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Abstract: Nutrient diagnosis of orange (Citrus sinensis) groves in Brazil relies on regional information
from a limited number of studies transferred to other environments under the ceteris paribus assump-
tion. Interpretation methods are based on crude nutrient compositions that are intrinsically biased by
genetics X environment interactions. Our objective was to develop accurate and unbiased nutrient
diagnosis of orange groves combining machine learning (ML) and compositional methods. Fruit
yield and foliar nutrients were quantified in 551 rainfed 7–15-year-old orange groves of ‘Hamlin’,
‘Valência’, and ‘Pêra’ in the state of São Paulo, Brazil. The data set was further documented using soil
classification, soil tests, and meteorological indices. Tissue compositions were log-ratio transformed
to account for nutrient interactions. Ionomes differed among scions. Regression ML models showed
evidence of overfitting. Binary ML classification models showed acceptable values of areas under the
curve (>0.7). Regional standards delineating the multivariate elliptical hyperspace depended on the
yield cutoff. A shapeless blob hyperspace was delineated using the k-nearest successful neighbors that
showed comparable features and reported realistic yield goals. Regionally derived and site-specific
reference compositions may lead to differential interpretation. Large-size and diversified data sets
must be collected to inform ML models along the learning curve, tackle model overfitting, and
evaluate the merit of blob-scale diagnosis.

Keywords: centered log ratio; machine learning; nutrient balance; local diagnosis

1. Introduction

Brazil is the world leader in orange production with a total area of 682.167 ha, of which
63% is located in the state of São Paulo [1]. The successful combinations of scions and
rootstocks, balanced fertilization, and pest management form the first rampart against pro-
ductivity loss in Brazilian orange orchards [2–5]. Nevertheless, the productivity of Brazilian
orange orchards remains below crop potential due in part to imbalanced fertilization [6–8].
Balanced crop nutrition may in turn reduce pest problems [9].

Compared to surface soil testing, tissue testing is more suitable to guide fertilization
because trees have access to nutrients deeper in the soil [10]. [11]. However, ionomes may
differ among scions and rootstocks [3,12,13]. There is a growing interest in Brazil to update
tissue nutrient references at the grove scale where genetic, managerial, and environmental
growth factors vary widely [14,15].

Tissue analytical data are commonly interpreted using ‘critical’ nutrient concentration
ranges that neglect nutrient interrelationships [16]. Indeed, plant nutrition is regulated
by a network of genetically controlled physiological processes that impact tissue com-
positions [17]. Multiple levels of nutrient interactions result not only in synergistic or
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antagonistic effects [18], but also evolve from chemical similarities between elements that
are networking and self-adjusting to each other within the tissue compositional space [19].
Tissue compositions are unique assemblages of intrinsically multivariate data in which
components cannot be interpreted in isolation [20–23]. Proximate [24] and remote sens-
ing [25] studies showed that the interpretation of spectra to diagnose nutrient stresses
should consider several nutrients simultaneously. There is thus a need to diagnose plant
nutrition as full compositional networks [19,26].

Nutrient interactions have been reported traditionally as dual ratios [27]. Diagno-
sis and Recommendation Integrated System (DRIS) dual-ratio standards [27] have been
elaborated for orange orchards in the USA [28], Venezuela [29], and Brazil [12,30]. The
DRIS standards elaborated so far in Brazil were based on a small number of groves [30].
Nevertheless, DRIS has conceptual flaws. Dual-ratio standards are biased by including
false positive specimens (cases of luxury consumption, suboptimal concentration, etc.).
The DRIS variables are neither reflective nor additive despite attempts to correct such
defaults [28,31]. The DRIS also promotes universality and timelessness [32], which were
proved to be wrong [33–35]. Distortions in the DRIS were addressed using log-ratio
transformations [20]. Log-ratios such as centered log-ratios (clr) project the constrained
compositional data (e.g., between 0 and 100%, 1000 g kg−1, or 106 mg kg−1) into the real
space (±∞) to allow the conducting of a multivariate analysis in the Euclidian space [36].
Log-ratios are useful in discriminating the ionomes of fruit species [23] and scions [4], as
well as in ranking nutrients in the order of their limitation to yield to support fertilization
decisions [15].

The distribution of tissue nutrient data has been traditionally determined using a
multinormal distribution represented by ellipsoids with a centroid and variance [23].
However, successful agroecosystems may be unevenly distributed in the compositional
hyperspace, and some of them may even be located outside the ellipses [37]. As a result
of the complexity of agroecosystems and inherent interactions, the tissue nutrient space
of nutritionally balanced and high-yielding specimens may show shapeless distribution
patterns such as ‘islands’ or ‘blobs’ [14,37,38]. A ‘blob’ is a collection of nutritionally balanced
and high-yielding groves that show features comparable to those of the diagnosed grove but
are the limiting ones. The ‘blob’ concept reflects a grower’s propension to make comparisons
with successful neighbors [11].

Successful agroecosystems can be detected using machine learning regression or clas-
sification models. Machine learning (ML) is a general term representing a wide variety
of models used to process data sets and make predictions [39]. The ML can incorporate
numerical and categorical variables [40,41]. The ML methods require much fewer assump-
tions than the traditional statistical methods [42]. The prediction ability of ML models is
retrained by overfitting [43]. The ML models are increasingly applied to make predictions
in biological and agronomic sciences [14,15,34,44–46] such as soil classification and map-
ping [47,48], carbon sequestration [49], image analysis [50,51], disease diagnosis [52], and
the prediction of crop yields [53–55].

We hypothesized that: (1) the yield of orange groves could be predicted accurately by
ML models; and (2) compositional nutrient diagnoses would be similar at regional and blob
scales. The objective of this paper was to develop site-specific diagnostic tools to elevate
low fruit yields to the locally documented yield potential.

2. Material and Methods
2.1. Experimental Setup

The data set comprised 551 observational data surveyed from 2012 to 2014 in rainfed
orange orchards across the Central South region of the state of São Paulo, Brazil. Sites
were located between −23.5812 and −21.7764 LAT and −49.5197 and −48.0364 LONG.
The altitude of the orchards varied from 488.55 to 718.87 m. The 7–15-year-old groves
belonged to the young-age group (>6 years of age) in which tree nutrition and production
are stabilized [12,56]. There were two rootstocks (‘Citrumelo Swingle’ and ‘Tangerina
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Sunki’) and three scions (‘Hamlin’, ‘Valência’, and ‘Pêra’) (Table 1). Because ‘Hamlin’
and ‘Valência’ were grafted uniquely onto ‘Citrumelo Swingle’ and ‘Pêra’ onto ‘Tangerina
Sunki’, the rootstock effect could not be tested. The flowering period did not vary among
the scion X rootstock combinations (Table 1). ‘Hamlin’ X ‘Citrumelo Swingle’ showed the
earliest harvesting period, followed by the intermediate ‘Pêra’ X ‘Tangerina Sunki’ and the
late ‘Valência’ X ‘Citrumelo Swingle’. Fruit yields were reported as kg tree−1 or tons ha−1.
Tree planting density varied from 220 to 830 plants ha−1. The plot area averaged 15 ha.

Table 1. Number of observations, yield ranges, and flowering and harvesting periods for surveyed
‘Hamlin’ X ‘Citrumelo Swingle’, ‘Valência’ X ‘Citrumelo Swingle’, and ‘Pêra’ X ‘Tangerina Sunki’.

‘Hamlin’ ‘Pêra’ ‘Valência’

No. of observations 121 126 300
tons ha−1

Minimum yield 18.8 6.4 1.1
Median yield 62.8 39.4 52.1
Maximum yield 136.4 102.4 141.4

2012 season
Flowering period September–October 2012 September–October 2012 September–October 2012
Harvest period May–June 2013 July–October 2013 October–December 2013

2013 season
Flowering period September–October 2013 September–October 2013 September–October 2013
Harvest period May–June 2014 July–October 2014 October–December 2014

The climatic regime of the region is Aw according to the Köppen–Geiger classification.
The climate is tropical with a dry winter season and the rainfall concentrated in the summer
season. The prevailing soils are Oxisols (Ustox) and Ultisols (Udults and Ustults) [57].
Oxisols (lateritic soils) and Ultisols (tropical Podzols) are altered soils high in Fe and Al oxi-
hydroxides and contain kaolin clay. There were 205 Red Oxisols, 210 Red-Yellow Oxisols,
and 136 Red-Yellow Ultisols in the data set. ‘Hamlin’ X ‘Citrumelo Swingle’ was grown
on 48 Red Oxisols, 43 Red-Yellow Oxisols, and 30 Red-Yellow Ultisols. ‘Pêra’ X ‘Tangerina
Sunki’ was grown on 26 Red Oxisols, 45 Red-Yellow Oxisols, and 55 Red-Yellow Ultisols.
‘Valência’ X ‘Citrumelo Swingle’ was grown on 131 Red Oxisols, 122 Red-Yellow Oxisols,
and 51 Red-Yellow Ultisols. Soils may show hard setting layers at 20+ cm [58,59], but the
depth to hardpan was not documented. Both soil groups are naturally acidic low-nutrient
soils that require liming and fertilization [60].

2.2. Crop Management

Mineral fertilization [12] is intended to offset crop nutrient removal and loss and
meet the nutrient demand for fruit development and new growth of leaves, branches,
and roots [4]. In Brazil, the average nutrient offtake per tons of fresh fruit was estimated
at 1.2 kg of nitrogen (N), 0.18 kg of phosphorus (P), 1.54 kg of potassium (K), 0.57 kg of
calcium (Ca), 0.12 kg of magnesium (Mg), 0.09 kg of sulfur (S), 1.6 g of boron (B), 0.39 g
of copper (Cu), 2.1 g of iron (Fe), 0.38 g of manganese (Mn), and 0.40 g of zinc (Zn) [61].
Based on a soil chemical analysis and the expected yield, the P and K application rates
were 0–160 kg P ha−1 and 0–200 kg K ha−1, respectively [4]. The N rates varied from 70 to
240 kg N ha−1 based on the leaf N concentration and expected yield. Fertilizers were split-
applied on three occasions during the spring and summer. The B, Zn, and Mn were supplied
as foliar sprays in the spring and summer [4]. Some orchards received 2 kg B ha−1 year−1

as a soil-applied fertilizer. Copper was mainly supplied through fungicide applications or
metallic copper. The objective of liming was to reach 70% base saturation in the 0–20 cm
layer during a long period [60]. Gypsum was also indicated to tackle Al in the 20–40 cm
layer where Al saturation of CEC exceeds 40% and to supply calcium. Other management
practices were carried out as recommended [61].
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2.3. Meteorological Data

The daily heat units (DHU) were computed as follows [62]:

DHU (◦C) = T2M− 13◦C (1)

where T2M is the daily average daily temperature at a 2 m height and 13 ◦C is the minimum
temperature for growth. The T2M was reported via satellite using Boltzman’s law to
transform the surface radiation into temperature followed by spatialization (0.5◦ × 0.65◦).
Because DHU and T2M were perfectly correlated, we retained T2M as a meteorological
index. Precipitations were recorded on daily basis then cumulated per month [59]. Where
temperatures exceeded 30–35 ◦C and the rainfall and relative air humidity were low, flowers
and fruits may have dropped but were not recorded. The most critical period extended
from flowering (September/October) to a fruit diameter of up to 50 mm (end of December).

2.4. Tissue Analysis

Twenty-five trees were randomly selected for leaf sampling in each plot. Four mature
(six-month-old) leaves were collected per tree from fruit-bearing shoots (3rd or 4th leaf
from fruit) when the fruit size was 2–4 cm in diameter [4]. In total, 100 leaf samples were
composited in each commercial grove. Leaves were gently washed successively with
distilled water, a detergent solution (0.1%), a solution with hydrochloric acid (0.3%), and
deionized water to reduce the surface contamination by dust and fungicides. The samples
were oven-dried at 65 ◦C for 48–96 h and ground to less than 2 mm. The nitrogen (N) was
analyzed using the micro-Kjeldahl method. Phosphorus (P), potassium (K), calcium (Ca),
magnesium (Mg), sulfur (S), boron (B), copper (Cu), zinc (Zn), manganese (Mn), and iron
(Fe) were quantified using ICP after acid digestion [63].

2.5. Soil Analysis

Soils were sampled in the 0–20 and 20–40 cm layers in each grove. Samples were
composited, air-dried, and then ground and sieved to <2 mm. Soils were analyzed for pH
(0.01 M CaCl2), organic matter content, K, Ca, Mg, and (H + Al) [64]. The P was extracted
using an exchange resin Amberlite IRA-400 (20–50 mesh), quantified via colorimetry using
the ascorbic acid method, and reported as mg dm−3. The K, Ca, and Mg were extracted
using an exchange resin Amberlite IRA-120 (20–50 mesh), quantified via flame photometry
(K) or atomic absorption spectrophotometry (Ca, Mg), and reported as mmolc dm−3. The
potential acidity (H+Al) was derived from the SMP pH buffer methodology [65]. The
cation exchange capacity (CEC) was computed as the sum of the cationic species (K, Ca,
and Mg) and the exchangeable capacity. The CEC of Brazilian Oxisols may vary from
17 to 134 cmolc kg−1 compared 7–88 cmolc kg−1 for Brazilian Ultisols, indicating a large
variation in clay and organic matter contents [66].

2.6. Centered Log-Ratio Transformation

The tissue compositional simplex comprised N, P, K, Ca, Mg, S, Cu, Zn, Mn, Fe, and
B concentrations expressed using the same measurement unit (g kg−1). The filling value
(Fv) used to allow the back-transformation of the log-ratio-transformed data into familiar
concentration values [4,23] was computed as follows:

Fv = 1, 000, 000−
(

sum of quantified nutrient concentrations reported in g kg−1
)

(2)

The clr of each component (clrx) was computed as the ratio of nutrient concentration
of any component xi to the geometric mean across the D components (G) to account for
nutrient interactions as follows [20]

clrxi = ln
x
G

(3)
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where the geometric mean (G) was computed as follows:

G = ([N]× [P]× [K]× [Ca]× [Mg]× [S]× [B]× [Cu]× [Fe]× [Mn]× [Zn]× [Fv])
1
D (4)

As a result, the clr variable integrated all pairwise ratios in the compositional simplex
as follows:

clrxi = ln
(

xi
N × P× . . .× Fv

)
= ln

(
xi
N
× xi

P
× . . .× xi

Fv

)
(5)

The clr variables added up to zero.

2.7. Statistical Analysis

A discriminant analysis (DA) was conducted to compare the ionomes, the soil proper-
ties in upper (0–20 cm) and lower (20–40 cm) layers, and the soil classes. Tissue nutrient
balances were transformed into orthonormal isometric log-ratios (ilrs) prior to the DA
analysis [14,15]. Machine learning (ML) models were run using the R ‘caret’ package [67].
A supervised ML classification model approximated the function that predicts the outcome
of interest based on the relationship between target variable and features or predictors [68].
The data matrix (Xij; xi = [xi1, xi2 . . . , xij]) was a sample composed of j predictors. The
target variable was crop yield. The features were scion X rootstock combinations, plant
age, tree density (for crop yields expressed as kg tree−1), centered log-ratio-transformed
tissue compositions (N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, and B), soil classification, soil test
results for the 0–20 and 20–40 cm layers (organic matter content, pH, P, K, Ca, Mg, and ex-
changeable acidity), and monthly meteorological indices (T2M and monthly precipitation).
The clay content and cation exchange capacity (CEC) were excluded as features because
they were derived from already-documented features (organic matter content and cationic
species) and thus provided redundant information.

Since any ML algorithms can produce overfitting [69], a validation data set was
required to evaluate the model. The data set was split into training (70%) and testing (30%)
sets [67]. Data were preprocessed with ‘zv’ to identify zero-variance predictors, ‘center’
and ‘scale’ to provide a simple location and scale the transformation of each predictor,
‘spatialSign’ to project predictor values onto a unit circle, applying x* = x/||x||, and the 11
nearest neighbors (kmax = 11), a distance of two, and a kernel set at optimum. Statistical
analyses were conducted in the R statistical environment [70]. Log-ratio transformations
were computed using the R ‘compositions’ package [71]. Machine learning modeling was
conducted using the R ‘caret’ package [67].

Features were selected for their contribution to model accuracy whatever their statis-
tical significance [72]. The most accurate ML model was random forest. The ML models
were first run as regression models. The model precision was measured as the R2 value
and as the root-mean-square error (RMSE). The target variables were the fruit yield ex-
pressed in kg tree−1; plant density was added as feature. To run the binary random forest
classification models, the target variable was fruit yield in tons per ha−1; i.e., the product
of fruit yield per tree and tree density per ha, as a familiar unit to select a yield goal by
growers. Yield cutoff values for the binary classification were set at 50 or 60 tons ha−1. The
latter cutoff value is the one generally chosen by Brazilian growers. The 50-ton ha−1 yield
cutoff was tested to include ‘Pêra’ X ‘Tangerina Sunki’ specimens among high yielders at
the regional scale. Model precision was measured as the area under the curve (AUC) and
classification accuracy (CA). An AUC of 0.5 had no diagnostic interest [73]. The model was
little informative in the AUC range of 0.5 to 0.7, moderately informative if 0.7 ≤ AUC < 0.9,
and very informative if AUC ≥ 0.9. Where the AUC of training and testing models were
acceptable, data classification was further conducted in cross-validation after merging the
training and testing data sets.

Observations were partitioned by the confusion matrix of the ML classification model
into four groups as follows [23]: (1) true negative (TN) specimens (high performance for
nutritionally balanced groves), which formed altogether the reference population; (2) true
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positive (TP) specimens (low performance for nutritionally imbalanced groves); (3) false
negative (FN) specimens (low performance for nutritionally balanced groves (type II error);
and (4) false positive (FP) specimens (high performance for nutritionally imbalanced groves
(type I error). Accuracy (Acc), the proportion of specimens correctly classified as balanced
or imbalanced [23], was computed as follows:

[Acc = [(TN + TP)/(TN + FN + TP + FP)]] (6)

The negative predictive value (NPV) was the probability that nutrient balance returned
a high grove performance. The positive predictive value (PPV) was the probability that
the nutrient imbalance returned a low grove performance. Specificity was the probability
that a high grove performance was nutritionally balanced. Sensitivity was the probability
that a low grove performance was nutritionally imbalanced. The NPV, PPV, specificity, and
sensitivity were computed as follows [23]:

NPV =
TN

(TN + FN)
(7)

NPV =
TP

(TP + FP)
(8)

Speci f icity =
TN

(TN + FP)
(9)

Sensitivity =
TP

(TP + FN)
(10)

2.8. Delineation of the Regional and Blob Spaces

The regional multivariate space was the multinormal elliptical distribution of TN
grove specimens set apart from the regional survey data set (Figure 1). Some TN specimens
may have been located outside the swarm of TN specimens, thereby losing important
information on successful groves. While the ML classification model returned a probability
to reach the cutoff yield, there was no indication of an attainable yield goal at the grove
scale. The shapeless blob multivariate space was delineated by local features [38]. The
nutrient compositions of the diagnosed specimen were compared to those of TN specimens
in the blob where most features were similar under the ceteris paribus assumption (Figure 1).
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Figure 1. Elliptical distribution of true negative (TN) specimens under the classical assumption of
multinormal distribution where nutrient centroids are represented by the empty circle. Data are
distributed as ‘Islands’ or ‘blobs’. Some TN specimens are located in ‘blobs’ outside the ellipse. The
diagnosed specimen (dark circle) is located at shorter distance from two blobs’ centroids compared to
the regional centroids.

2.9. Regional and ‘Blob’-Scale Nutrient Standards

Tissue nutrient standards were computed at the regional scale as the clr means (clr∗i )
and standard deviations (SD∗i ). The number of TN specimens depended on the yield cutoff
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used to run the classification model. While the concentration values were not additive
to allow computing contrasts between the compositions, the clrs of two equal-length
compositions could be contrasted. The clrs could rank nutrient indices in the order of
nutrient limitations. The Iclri

indices were computed as follows [20]:

Iclri
=

clri − clr∗i
SD∗i

(11)

where clri is the ith clr value of the diagnosed specimen. Positive and negative Iclri
indices indicate relative nutrient excess and shortage, respectively, and can be reported in
a histogram.

It is common for growers to compare abnormal to normal plants both growing in
otherwise similar conditions [11]. We selected k TN specimens compositionally close to the
diagnosed specimen to rank nutrients in the order of their limitation to yield. The k-closest
successful TN neighbors formed a locally representative blob, which is a concept of agroe-
cosystem similarity developed by [38] that has been successfully applied to agricultural
crops [37,74,75]. Depending on the number of TN specimens in the blob, the clr indices
(Iblob

clri
) were computed using blob clr centroids as follows and reported in histograms:

Iblob
clri

= clri − clrblob
i (12)

or, depending on the number of close neighbors:

Iblob
clri

=
clri − clrblob

i

SDblob
i

(13)

To delineate the blob, we selected k TN specimens that presented features close to those
of the diagnosed specimen. Because the clr variables had a Euclidian geometry, a distance ε
between two equal-length compositions a and b could be computed as follows:

ε =

√
∑D

i=1

(
clra

i − clrb
i
)2 (14)

The plant, meteorological, and soil features of the TN specimens were retrieved from
the data set to further support the comparison between the diagnosed specimen and those
of the TN blob. Equation (12) can also be reported as a ‘perturbation’ vector (p) of the
nutrient concentration ratios between the diagnosed and reference compositions (*) as
follows [15]:

p = X	 x =

{
N
N∗

,
P
P∗

, . . . ,
Fv

F∗v

}
, (15)

The perturbation index was zero-scaled as X
x − 1 to illustrate the relative deficiency,

sufficiency, or excess [76]. The perturbation vector returned the same ranking as the clr
difference between two equal-length compositions if the geometric means were exactly the
same (i.e., Gi = Gblob

i ) as shown below:

Iblob
clri

= clri − clrblob
i = ln

(
xi/Gi

xblob
i /Gblob

i

)
≈ ln

(
xi/xblob

i

)
, (16)

The assumption of geometric mean similarity may thus hold where G ≈ Gblob
i .

3. Results
3.1. Results of Tissue and Soil Tests

The concentration quartiles of the surveyed groves showed some deviations from the
current Brazilian concentration ranges (Table 2). An excess of Cu in foliar tissues of the
surveyed groves was the result of disease management that used Cu-based fungicides.



Horticulturae 2022, 8, 1126 8 of 22

Excessive K levels were related to high K requirements and K fertilization; these can be
antagonistic to tissue Ca and Mg. There was a large variation in the foliar Fe for ‘Hamlin’ X
‘Citrumelo Swingle’ and ‘Valência’ X ‘Citrumelo Swingle’, which indicated differences in
the soil properties.

Table 2. Tissue test results for ‘Hamlin’ X ‘Citrumelo Swingle’, ‘Valência’ X ‘Citrumelo Swingle’, and
‘Pêra’ X ‘Tangerina Sunki’ compared to current Brazilian concentration ranges [3,77].

‘Hamlin’ X ‘Citrumelo Swingle’ ‘Valência’ X ‘Citrumelo Swingle’

Minimum Median Maximum Minimum Median Maximum

g kg−1 g kg−1

N 21.6 25.6 33.0 18.2 25.7 36.1

P 0.9 1.2 2.7 0.8 1.2 3.0

K 8.0 13.9 70.7 6.50 13.6 87.1

Ca 13.8 34.6 49.7 17.5 35.7 56.0

Mg 1.8 3.3 7.9 2.0 3.7 8.4

S 1.8 2.6 21.3 1.7 2.6 23.4

B 0.038 0.099 0.211 0.028 0.097 0.251

Cu 0.005 0.052 0.333 0.005 0.064 0.545

Zn 0.014 0.037 0.147 0.012 0.041 0.154

Mn 0.018 0.052 0.200 0.011 0.049 0.176

Fe 0.040 0.129 3.974 0.048 0.116 3.746

‘Pêra’ X ‘Tangerina Sunki’ Current Brazilian standards

Minimum Median Maximum Lower Bound Centroid Upper Bound

g kg−1 g kg−1

N 20.1 24.1 35.0 25 27.5 30

P 0.8 1.2 1.7 1.2 1.4 1.6

K 8.8 13.7 27.1 10 12.5 15

Ca 12.5 32.8 56.0 35 42.5 50

Mg 1.6 3.1 5.3 3.5 4.2 5.0

S 1.6 2.5 3.2 2.0 2.5 3.0

B 0.036 0.065 0.201 0.050 0.100 0.150

Cu 0.007 0.063 0.486 0.010 0.015 0.020

Zn 0.015 0.043 0.218 0.035 0.053 0.070

Mn 0.019 0.045 0.165 0.030 0.045 0.060

Fe 0.041 0.107 0.292 0.050 0.010 0.150

The soil properties are presented in Table 3. There were apparently large differences
in nutrient and lime management among growers. The P and K centroids were at low to
medium levels according to Brazilian guidelines [78]. Soils were generally acidic with pH
values ranging from 3.8 to 7.0 in the 0–20 cm layer and from 3.8 to 6.9 in the 20–40 cm layer.
The base saturation of CEC ranged from 8 to 96% in the 0–20 cm layer and from 17 to 94% in
the 20–40 cm layer compared to the 70% recommended for fruit crops [60]. Organic matter
contents varied from 8 to 64 g dm−3 in the 0–20 cm layer and from 8 to 67 g dm−3 in the
20–40 cm layer. Clay contents ranged from 17 to 344 g kg−1 in the 0–20 cm layer and from
15 to 360 g kg−1 in the 20–40 layer. The CEC values, which reflected the large variation in
clay and organic matter contents, ranging from 24 to 296 mmolc dm−3 in the 0–20 cm layer
and from 21 to 204 mmolc dm−3 in the 20–40 cm layer compared to 17 to 134 mmolc dm−3
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for Oxisols and 7–88 mmolc dm−3 for Ultisols documented in Brazil [66]. The average T2M
seasonally varied in the range of 15.5 to 27.4 ◦C. The monthly rainfall ranged from 0.3 to
446.3 mm. Highly variable features may explain the strong variations in fruit yields.

Table 3. Statistics of soil properties in the 0–20 and 20–40 cm layers.

Scion pH (CaCl2) SOM P K Ca Mg (H+Al) † CEC Base
Saturation

g dm−3 mg dm−3 mmolc dm−3 %

0–20 cm layer

‘Hamlin’ 5.19 ± 0.55 25 ± 12 34 ± 25 3 ± 2 30 ± 26 14 ± 10 29 ± 14 75 ± 38 57 ± 16

‘Valência’ 5.30 ± 0.54 22 ± 13 32 ± 20 2 ± 1 26 ± 17 12 ± 8 24 ± 12 63 ± 29 60 ± 15

‘Pêra’ 5.06 ± 0.56 15 ± 6 28 ± 21 2 ± 1 19 ± 10 9 ± 5 21 ± 8 50 ± 17 56 ± 14

20–40 cm layer

‘Hamlin’ 5.06 ± 0.73 25 ± 15 32 ± 49 2 ± 1 28 ± 24 12 ± 9 26 ± 11 69 ± 35 57 ± 15

‘Valência’ 5.05 ± 0.50 21 ± 13 24 ± 24 2 ± 1 24 ± 18 11 ± 8 23 ± 8 60 ± 29 57 ± 14

‘Pêra’ 4.73 ± 0.46 14 ± 6 18 ± 16 2 ± 1 16 ± 11 8 ± 6 22 ± 7 47 ± 18 50 ± 15

† Exchangeable acidity.

The discriminant analysis showed that the centroids of small ellipses differed signifi-
cantly (p = 0.05) among the scion X rootstock combinations and soil classes (Figure 2). As a
result, the scion X rootstock combinations, soil classes, and soil properties in the 0–20 cm
and 20–40 cm layers could be included as predictors that contributed to the outcome.
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Figure 2. Discriminant analysis of scion ionomes (upper figure) and soil test results in the 0–20 cm
and 20–40 cm layers of soil classes (lower figure). P = ‘Pêra’ X ‘Tangerina Sunki’ (•); HAM = ‘Hamlin’
X ‘Citrumelo Swingle’ (�); VAL = ‘Valência’ X ‘Citrumelo Swingle’ (+); RYO—Red-Yellow Oxisol (•);
RO = Red Oxisol (�); U = Red-Yellow Ultisol (N); ilr = orthonormal isometric log-ratio.

3.2. Random Forest Regression Models

The feature contribution to the regression model was tested by removing successively
meteorological indices, soil tests in the 20–40 cm layer, soil tests in the 0–20 cm layer,
and plant features (scion, age, and nutrient balances). The performance of the regression
model showed a close fit for the training data set (R2 = 0.860 to 0.905) but did not perform
as well on the test data (R2 = 0.086 to 0.520) (Table 4). The smaller error rates in the
training compared to the testing showed evidence of overfitting due to noisy information
learned and memorized under the training. Because the R2 values increased and the RMSE
decreased as more features were added to capture the complexity of the agroecosystems,
the model’s performance improved along the learning curve. Additional key features were
likely needed to support the model but were not documented in the data set. Nonetheless,
we tested whether the classification random forest models were still acceptable using
in-hand features.

3.3. Random Forest Classification Models

The random forest binary classification models were validated using the test data
set and via cross-validation. Model performance varied with the yield cutoff and feature
selection (Table 5). The AUC exceeded 0.7 whatever the selected yield cutoff when at least
scion, age, and nutrient balances were included as features. The soil type, meteorological
indices, and soil tests contributed to a smaller extent than plant features (scion, age, and
tissue tests). At yield cutoff of 50 tons ha−1, plant features, and soil properties in the
0–20 cm layer sufficed to reach a high AUC value (0.801). A minimum data set would
comprise the tissue test and soil test in the 0–20 cm layer, the scion and tree age as routinely
acquired by growers, and the daily meteorological data and soil classification available
from state records.
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Table 4. Performance of the random forest regression model after partitioning the data set into
training (70%) and testing (30%).

Features Yield as tons ha−1 § Yield as kg Tree−1 †

R2 RMSE R2 RMSE

Training data set

Temperature, rainfall, scion, age, tissue nutrients, soil
classification, S1, S2 0.905 7.295 0.913 14.544

Scion, age, tissue nutrients, soil classification, S1, S2 0.898 7.571 0.907 15.061

Scion, age, tissue nutrients, soil classification, S1 0.897 7.593 0.905 15.196

Scion, age, tissue nutrients, soil classification 0.898 7.575 0.908 14.970

Scion, age, nutrient balances 0.897 7.586 0.899 15.647

Nutrient balances 0.860 8.852 0.885 16.674

Testing data set

Temperature, rainfall, scion, age, tissue nutrients, soil
classification, S1, S2 0.285 17.874 0.506 36.804

Scion, age, tissue nutrients, soil classification, S1, S2 0.321 17.415 0.515 35.691

Scion, age, tissue nutrients, soil classification, S1 0.257 18.217 0.520 36.274

Scion, age, tissue nutrients, soil classification 0.109 19.951 0.489 37.438

Scion, age, nutrient balances 0.144 19.562 0.494 37.248

Nutrient balances 0.086 20.210 0.423 39.759

§ Computed as the product of tree density and yield per tree; † plant density added as feature in those models; S1,
S2: soil properties in the 0–20 and 20–40 cm layer, respectively.

Table 5. Performance of the random forest binary classification model at yield cutoff values of 50 and
60 tons ha−1 using cross-validation (10 folds).

Features 50 tons ha−1 60 tons ha−1

AUC Accuracy AUC Accuracy

Temperature, rainfall, scion, age, tissue nutrients, soil
classification, S1, S2 0.796 0.748 0.806 0.740

Scion, age, tissue nutrients, soil classification, S1, S2 0.797 0.730 0.813 0.750

Scion, age, tissue nutrients, soil classification, S1 0.811 0.742 0.801 0.755

Scion, age, tissue nutrients, soil classification 0.799 0.748 0.799 0.731

Scion, age, nutrient balances 0.783 0.735 0.783 0.728

Nutrient balances 0.683 0.662 0.658 0.633

The 121 ‘Hamlin’ X ‘Citrumelo Swingle’, 126 ‘Pêra’ X ‘Tangerina Sunki’, and 304
‘Valência’ X ‘Citrumelo Swingle’ were partitioned into four quadrants in the confusion
matrix (Table 6). At a yield cutoff of 60 tons ha−1, there were 150 TN specimens but no ‘Pêra’
X ‘Tangerina Sunki’. At a yield cutoff of 50 tons ha−1, there were 261 TN specimens, of
which 21 were ‘Pêra’ X ‘Tangerina Sunki’. The NPV and specificity were the highest among
‘Hamlin’ X ‘Citrumelo Swingle’ groves, which indicated that high fruit yields were closely
associated with adequate nutrient balances. ‘Pêra’ X ‘Tangerina Sunki’ groves showed
the highest sensitivity. Quartile nutrient concentration ranges for TN specimens were
computed at the scion X rootstock level and a yield cutoff value of 50 tons ha−1 (Table 7).
Compared to the other scion X rootstock combinations, the B concentration range was
lower in the foliar tissues of ‘Pêra’ X ‘Tangerina Sunki’.
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Table 6. Partitioning of the true negative (TN), false negative (FN), false positive (FP), and true
positive (TP) results among scion X rootstock combinations in the confusion matrix of the binary
random forest model that included all features.

Scion X Rootstock TN FN FP TP Total NPV PPV Specificity Sensitivity Accuracy

60 tons ha−1

‘Hamlin’ X ‘Citrumelo Swingle’ 67 12 19 23 121 0.85 0.55 0.78 0.66 0.74

‘Pêra’ X ‘Tangerina Sunki’ 0 4 21 101 126 0.00 0.83 0.00 0.96 0.80

‘Valência’ X ‘Citrumelo Swingle’ 83 43 45 133 304 0.66 0.75 0.65 0.76 0.71

150 59 85 257 551 0.72 0.75 0.64 0.81 0.74

50 tons ha−1

‘Hamlin’ X ‘Citrumelo Swingle’ 87 10 12 12 121 0.90 0.50 0.88 0.55 0.82

‘Pêra’ X ‘Tangerina Sunki’. 21 17 21 67 126 0.55 0.76 0.50 0.80 0.70

‘Valência’ X ‘Citrumelo Swingle’ 153 49 29 73 304 0.76 0.72 0.84 0.60 0.74

261 76 62 152 551 0.77 0.71 0.81 0.67 0.75

Table 7. Lower and upper quartiles of true negative specimens of ‘Hamlin’ X ‘Citrumelo Swingle’,
‘Pêra’ X ‘Tangerina Sunki’, and ‘Valência’ X ‘Citrumelo Swingle’ at yield cutoff value of 50 tons ha−1.

Nutrients ‘Hamlin’ X ‘Citrumelo Swingle’ ‘Pêra’ X ‘Tangerina Sunki’ ‘Valência’ X ‘Citrumelo Swingle’

Lower Quartile Upper Quartile Lower Quartile Upper Quartile Lower Quartile Upper Quartile

N 24.3 27.4 22.6 25.9 24.3 26.8
P 1.1 1.4 1.0 1.3 1.1 1.3
K 11.8 16.9 12.3 15.5 11.7 15.4
Ca 30.8 40.4 25.8 39.2 31.9 40.9
Mg 2.8 3.8 2.6 3.5 3.2 4.0
S 2.4 2.9 2.3 2.8 2.4 2.8
B 0.081 0.118 0.054 0.080 0.076 0.127

Cu 0.025 0.080 0.027 0.062 0.032 0.087
Zn 0.025 0.056 0.028 0.048 0.029 0.056
Mn 0.037 0.074 0.030 0.062 0.037 0.068
Fe 0.093 0.144 0.075 0.121 0.096 0.140

3.4. Nutrient Standards at Regional Scale

Regional TN clr standards were computed for each scion X rootstock combination
(Table 8). The centroids and variances differed among scions, which indicated that the
three scions should be diagnosed separately; this confirmed the results of the discriminant
analysis (Figure 2) and of the random forest binary classification model (Table 5). The clr
values of tissue N, P, K, and Mg of the early maturing ‘Pêra’ X ‘Tangerina Sunki’ tended to
be high compared to the tissue components of other scions at a yield cutoff of 50 tons ha−1.
In contrast, the Ca, B, Cu, and Fe levels appeared to be low.

3.5. Order of Nutrient Limitations at the Regional and Blob Scales: Example

The random forest binary classification model could predict the performance of a
given grove from features documented in the data set. The model classified the yield as a
probability of high or low under the ceteris paribus assumption. At the blob scale, comparable
genetic, managerial, and environmental conditions could be set apart in the data set to
delineate the referential blobs of the comparable TN specimens [38]. Thereafter, nutrients
could be ranked against the clr nutrient benchmarks in the selected referential blob.
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Table 8. Nutrient standards as clr mean and standard deviation (SD) of ‘Hamlin’ X ‘Citrumelo
Swingle’, ‘Pêra’ X ‘Tangerina Sunki’, and ‘Valência’ X ‘Citrumelo Swingle’ TN specimens at a yield
cutoff of 50 tons ha−1.

Nutrients ‘Hamlin’ X ‘Citrumelo Swingle’ ‘Pêra’ X ‘Tangerina Sunki’ ‘Valência’ X ‘Citrumelo Swingle’

clr Mean clr SD clr Mean clr SD clr Mean clr SD

50 tons ha−1

N 2.866 0.209 2.923 0.220 2.789 0.155
P −0.142 0.239 −0.116 0.236 −0.272 0.198
K 2.261 0.326 2.354 0.211 2.157 0.323
Ca 3.153 0.247 3.040 0.278 3.141 0.171
Mg 0.812 0.241 0.863 0.255 0.833 0.216
S 0.607 0.281 0.591 0.163 0.558 0.320
B −2.538 0.370 −2.728 0.262 −2.540 0.314
Cu −3.355 0.430 −3.544 0.309 −3.404 0.370
Zn −3.674 0.875 −3.330 0.765 −3.328 0.668
Mn −3.732 0.414 −3.660 0.255 −3.554 0.438
Fe −2.678 0.335 −2.924 0.408 −2.744 0.366
Fv 6.365 0.134 6.532 0.211 6.421 0.199

60 tons ha−1

N 2.889 0.213 - - 2.780 0.140
P −0.116 0.226 - - −0.322 0.161
K 2.261 0.332 - - 2.093 0.247
Ca 3.166 0.261 - - 3.160 0.143
Mg 0.827 0.245 - - 0.827 0.191
S 0.636 0.299 - - 0.490 0.114
B −2.524 0.388 - - −2.595 0.212
Cu −3.321 0.434 - - −3.385 0.436
Zn −3.787 0.846 - - −3.233 0.481
Mn −3.764 0.416 - - −3.456 0.467
Fe −2.697 0.364 - - −2.732 0.396
Fv 6.431 0.212 - - 6.372 0.112

Let us diagnose a defective (true positive) tissue specimen of ‘Valência’ X ‘Citrumelo
Swingle’ (Table 9). The fruit yield of the diagnosed specimen was 20 tons ha−1. Compared
to the current Brazilian nutrient ranges, there was an apparent relative excess of Cu and
a sufficiency of others. The excess Cu was indicative of difficulties in disease control.
This would mean little or no change in the fertilization regime despite the low yield for a
specimen classified as true positive (low-yielding, nutritionally imbalanced specimen).

The relative order of the nutrient limitations to the yield was computed at the blob
scale using the k-closest TN compositional neighbor (k = 1) or the clr means and standard
deviations of the six closest TN neighbors (k = 6). The six closest neighbors were selected by
ranking the Euclidean distances of the tissue compositions between the diagnosed specimen
and the TN specimens. The soil type of the defective specimen was Red-Yellow Ultisol. The
meteorological indices were similar between the diagnosed and referential TN specimens.
The soil pH, organic matter content, and extractable elements (P, K, Ca, and Mg) in the
upper layer (0–20 cm) were also comparable except for one Red-Yellow Ultisol that showed
a low pH (pH 4.3) compared to those of the diagnosed specimen (pH 5.8). The yield was
53 tons ha−1 in the k = 1 blob and averaged 67 tons ha−1 in the k = 6 blob, which indicated a
large yield gap between the diagnosed grove and the successful neighboring groves.
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Table 9. Nutrient diagnosis of a defective ‘Valência’ X ‘Citrumelo Swingle’ specimen.

Component Concentration Brazilian Nutrient Ranges § Specimen Regional †

g kg−1 clr

N 31.0 25 30 3.024 2.789 0.155

P 1.3 1.2 1.6 −0.188 −0.272 0.198

K 13.0 10 15 2.156 2.157 0.323

Ca 36.5 35 50 3.186 3.141 0.171

Mg 4.2 3.5 5.0 1.019 0.833 0.216

S 2.3 2.0 3.0 0.435 0.558 0.320

B 0.134 0.050 0.150 −2.619 −2.540 0.314

Cu 0.056 0.010 0.020 −3.950 −3.404 0.370

Zn 0.035 0.035 0.070 −3.287 −3.328 0.668

Mn 0.029 0.030 0.060 −3.760 −3.554 0.438

Fe 0.110 0.050 0.150 −2.421 −2.744 0.366

Filling value - - - 6.404 6.421 0.199

† Across features under the ceteris paribus assumption; § Quaggio et al. (2022) [77].

The regional diagnosis returned a relatively large N excess; some P, Mg, and B excess;
and a large Mn shortage (Figure 3). The blob diagnosis (k = 6) returned a large Ca excess
and Mn shortage; some B and Cu excess; and some P, K, and S shortage. The blob diagnosis
(k = 1) returned relative excess of N, Ca, and Cu and a relative shortage of K and Mn. This
differential diagnosis posed a new challenge that has not been reported before.
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Figure 3. Order of nutrient limitations in a defective ‘Valência’ X ‘Citrumelo Swingle’ specimen
diagnosed at regional or blob (k = 1 or 6) scales. The signs of clr indices indicate relative nutrient excess
(+) or deficiency (−). Fruit yield averaged 53–67 tons ha−1 in the blobs compared to 20 tons ha−1 for
the defective specimen.

4. Discussion
4.1. Contribution of Documented Features to ML Models

Orange yields in the surveyed region were impacted primarily by plant genetics,
age, and nutrient balances (Tables 4 and 5). Soil properties in the 0–20 cm layer were
also contributive. Indeed, the root system of the young orange trees was much more
abundant in the 0–30 cm layer than below [59,79]. While features not yet documented
such as the fertilization regime and disease control could likely have contributed to the
yield, they were assumed to be applied as recommended. The fertilization regime and
related features (placement, timing, source, and rate) could vary among growers. Where
available, a grower’s fertilization data could provide information on corrective measures
to reach the yield potential at the minimum cost under comparable conditions. Scions
could be grafted on different rootstocks depending on pedoclimatic conditions. Citrus
rootstocks are selected for resistance to diseases and tolerance to drought, especially in hard-
setting soils in which a cohesive soil mass located 20–70 cm below the surface limits water
movement and root penetration [58,59]. The blob paradigm follows a grower’s propension
for comparisons with successful neighbors and Alexander von Humboldt’s concept of
natural systems that combines local features and knowledge [11,14]. The blob concept of
local-scale diagnosis should be further tested via field experimentation and compared to
current diagnostic methods.

The experimental data could validate the model prediction, measure the sensitivity of
nutrient balances to nutrient additions, and provide response curves to support corrective
measures [37,74,75]. Experimental data exist in various formats in Brazil [2,4,80–84], but
data assemblage from different sources was beyond the scope of this study. Another issue
was the carryover effects of carbohydrate and nutrient accumulations in the plant tissues
of perennial plants that impact the following fertilization regime [85–88]. Several years
of experimentation are needed to monitor the nutrition and fertilizer requirements of
perennial crops given the information on carryover effects such as prior plant nutrient
status, tree pruning, trunk diameter, and crop yield.

4.2. Nutrient Diagnosis

Differences between the nutrient concentration ranges assessed in the present study
and others reported in Brazil [4] were attributable to: (1) TN specimens only in our refer-
ence group (excluding FP specimens), (2) tissue compositions analyzed as assemblages of
nutrients rather than processed separately [34], (3) concentrations ranges tending to narrow
down as more information on nutrient compositions and interactions was integrated [89],
and (4) varietal effects. We compared the nutrient diagnoses using regional standards and
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blob standards for the k-nearest neighbors. The blob provided realistic attainable yields
under comparable growing conditions.

New questions arose on the relevance of current methods to diagnose the nutrient
status of orange groves. Using blob or regional standards, the results of nutrient diagnosis
may differ due to differences in centroids and supporting assumptions such as ceteris paribus
(all factors but the ones being examined were assumed to be at equal or optimum levels),
thus impacting the decision to adjust the fertilization regime to local conditions. Nutrient
standards may also vary with the yield cutoff selected.

4.3. Boron Limitations

The B concentration ranges for ‘Pêra’ X ‘Tangerina Sunki’ differed compared to the
other scions. This may have been due to genetics, managerial conditions, or environmental
growing conditions. Boron deficiency is common in the tropics [89–91] because soil B
availability is generally low [92]. Soil B is mobile in its predominantly nonionic form (boric
acid) and may be leached through excessive rainfall [90]. Boron plays a central structural
role in the formation of the xylem, root growth, and water transportation [93]. Boron
concentrations in reproductive plant parts that contain higher levels of pectin, phenols, or
sugar alcohol most often exceed the B concentrations detected in the vegetative parts. Boron
is a hardener for plant cells and hence a protective mechanism against pests. Boric acid
binds to sugars in cell walls and cross-links two chains of pectic polysaccharide through
borate–diester bonding at the rhamnogalacturonan II region, which forms a network of
polysaccharides [94]. In rainfed orange orchards, long drought periods affect root B transfer
due to reduced mass flow [95]. Considering the low B mobility in the phloem of citrus [93],
foliar fertilization is inefficient to fully meet the demand of new flushes of shoot growth and
should be complemented by soil B application [61,90,96,97]. The B is commonly applied as
a foliar spray [61,97].

4.4. Nutrient Excess and Shortage

The clr standards that incorporate all nutrients interacting in the plant tissue could
also indicate overfertilization. There is a trend of overfertilizing orchards with N, P, and
K because the macronutrient offtake through fruit harvest is substantial [61]. As a result,
the fruit yield and quality may be affected by overfertilization driven by nutrient budgets
rather than field experimentation and success stories documented in data sets [82–84]. N
overfertilization may result in poor-quality fruits and a higher susceptibility to disease
and insect feeding [9,82]. As is the case for other perennials [85–88], N requirements may
vary widely in orange orchards [4] due in part to the carryover effects of carbohydrate
and nutrient accumulations over time. Carbohydrate and nutrient reserves accumulated
in off-years or previous years can be remobilized at a high rate in on-years [98]. The N
stored in the tree biomass can be redistributed to developing leaves and fruits via the
phloem [61]. Therefore, fruit production might not be impacted by a low nutrient supply
during the current season. Nonetheless, if nutrient reserves are not replenished regularly,
trees may undergo a gradual reduction in canopy density, which results in decreased fruit
production in subsequent seasons [4]. This aspect could be addressed in field experiments
and monitored via crop logging.

Due to strong sorption of phosphate ions by aluminum and iron oxyhydroxides in
tropical soils such as Oxisols and Ultisols [99], nutrient-use efficiency of the fertilizer P is
thought to be low [100–102] At low soil-test P values, citrus response to P fertilization was
found to stimulate root–shoot growth [80] and increase the fruit yield [2,82]. The fruit yield
can respond to P fertilization when the soil-test P is higher than 20 mg resin-P dm−3 [2,82].
However, a yield loss can occur when the soil-test P exceeds 40 mg resin-P dm−3 [81].
There is a high risk of P overfertilization [89]. The co-precipitation of P- and Zn-conducting
vessels is exacerbated by an excess of P, which inhibits Zn transport from root to shoot and
causes metabolic disorders [103]. While P fertilization has been guided traditionally by
tissue diagnosis, soil analysis, and expected yield [4], a blob-scale diagnosis could provide
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the realistic yield goals documented in the data set. The blob provides successful fertilization
regimes under comparable conditions and can be used to derive response curves to added
nutrients under comparable experimental conditions.

The K offtake due to a fruit harvest is substantial [61] and requires heavy K fertiliza-
tion [82–84]. However, this may lead to a K excess in the soil and a relative K excess in
foliar tissues, especially if the soil test is not taken into account or when K surpluses are
large [61]. An excessive K dosage may lead to a yield loss due to K-Ca antagonism [83,104].
Ca accumulates even more than N in the tree biomass and correlates positively with fruit
yield [105,106]. A soil pH correction through liming may not suffice to meet plant Ca
demand. It has been recommended to complement Ca nutrition with gypsum [102] or
calcium nitrate when plant Ca demand peaks [107]. Parsimonious K supply can contribute
to re-establishing tissue K-Ca balance. To account for Ca, K, and Mg interactions in the soil,
the relationship between the crop yield and soil test as exchangeable K, Ca, Mg, and acidity
could be revisited using the nutrient-balance concept [108].

Relative Cu excess is common in the foliage of orange orchards due to Cu applications
to tackle foliar diseases. Any Cu toxicity due to Cu accumulation may increase the oxidative
stress and reduce plant growth (especially root growth), nutrient, water absorption, and
photosynthesis rates [109,110]. While high soil-test Cu values are also commonly reported
in orchards, other nutrients should be properly balanced to increase the resistance of orange
trees to common diseases [6]. A concomitant S shortage may be problematic. S plays a
central role in regulating cross-talk with cationic microelements [19]. Mn and Zn may be in
short supply in Oxisols and Ultisols. Mn and Zn are sorbed strongly by soil colloids and
are commonly at low levels in the parent material of tropical soils [3,61,111]. Mn and Zn are
often supplied through foliar sprays [3,105,106]. Soil applications of those micronutrients
are complementary to foliar sprays in sandy soils that are low in organic matter [111].

5. Conclusions

The random forest regression model that related fruit yields to meteorological, soil,
and plant features showed evidence of overfitting. A random forest binary classification
model was found to be acceptable based on the area under the curve. The scion X rootstock
combination and grove age contributed more to the fruit yield than the meteorological and
soil variables. The scion X rootstock combination, plant age, tissue nutrient balances, and
soil properties in the 0–20 cm layer formed the minimum data set to reach an acceptable
model AUC. The nutrient concentration ranges of the surveyed TN specimens at a regional
scale depended on the yield cutoff.

There was a need to adjust the search for nutrient standards to yield a cutoff spe-
cific to the scion X rootstock combination and to focus on the local conditions delineated
in the blob of the k neighboring successful agroecosystems. Using a defective ‘Valência’
X ‘Citrumelo Swingle’ TP specimen as an example, the regional and blob diagnoses dif-
fered. The predictions of the blob model, which were based Alexander von Humboldt’s
concept of natural systems that combines local features and knowledge and on grower’s
propension for comparisons with successful neighbors, should be further evaluated via
field experimentation.

Citrus growers could adopt a concept of yield-limiting clr nutrient balances specific
to their agroecosystems in which groups of nutrients are optimally balanced in referential
blobs. Most nutrient standards currently used to adjust crop fertilization are derived from
regional data sets with few features. More local key features such as those related to the soil
profile, carryover effects, and pest and fertilizer management should be collected to build a
diversified data set that enables an increase in the model’s accuracy and improve the yield
prediction. The blob paradigm based on Alexander von Humboldt’s concept of natural
systems that combines local features and knowledge and is deciphered using artificial
intelligence tools [112] should be further compared to the current diagnostic methods via
field experimentation.
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