter
estimates, and considering the reported statistics, the model is considered highly reliable,
consistent, and reproducible. As a result, it is recommended for practical applications.
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Table 6. Model to convert TA.XTplus data to FTA data.

Output 1 Parameter 1 Model Standard Error Std Beta 2 t-Statistics Prob > |t| Lower 95% CI 3 Upper 95%
CI VIF 4

MaxForce
Intercept 3.00 +

(−0.86 × D)+
(0.40 × F f )

1.09 0.00 2.81 0.006 0.89 5.21
D (mm) 0.28 −0.12 −3.00 0.004 −1.41 −0.28 1.00
Ff (N) 0.02 0.92 22.47 <.0001 0.36 0.43 1.00

1 MaxForce, D and Ff parameters as described in Table 3; 2 Std Beta: standardized beta coefficient; 3 CI: Confidence
intervals for regression coefficients; and 4 VIF: variance inflation factor.

3.4. Models to Convert FTA Data to MDT-2 Data

Table 7 shows the parameter estimates to convert FTA MaxForce data to the data that
can be obtained from six MDT-2 parameters (i.e., M1, A1, M2, A2, E2, and C0). All these
parameters refer to flesh firmness (Section 3.2). Models for the conversion of the MDT-2 Cn
and QF parameters were not developed because both of these parameters are composite
variables developed by the manufacturer (see Table 3).

Table 7. Models to convert FTA data to MDT-2 data.

Output 1 Parameter 1 Model Standard Error Std Beta 2 t-Statistics Prob > |t| Lower 95%
CI 3

Upper 95%
CI

M1
Intercept 1.76 +

(0.75 × MaxForce)
0.58 0 3.01 0 0.59 2.92

MaxForce 0.04 0.91 19.86 <0.0001 0.67 0.82

A1
Intercept 2.03 +

(0.47 × MaxForce)
0.41 0 5 <0.0001 1.22 2.84

MaxForce 0.03 0.9 17.92 <0.0001 0.42 0.52

M2
Intercept 1.83 +

(1.10 × MaxForce)
0.93 0 1.98 0.05 −0.01 3.67

MaxForce 0.06 0.9 18.5 <0.0001 0.98 1.22

A2
Intercept 2.33 +

(0.85 × MaxForce)
0.68 0 3.41 0 0.97 3.69

MaxForce 0.04 0.91 19.34 <0.0001 0.76 0.94

E2
Intercept 1.50 +

(1.01 × MaxForce)
1.03 0 1.45 0.15 −0.56 3.56

MaxForce 0.07 0.86 15.2 <0.0001 0.88 1.15

C0
Intercept 0.2065 +

(−0.0207 × MaxForce)+(
0.0005 × MaxForcex2)

0.0251 0 8.22 <0.0001 0.1565 0.2565
MaxForce 0.0033 −3.48 −6.24 <0.0001 −0.0273 −0.0141

(MaxForce) 2 0.0001 2.76 4.95 <0.0001 0.0003 0.0007

1 M1, A1, M2, A2, E2, C0 (presented with 4 digit decimals because of the measurement scale) and MaxForce
parameters as described in Table 3; 2 Std Beta: standardized beta coefficient; and 3 CI: confidence intervals for
regression coefficients.

3.4.1. Converting FTA MaxForce Data to MDT-2 M1 Data

The SLR model developed to convert the FTA MaxForce parameter to the MDT-2
M1 parameter (i.e., maximum firmness for region 1) was significant and explained the
majority of the variation in the output variable: F(1, 78) = 394.25, p < 0.0001, R2 = 0.83,
R2

Adjusted = 0.83, RMSE = 1.34, Power = 1.00. The CV was also considered good (10.34%),
and the five-fold cross-validation R2 for the model was 0.83. The results indicated that
the model is highly reliable, consistent, reproducible, and recommended for practical
applications.

3.4.2. Converting FTA MaxForce Data to MDT-2 A1 Data

The SLR model developed to convert the FTA MaxForce parameter to the MDT-2 A1
parameter (i.e., average force for region 1) was significant and explained the majority of the
variation in the output variable: F(1, 78) = 320.98, p < 0.0001, R2 = 0.80, R2

Adjusted = 0.80,
RMSE = 0.93, Power = 1.00. The CV was also considered good (10.29%), and the five-fold
cross-validation R2 for the model was 0.79. The results indicated that the model was highly
reliable, consistent, reproducible, and recommended for practical applications.
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3.4.3. Converting FTA MaxForce Data to MDT-2 M2 Data

The SLR model developed to convert the FTA MaxForce parameter to the MDT-2
M2 parameter (i.e., maximum firmness for region 2) was significant and explained the
majority of the variation in the output variable: F(1, 78) = 342.13, p < 0.0001, R2 = 0.81,
R2

Adjusted = 0.81, RMSE = 2.13, Power = 1.00. The CV was also considered good (11.56%),
and the five-fold cross-validation R2 for the model was 0.80. The results indicated that
the model was highly reliable, consistent, reproducible, and recommended for practical
applications.

3.4.4. Converting FTA MaxForce Data to MDT-2 A2 Data

The SLR model developed to convert the FTA MaxForce parameter to the MDT-2 A2
parameter (i.e., average force for region 2) was significant and explained the majority of the
variation in the output variable: F(1, 78) = 374.02, p < 0.0001, R2 = 0.83, R2

Adjusted = 0.83,
RMSE = 1.57, Power = 1.00. The CV was also considered good (10.39%), and the five-fold
cross-validation R2 for the model was 0.82. The results indicated that the model was highly
reliable, consistent, reproducible, and recommended for practical applications.

3.4.5. Converting FTA MaxForce Data to MDT-2 E2 Data

The SLR model developed to convert the FTA MaxForce parameter to the MDT-2 E2
parameter (i.e., average force of last 20 readings in region 2) was significant and explained
about three fourths of the variation in the output variable: F(1, 78) = 231.08, p < 0.0001,
R2 = 0.75, R2

Adjusted = 0.74, RMSE = 2.38, Power = 1.00. The CV was 37.09%, and the
five-fold cross-validation R2 for the model was 0.74. Even though the model explained
about 75% of the variation in the data but the CV level was not acceptable [42]. As a
result, the developed model for the conversion of the MaxForce data to the E2 data is not
recommended for practical applications.

3.4.6. Converting FTA MaxForce Data to MDT-2 C0 Data

A nonlinear model was developed to convert the FTA MaxForce parameter to the
MDT-2 C0 parameter. The model was significant: F(1, 77) = 73.39, p < 0.0001, R2 = 0.66,
R2

Adjusted = 0.65, RMSE = 0.01, Power = 1.00. The mean of the C0 parameter was close to
zero (0.02), and as a result, it was expected to have a high value (70.47%) for CV [56]. The
5-fold cross-validation R2 for the model was 0.62.

The nonlinear relationship showed that MDT-2 C0, or creep deformation, was greater
with the softer flesh apples (C0 maximum = 0.09 in and MaxForce minimum = 9 lbf), and as
the apple firmness increased C0 reached its lowest value (around 0 in) when the FTA
MaxForce parameter was around 17 lbf. The C0 parameter remained without change while
the MaxForce parameter increased. It is expected from biological relationships to reach a
natural limit [57], and in this case, it is considered to be related to the number and size of
cells and cell structures [10,12,58]. Considering the fact that C0 remains around 0 in apples
with MaxForce above 17 lbf, extra care is recommended in the application of the model.

3.5. Models to Convert FTA Data to TA.XTplus Data

Results of the PCA test indicated that the relationship between D and Ws parameters
and FTA MaxForce were not strong and they were loaded on a separate dimension (Figure 2).
As a result, SLR models were only developed for the remaining three TA.XTplus parameters
(i.e., Grad, Fs and Ff ), and Table 8 shows the parameter estimates for the developed models.
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Table 8. Models to convert FTA data to TA.XTplus Grad, Fs and Ff data.

Output 1 Parameter 1 Model Standard Error Std Beta 2 t-Statistics Prob > |t| Lower 95% CI 3 Upper 95%
CI

Grad
Intercept 7.71 +

(1.18 × MaxForce)
2.29 0.00 3.37 0.001 3.15 12.28

MaxForce 0.15 0.67 7.97 <0.0001 0.89 1.48

Fs
Intercept 18.78 +

(3.05 × MaxForce)
4.12 0.00 4.56 <0.0001 10.58 26.99

MaxForce 0.27 0.79 11.50 <0.0001 2.52 3.58

Ff Intercept 4.25 +
(2.16 × MaxForce)

1.57 0.00 2.70 0.01 1.12 7.38
MaxForce 0.10 0.93 21.45 <0.0001 1.96 2.36

1 Grad, Fs, Ff and MaxForce parameters as described in Table 3; 2 Std Beta: standardized beta coefficient; and
3 CI: confidence intervals for regression coefficients.

3.5.1. Converting FTA Data to TA.XTplus Grad Data

The SLR model developed to convert the FTA MaxForce parameter to the TA.XTplus
Grad parameter (i.e., the gradient on the force-distance curve between 20% and 80% of
Fs) was significant but explained less than half of the variation in the output variable:
F(1, 77) = 63.46, p < 0.0001, R2 = 0.45, R2

Adjusted = 0.44, RMSE = 5.23, Power = 1.00. The CV
was considered acceptable (20.62%), and five-fold cross-validation R2 for the model was
0.42. The model explained only 45% of the variation in the output data, and as a result, it is
not recommended for practical applications.

3.5.2. Converting FTA Data to TA.XTplus Fs Data

The SLR model developed to convert the FTA MaxForce parameter to the TA.XTplus Fs
parameter (i.e., the maximum force required to rupture apple skin and flesh) was significant
and explained about two-third of the variation in the output variable: F(1, 78) = 132.26,
p < 0.0001, R2 = 0.63, R2

Adjusted = 0.62, RMSE = 9.46, Power = 1.00. The CV was also
considered good (14.65%), and five-fold cross-validation R2 for the model was 0.58. This
model is acceptable but it only explains 63% of the variation in the data. The main reason
for the difference between the MaxForce and Fs parameters is related to the presence of
skin in the measurement of Fs and the influence of skin toughness on the force required to
rupture the samples [58].

3.5.3. Converting FTA Data to TA.XTplus Ff Data

An outlier was identified and removed from the dataset before developing the final
model to convert FTA MaxForce data to the TA.XTplus Ff parameter (i.e., the average force
required to puncture the flesh between 4.5 mm and 9.5 mm). The developed SLR model
explained the majority of the variation in the output variable: F(1, 77) = 460.32, p < 0.0001,
R2 = 0.86, R2

Adjusted = 0.85, RMSE = 3.56, Power = 1.00. The CV was also considered very
good (9.65%), and 5-fold cross-validation R2 for the model was 0.85. The results indicated
that the model is highly reliable, consistent, reproducible, and recommended for practical
applications.

3.6. Models to Convert TA.XTplus Data to MDT-2 Data

Table 9 shows the parameter estimates and the models developed to convert TA.XTplus
data to six MDT-2 parameters (i.e., M1, A1, M2, A2, E2 and C0). All these parameters refer
to flesh firmness. Models are not developed for the MDT-2 composite variables (i.e., Cn
and QF).
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Table 9. Models to convert TA.XTplus data to MDT-2 data.

Output 1 Parameter 1 Model Standard Error Std Beta 2 t-Statistics Prob > |t| Lower 95% CI 3 Upper 95%
CI VIF 4

M1
Intercept 1.02 +

(0.08 × Grad)+
(0.27 × F f )

0.68 0 1.51 0.14 −0.33 2.37
Grad 0.03 0.17 2.68 0.01 0.02 0.13 1.68

Ff 0.02 0.78 12.18 <0.0001 0.22 0.31 1.68

A1
Intercept 1.37 +

(0.05 × Grad)+
(0.17 × F f )

0.47 0 2.91 0.00 0.43 2.32
Grad 0.02 0.18 2.65 0.01 0.01 0.09 1.64

Ff 0.02 0.77 11.38 <0.0001 0.14 0.20 1.64

M2
Intercept 0.12 +

(0.15 × Grad)+
(0.39 × F f )

1.12 0 0.11 0.91 −2.11 2.35
Grad 0.05 0.22 3.23 0.00 0.06 0.25 1.64

Ff 0.04 0.74 10.90 <0.0001 0.32 0.46 1.64

A2
Intercept 0.98 +

(0.12 × Grad)+
(0.30 × F f )

0.80 0 1.22 0.23 −0.62 2.58
Grad 0.03 0.23 3.54 0.00 0.05 0.19 1.64

Ff 0.03 0.74 11.69 <0.0001 0.25 0.35 1.64

E2
Intercept 5.22 +

(−1.37 × D)+
(0.42 × F f )

1.85 0 2.82 0.01 1.54 8.91
D 0.48 −0.17 −2.85 0.01 −2.33 −0.41 1.00
Ff 0.03 0.83 14.09 <0.0001 0.36 0.48 1.00

C0

Intercept 0.1965 +
(0.0080 × D)+
(−0089 × F f )+(

0.0001 × F f 2)
0.0270 0 7.27 <0.0001 0.1427 0.2504

D 0.0024 0.1896 3.28 0.0016 0.0031 0.0128 1.15
Ff 0.0013 −3.4347 −6.98 <0.0001 −0.0115 −0.0064 83.65
Ff 2 0.0000 2.6733 5.43 <0.0001 0.0001 0.0001 83.87

1 M1, A1, M2, A2, E2, C0 (presented with 4 digit decimals because of the measurement scale), Grad, D and
Ff parameters as described in Table 3; 2 Std Beta: standardized beta coefficient; 3 CI: confidence intervals for
regression coefficients; and 4 VIF: variance inflation factor.

3.6.1. Converting TA.XTplus Data to MDT-2 M1 Data

An outlier was detected and removed before developing the final model. The best
fit MLR model developed to convert the TA.XTplus data to the MDT-2 M1 parameter (i.e.,
maximum firmness for region 1) included two predictors (i.e., Grad and Ff ) with acceptable
VIF scores. The model was significant and explained the majority of the variation in the
output variable: F(1, 75) = 165.58, p < 0.0001, R2 = 0.82, R2

Adjusted = 0.81, RMSE = 1.37,
Power = 1.00. The CV was also considered good (10.71%), and 5-fold cross-validation
R2 for the model was 0.79. The results indicated that the model was reliable, consistent,
reproducible, and recommended for practical applications.

3.6.2. Converting TA.XTplus Data to MDT-2 A1 Data

The best fit MLR model developed to convert the TA.XTplus data to the MDT-2 A1
parameter (i.e., average force for region 1) included two predictors (i.e., Grad and Ff ) with
acceptable VIF scores. The model was significant and explained the majority of the variation
in the output variable: F(1, 76) = 143.03, p < 0.0001, R2 = 0.79, R2

Adjusted = 0.78, RMSE = 0.96,
Power = 1.00. The CV was also considered good (10.62%), and 5-fold cross-validation R2

for the model was 0.79. The results indicated that the model was highly reliable, consistent,
reproducible, and recommended for practical applications.

3.6.3. Converting TA.XTplus Data to MDT-2 M2 Data

The best fit MLR model developed to convert the TA.XTplus data to the MDT-2 M2
parameter (i.e., the maximum firmness for region 2) included two predictors (i.e., Grad and
Ff ) with acceptable VIF scores. The model was significant and explained the majority of
the variation in the output variable: F(1, 76) = 142.37, p < 0.0001, R2 = 0.79, R2

Adjusted = 0.78,
RMSE = 2.27, Power = 1.00. The CV was also considered good (12.40%), and the five-fold
cross-validation R2 for the model was 0.79. The results indicated that the model was highly
reliable, consistent, reproducible, and recommended for practical applications.
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3.6.4. Converting TA.XTplus Data to MDT-2 A2 Data

The best fit MLR model developed to convert the TA.XTplus data to the MDT-2 A2
parameter (i.e., the average force for region 2) included two predictors (i.e., Grad and Ff )
with acceptable VIF scores. The model was significant and explained the majority of the
variation in the output variable: F(1, 76) = 165.03, p < 0.0001, R2 = 0.81, R2

Adjusted = 0.81,
RMSE = 1.57, Power = 1.00. The CV was also considered good (10.83%), and the five-fold
cross-validation R2 for the model was 0.79. The results indicated that the model was highly
reliable, consistent, reproducible, and recommended for practical applications.

3.6.5. Converting TA.XTplus Data to MDT-2 E2 Data

The best fit MLR model developed to convert the TA.XTplus data to the MDT-2 E2
parameter (i.e., the average force of last 20 readings in region 2) included two predictors
(i.e., D and Ff ) with acceptable VIF scores. The model was significant and explained about
three fourths of the variation in the output variable: F(1, 77) = 104.37, p < 0.0001, R2 = 0.73,
R2

Adjusted = 0.72, RMSE = 2.47, Power = 1.00. The CV was good (14.79%), and the five-fold
cross-validation R2 for the model was 0.70. The results indicated that the model was reliable,
consistent, reproducible, and recommended for practical applications.

3.6.6. Converting TA.XTplus Data to MDT-2 C0 Data

The best fit nonlinear model developed to convert the TA.XTplus data to the MDT-2
C0 parameter included three predictors (i.e., D, Ff and Ff 2). The model was significant:
F(1, 75) = 90.29, p < 0.0001, R2 = 0.78, R2

Adjusted = 0.77, RMSE = 0.01, Power = 1.00. As
discussed before, the nonlinear relationship between the force required to puncture the
samples and the MDT-2 C0 parameter (i.e., or creep deformation) indicated the C0 value is
greater with softer flesh apples. The CV was 56.14% (because of a very low mean), and the
five-fold cross-validation R2 for the model was 0.68. The model should be applied with
extra care considering the nonlinear relationship between the studied variables and the fact
that it only explained about two-third of the variation in the output data.

3.7. Models to Convert MDT-2 Data to TA.XTplus Data

When converting seven MDT-2 parameters to five parameters obtained from the
TA.XTplus instrument, the MDT-2 parameters were considered as the X variables while
TA.XTplus parameters were considered as the Y variables.

Six MDT-2 parameters (i.e., M1, A1, M2, A2, E2 and C0) were considered in the
development of conversion models for three TA.XTplus parameters (i.e., Grad, Fs and Ff ).
The selected parameters were all loaded on the first component of the PCA plot and none
of the was a composite variable. Table 10 shows the parameter estimates for the developed
models.

Table 10. Models to convert MDT-2 data to TA.XTplus Grad, Fs and Ff data.

Output 1 Parameter 1 Model Standard Error Std Beta 2 t-Statistics Prob > |t| Lower 95% CI 3 Upper 95%
CI VIF 4

Grad
Intercept 5.76 +

(1.30 × A2)
2.41 0.00 2.39 0.02 0.96 10.56

A2 0.16 0.69 8.37 <0.0001 0.99 1.61 1.00

Fs
Intercept −2.62 +

(4.90 × M1)+
(189.65 × C0)

8.30 0.00 −0.32 0.75 −19.15 13.91
M1 0.54 1.04 9.08 <0.0001 3.82 5.97 3.02
C0 73.99 0.29 2.56 0.01 42.32 336.98 3.02

Ff Intercept 4.16 +
(2.53 × M1)

1.94 0.00 2.14 0.04 0.29 8.03
M1 0.15 0.89 17.37 <0.0001 2.24 2.82 1.00

1 Grad, Fs, Ff and A2, M1 and C0 parameters as described in Table 3; 2 Std Beta: Standardized beta coefficient;
3 CI: confidence intervals for regression coefficients; and 4 VIF: variance inflation factor.

3.7.1. Converting MDT-2 Data to TA.XTplus Grad Data

The best fit SLR model developed to convert the MDT-2 data to the TA.XTplus Grad
parameter (i.e., the gradient on the force-distance curve between 20% and 80% of Fs)
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included one predictor (i.e., A2). The model was significant but explained less than half of
the variation in the output variable: F(1, 77) = 70.04, p < 0.0001, R2 = 0.48, R2

Adjusted = 0.47,
RMSE = 5.11, Power = 1.00. The CV was considered acceptable (20.16%), and 5-fold cross-
validation R2 for the model was 0.37. The model explained less than half of the variation in
the output data, and as a result, it is not recommended for practical applications.

3.7.2. Converting MDT-2 Data to TA.XTplus Fs Data

The best fit MLR model developed to convert the MDT-2 data to the TA.XTplus Fs
parameter (i.e., the maximum force required to rupture apple skin and flesh) included two
predictors (i.e., M1 and C0). The model was significant and explained about two-third of
the variation in the output variable: F(1, 77) = 76.96, p < 0.0001, R2 = 0.67, R2

Adjusted = 0.66,
RMSE = 9.02 Power = 1.00. The CV was also considered good (13.98%), and 5-fold cross-
validation R2 for the model was 0.65. This model is acceptable; however, it only explains
about two-third of the variation in the Fs variable. The reason for the difference in the
forces required to rupture the samples in the two instruments is related to the presence of
apple skin in TA.XTplus samples as discussed previously.

3.7.3. Converting MDT-2 Data to TA.XTplus Ff Data

The best fit SLR model to convert MDT-2 data to the TA.XTplus Ff parameter (i.e., the
average force required to puncture the flesh between 4.5 mm and 9.5 mm) was developed
using one predictor (i.e., M1). The model explained the majority of the variation in the
output variable: F(1, 78) = 301.87, p < 0.0001, R2 = 0.79, R2

Adjusted = 0.79, RMSE = 4.23,
Power = 1.00. The CV was also considered good (11.48%), and 5-fold cross-validation R2

for the model was 0.79. The results indicated that the model was highly reliable, consistent,
reproducible, and recommended for practical applications.

4. Conclusions

The use of diverse apple texture testing instruments makes the comparison and
integration of the results very challenging, especially for long-term research and fruit
quality assessment programs when the assessments occur at different sectors/stages using
different instruments. Results of this study indicated that there are similarities among
some of the parameters measured, and all three instruments were able to track the flesh
firmness or the sensory hardness attribute in apple varieties regardless of the type of
sample (i.e., peeled or unpeeled) they required. For example, the MDT-2 M1 parameter
and the TA.XTplus Ff and D parameters can be converted reliably to the FTA MaxForce
parameter; the MDT-2 M1, A1, M2, and A2 parameters can be calculated consistently by
the FTA MaxForce parameter, and the MDT-2 M1, A1, M2, A2, and E2 parameters can
be calculated reliably by the TA.XTplus data. In addition, results indicated that the use
of unpeeled samples generates other parameters that correlate with the skin toughness
sensory perception [31]. It was also shown that differences existed among the measured
variables even when the applied probe size and shape, and measurement units were the
same (and other settings were tried to be kept similar considering the manuals published
by each manufacturer). This emphasizes the importance of proper data handling when the
data are generated from different instruments, and the need for the application of reliable
models to convert data when required.

Three sensory attributes were included in the current study to focus only on the
textural characteristics of apples. This may have introduced a limitation in the sensory
results because the panel did not have an opportunity to evaluate other sensory attributes
of the fruit (e.g., flavor and color) [59]. However, the decision was made to reduce the
number of the evaluated attributes considering the samples size per session (i.e., 12) to
avoid panel fatigue.

The strength of this research lies, in part, with the development of cross-validated
practical models that can be applied by researchers and industry experts to integrate data
obtained using different instruments in their research and analysis. In addition, the models
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make it possible for apple quality assessment programs at different sectors of a fruit supply
chain to exchange data when they are using one of the three instruments investigated in
this study. The broad range of textural traits in the selected apple varieties in this study
also makes it possible to apply the models to many different apple varieties [31].
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