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Abstract: Hard foreign objects such as bricks, wood, metal materials, and plastics in orchard soil can
affect the operational safety of garden machinery. Ground-Penetrating Radar (GPR) is widely used
for the detection of hard foreign objects in soil due to its advantages of non-destructive detection
(NDT), easy portability, and high efficiency. At present, the degree of automatic identification applied
in soil-oriented foreign object detection based on GPR falls short of the industry’s expectations. To
further enhance the accuracy and efficiency of soil-oriented foreign object detection, we combined
GPR and intelligent technology to conduct research on three aspects: acquiring real-time GPR images,
using the YOLOv5 algorithm for real-time target detection and the coordinate positioning of GPR
images, and the construction of a detection system based on ground-penetrating radar and the
YOLOv5 algorithm that automatically detects target characteristic curves in ground-penetrating radar
images. In addition, taking five groups of test results of detecting different diameters of rebar inside
the soil as an example, the obtained average error of detecting the depth of rebar using the detection
system is within 0.02 m, and the error of detecting rebar along the measuring line direction from the
location of the starting point of GPR detection is within 0.08 m. The experimental results show that
the detection system is important for identifying and positioning foreign objects inside the soil.

Keywords: ground-penetrating radar; YOLOv5 algorithm; intelligent technology; automatically
picking; coordinate positioning

1. Introduction

GPR has the advantages of a fast and simple detection process and good detection per-
formance, and it is widely used as a tool for underground soil foreign matter detection [1–3],
road health detection [4,5], bridge quality inspection [6], and archaeological surveys [7,8],
among other areas in detection experiments.

Since GPR is often disturbed by factors such as noise and reflected waves from other
materials on the ground’s surface during the detection process [9–11], and since raw GPR
radar images rarely provide geometric information about buried target objects, these factors
are not conducive to enabling researchers to judge and interpret the geometry and specific
burial location of hard foreign objects in GPR images [12,13]; thus, a major component of
interpreting GPR images relies on complex data processing and the professional research
experience of researchers for interpretation [14]. However, when a large number of GPR
data are involved and the GPR data need to be interpreted and recognized in real-time,
human interpretation of GPR data may have reduced recognition efficiency and be prone
to misclassification and omission [15], so it is important to explore a method to automate
the detection of underground foreign objects. Therefore, it is necessary to explore a method
with which to automate the detection of targets in practical engineering applications [16].
Some researchers have proposed the use of neural networks to automatically detect and
identify the features of targets detected in GPR images, which are specifically parabolic
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in shape [17], and to discriminate the presence of foreign bodies within the soil shown in
the images by means of deep-learning algorithms so as to identify the target features in
GPR images [18]. Li et al. [19] demonstrated desirable detection results in a detection task
involving 2D GPR image data using a deep-learning network framework.

In the last decade, some researchers have started to use deep-learning methods to
automatically identify feature parts in GPR images [20–23], especially in the field of using
machine learning methods to automatically identify the characteristic curves of reinforce-
ments in ground-penetrating radar images [24–26]. Comparing several deep-learning
neural network frameworks, the algorithm based on the YOLO series neural network
framework is faster in terms of detection, and Li implemented the YOLOv3 algorithm
for the real-time pattern recognition of GPR images using the TensorFlow framework
developed by Google [27]. Compared with the YOLOv3 algorithm and YOLOv4 algorithm,
the YOLOv5 algorithm has also made significant progress with respect to small data sets,
and the models trained using the YOLOv5 algorithm have superior robustness to better
distinguish the feature parts in GPR images [28].

Therefore, in order to further improve the accuracy of the GPR systems’ detection of
foreign matter in soil and the efficiency of real-time detection, in this study, a detection
system based on ground-penetrating radar and the YOLOv5 algorithm that automatically
detects the target characteristic curve in ground-penetrating radar images is built, and
the YOLOv5 network framework is used to detect the feature curve of the GPR pictures
and accurately locate the target after detection, which achieves real-time detection in GPR
pictures and the accurate localization of soil-situated foreign objects in GPR pictures.

2. Materials and Methods
2.1. GPR Image Data Set Production

When the electromagnetic waves emitted from the GPR-transmitting antenna are
propagated in a soil medium, the [10] electromagnetic waves will be reflected and refracted
when they encounter foreign matter in soil with different electromagnetic characteristics
from the soil medium. Therefore, in the GPR image, the foreign matter in soil is specifi-
cally shown as a parabolic feature. According to this target feature, we use the labelImg
annotation tool to label the GPR images with the target.

Although different foreign objects are not exactly the same on the image due to their
different material sizes, most of them are parabolic features with downward openings and
some of them are non-parabolic features. Therefore, we use two types of labels to label
parabolic features and non-parabolic features [29], and do not distinguish between them in
terms of size and material used to label the target feature areas of interest in GPR images,
as shown in Figure 1.

Horticulturae 2022, 8, x FOR PEER REVIEW 3 of 21 
 

 

 
Figure 1. Parabolic target feature marker. 

The dataset we used includes 295 GPR images with a total of 1679 tags, as shown in 
Figure 2. In addition, these tags will be divided into training set, validation set, and test 
set in the ratio of 7:2:1. 

 
Figure 2. Partial GPR Dataset Diagram. 

2.2. Real-Time Detection of GPR Image Targets Based on YOLOv5 
Compared with other classic target detection algorithms, YOLOv5 is built on the 

PyTorch framework, with simpler support, easier deployment, and fewer model param-
eters, so it can be deployed on mobile devices, embedded devices, etc. It is the engineer-
ing version of the YOLO family of algorithms [30,31]. Since the experiment we conduct-
ed concerns fixing the GPR system on an all-terrain vehicle and performing background 
calculations through the upper computer, which should have good detection perfor-
mance while ensuring real-time target detection, we decided to use the YOLOv5 net-
work model. According to the size of this GPR image target detection dataset, we used 
the YOLOv5s network model in the sixth version of YOLOv5 release. 

The basic framework of YOLOv5 version 6 can be divided into 4 parts: Input, 
Backbone, Neck, and Head. The Input part enriches the dataset by data augmentation to 
improve the robustness and generalization of the network model. The Backbone part 
mainly consists of Conv, C3, and SPPF modules for feature extraction. FPN + PANet is 
used in the Neck to aggregate the image features at that stage. The Head network per-
forms target prediction and passes the predicted output, and its specific network struc-
ture is shown in Figure 3. 

Figure 1. Parabolic target feature marker.

The dataset we used includes 295 GPR images with a total of 1679 tags, as shown in
Figure 2. In addition, these tags will be divided into training set, validation set, and test set
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2.2. Real-Time Detection of GPR Image Targets Based on YOLOv5

Compared with other classic target detection algorithms, YOLOv5 is built on the
PyTorch framework, with simpler support, easier deployment, and fewer model parameters,
so it can be deployed on mobile devices, embedded devices, etc. It is the engineering
version of the YOLO family of algorithms [30,31]. Since the experiment we conducted
concerns fixing the GPR system on an all-terrain vehicle and performing background
calculations through the upper computer, which should have good detection performance
while ensuring real-time target detection, we decided to use the YOLOv5 network model.
According to the size of this GPR image target detection dataset, we used the YOLOv5s
network model in the sixth version of YOLOv5 release.

The basic framework of YOLOv5 version 6 can be divided into 4 parts: Input, Backbone,
Neck, and Head. The Input part enriches the dataset by data augmentation to improve the
robustness and generalization of the network model. The Backbone part mainly consists of
Conv, C3, and SPPF modules for feature extraction. FPN + PANet is used in the Neck to
aggregate the image features at that stage. The Head network performs target prediction
and passes the predicted output, and its specific network structure is shown in Figure 3.
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2.3. Evaluation of GPR Image Detection Model Based on YOLOv5 Algorithm
2.3.1. Evaluation Metrics of the Target Detection Algorithm

Judging the detection effectiveness of target detection algorithms usually requires
evaluating some quantitative evaluation metrics so as to determine the algorithm’s merit
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from an objective perspective. To quantify the effectiveness of the YOLOv5 algorithm for
GPR image target detection, we chose some commonly used metrics to evaluate the model,
which include accuracy (P), recall (R), average precision (AP), F1 score, inference time, and
model size.

These metrics are defined as follows:

P =
TP

FP + TP
(1)

R =
TP

FN + TP
(2)

AP =
∫ 1

0
PRdR (3)

F1 =
2P·R
P + R

(4)

where TP is the number of correctly detected targets, FP is the number of non-targets that
the detector considers to be targets, and FN is the number of non-targets that the detector
considers to be targets.

Generally, the precision rate (P) is the detection accuracy of the target detector at an
IoU of 0.5, which is the proportion of correct targets detected by the target detector to all
detected targets, the recall rate (R) is the recall rate of the target detector at an IoU of 0.5,
which is the proportion of correct targets detected by the target detector to all targets in the
data set. While precision and recall are mutually exclusive to some extent, i.e., high recall
has lower precision and low recall has higher precision, in order to balance the indicators
of recall rate and accuracy rate, we more often use average precision (AP). AP is the area of
the PR curve in the range of 0–1, compared to single precision and recall, AP reflects the
sum of precision at different recall rates and better expresses the detection performance of
the detector.

2.3.2. Performance Comparison of Different Target Detection Algorithms in GPR
Image Detection

We divided the data set processed according to Section 2.1, i.e., 295 GPR images, into
training set, verification set, and test set corresponding to a ratio of 7:2:1, and trained the
sets on a GPU server with a graphics card of Tesla V100 using the YOLOv5s network model
in YOLOv5 version 6 mentioned in Section 2.2 with 300 epoch iterations.

We also compared other excellent target detectors such as Faster-RCNN and SSD in
the same training scenario to verify that the YOLOv5 algorithm is more suitable for GPR
real-time detection experiments. Due to the small number of samples of non-parabolic
features, the detection results of parabolic features are quasi in this paper to compare the
detection performance of each detector. The comparison results are shown in Table 1.

Table 1. Performance comparison of detection algorithms.

Faster RCNN SSD YOLOv5

P 0.499 0.865 0.893
R 0.827 0.392 0.706

AP 0.715 0.604 0.805
F1 0.62 0.54 0.65

inference time 54.9 ms 9.6 ms 11 ms
weight 108 MB 91.1 MB 13.7 MB

As can be found in Table 1, the YOLOv5 network model has a detection accuracy of
89.3%, a recall of 70.6%, an average accuracy of 80.5%, an F1 score of 0.65, an inference time
of 11 ms per frame, and a model size of 13.7 MB.
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For the Faster RCNN algorithm, YOLOv5 algorithm has 12.1% less recall, but a 39.4%
higher detection accuracy, 9% higher average accuracy, and 0.03 higher F1 score; notably,
its inference time is 43.9 ms faster, and its model size is reduced by 94.3 MB. Through
data comparison, it can be seen that YOLOv5 algorithm is more suitable for the real-time
requirements of GPR than the Faster RCNN algorithm.

The YOLOv5 algorithm is also 1.4 ms slower than the SSD algorithm in terms of
inference time, but it also meets the real-time requirements of the GPR detection system,
and the YOLOv5 algorithm has a 2.8% higher detection accuracy, 31.4% higher recall, 20.1%
higher average accuracy, 0.11 higher F1 score, and, most importantly, a 77.4 MB smaller
model size. The data comparison shows that the YOLOv5 algorithm is more suitable for
in-vehicle system deployment than the SSD algorithm, and it presents fewer false detections
and omissions.

Overall, the detection speed of our YOLOv5 algorithm meets the requirement of
real-time detection and has more balanced recall and accuracy compared with classical
algorithms such as Faster RCNN and SSD; therefore, we obtain better detection performance
in the target detection task of GPR images, and there are fewer errors and misses, which
can better meet the needs of GPR image target detection in real-time. This means that we
have better detection performance in GPR image target detection tasks, and fewer false and
missed detections.

2.3.3. Comparison of the Effectiveness of Different Target Detection Algorithms in GPR
Image Detection

We use YOLOv5 algorithm and Faster RCNN, SSD algorithm to detect GPR images and
compare their effectiveness in detecting subsurface soil-situated foreign objects, including
their correct recognition rate, missed detection rate, and false detection rate. The following
Figure 4 comparison chart shows the effectiveness of YOLOv5 algorithm and the other two
target detection algorithms in actual detection. In Figure 4, (a) is the original GPR image,
(b) is the marker map of the GPR image feature curves, (c) is the detection effect of YOLOv5
algorithm, (d) is the detection effect of Faster RCNN algorithm, and (e) is the detection
effect of SSD algorithm.

In Figure 4, there are several small parabolic features, two large parabolic features, and
three non-parabolic features in the GPR image. Regarding the leakage phenomenon, the
YOLOv5 algorithm detected the two large parabolic features, three non-parabolic features,
and most of the small parabolic features. The Faster RCNN algorithm detected two large
parabolic features and most of the small parabolic features but missed two non-parabolic
features. The SSD algorithm detected two large parabolic features but missed three non-
parabolic features and some small parabolic features were missed. In terms of misdetection,
the YOLOv5 algorithm misidentifies a background feature as a small parabolic feature, the
Faster RCNN algorithm misidentifies a non-parabolic feature as a parabolic feature, and
the SSD misidentifies a background feature as a parabolic feature.

Overall, the YOLOv5 algorithm and the other two algorithms were able to detect most
of the parabolic and non-parabolic features, and although the Faster RCNN algorithm had
a higher confidence level for the target foreign matter features, the YOLOv5 algorithm had
better regression accuracy for the GPR image-based target foreign matter compared to the
other two target detection algorithms. The center of the upper border of the detection frame
is roughly near the parabolic feature vertex, which means that the detected subsurface
soil-situated foreign objects’ position on the image coordinates can be roughly determined
by the detection frame with better regression accuracy, which provides a certain theoretical
basis for our research on the precise location of soil-situated foreign bodies.
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2.4. Building an Automatic Parabola Extraction and Detection System for Ground-Penetrating
Radar Images Based on YOLOv5 Algorithm

In order to improve the accuracy and efficiency of identifying target objects in GPR
images, we use a machine learning algorithm to automatically extract the foreign object fea-
ture curves of the ground-penetrating radar image in real time. The hardware components
of the indoor real-time detection system built in this study include the GPR instrument,
laptop, Android cell phone, and data cable; the software components include the GPR
instrument equipped with MALA Controller software and YOLOv5 network structure.
The GPR real-time detection system was built as shown in Figure 5.

According to the entire process of detecting the target by the ground-penetrating radar,
we built a ground-penetrating radar image target feature curve automatic extraction detec-
tion system based on the ground-penetrating radar and YOLOv5 algorithms using artificial
intelligence technology to achieve complex data-processing; reconstruct the GPR image
coordinates; ascertain the target objects’ buried location information, GPS information, and
other parameters of the acquisition process; and perform real-time rapid detection and
identification of target characteristic curves of GPR images obtained during the detection
process. The detection and recognition process of the constructed automatic extraction and
detection system of the target characteristic curves of ground-penetrating radar images is
shown in Figure 6.
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In our experiments, we use MALA Controller software to image the GPR data, and the
cell phone screen is read through the Android Debug Bridge (ADB) in order to obtain GPR
images in real time. After acquiring the GPR images, the image pixel coordinates are re-
established by finding the imaging section of the GPR image on the cell phone screen. The
burial depth of the soil-situated foreign objects is obtained by using the linear interpolation
method. Then, the value of the horizontal coordinate of the ground location in the GPR
image is screenshotted, and the value of the horizontal coordinate in the GPR image is
identified by using the OCR algorithm. Consequently, the position obtained using the
linear interpolation method and the starting point position identified by OCR are summed.
Finally, the positions obtained by the linear interpolation and the starting point positions
identified by OCR are summed to obtain the distance positions of hard foreign objects in
the GPR images along the measuring line in the detection process.

We acquire the GPR images by continuously reading the MALA Controller software
interface in real time with the Android Debug Bridge (ADB), a development tool used
for communication between computers and Android devices, which consists of three
components: client (ADB client), server (ADB server), and service process (ADBD). The
client (ADB client) runs on the computer and is used to send commands to the server (ADB
server); the server (ADB server) runs on the computer as a client of the service process
(ADBD) and is used to send commands to the Android device; the service process (ADBD)
runs on the Android device and is used to execute commands on the Android device.

We first send the command os.system(“adb shell screencap/sdcard/radar picture.png”)
to the computer client (ADB client) to communicate with the server (ADB server) through
TCP port 5037; then, the server (ADB server) will communicate with the Android device
through USB serial port or TCP. At this time, the service process (ADBD) will intercept the
screen of the Android device in real time so as to obtain the GPR images recorded by the
running MALA Controller software and store them in the memory card of the Android
device. Similarly, the computer client (ADB client) sends the command os.system(“adb
pull/sdcard/radar image.png”) to transfer the GPR image stored in the memory card of
the Android device to the computer. The above operation realizes the real-time acquisition
of GPR images. The principle of real-time acquisition of GPR images is shown in Figure 7.
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Figure 7. Schematic diagram of real-time acquisition of GPR image.

During the test, the GPR system uses a trigger wheel to control the triggering of the
GPR pulse, transmitting and receiving an electromagnetic wave pulse every step. MALA
Controller software communicates with the GPR, and the MALA Controller updates the
image every time the GPR receives a new pulse, while the ABD tool takes continuous
screenshots of the cell phone screen, thus realizing real-time data acquisition of the whole
detection process of GPR.

2.5. Indoor Testing Based on the Detection System

We conducted indoor detection experiments in the Key Laboratory of Agricultural
Machinery and Equipment of the Ministry of Education, which was built on common
farmland soil platform in the south of China. The soil platform has dimensions of 6 m in
length, 2 m in width, and 1.5 m in depth, and contains a batch of ferrous experimental
materials, such as steel bars and iron plate materials. The high-dynamic GPR MALA GX750
HDR instrument was selected to detect the target objects buried inside the soil. In order to
achieve real-time detection, we used MALA Controller, a cell phone software developed by
MALA, to assist us to understand and interpret the detection results more intuitively, as
well as obtain the GPR image data in real time.

In the soil platform in the Key Laboratory of Agricultural Machinery and Equipment
of the Ministry of Education in the south, we used rebar as an example, whose diameters
were 5 cm, 4 cm, and 3 cm, with lengths of 15 cm. The depth of the rebar was 15 cm, and
the buried positions were 50 cm, 150 cm, and 250 cm from the starting point; the specific
buried positions of the rebar are shown in Figure 8.
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We obtained the GPR image data recorded by MALA Controller software in real time
by taking screenshots of the cell phone screen with the ABD tool, and part of this process is
shown in Figure 9. Figure 9a shows a screenshot of the computer reading the interface of
the MALA Controller software when the GPR instrument scans above the position of the
first piece of rebar; Figure 9b shows a screenshot of the computer reading the interface of
MALA Controller software when the GPR instrument has completely passed the buried
position of the first piece of rebar, but before reaching the buried position of the second
piece of rebar; Figure 9c is a screenshot of the computer reading the MALA Controller
software interface when the GPR instrument reaches the top of the second piece of rebar;
Figure 9d is a screenshot of the computer reading the MALA Controller software interface
when the GPR instrument reaches the top of the third piece of rebar; and Figure 9e is a
screenshot of the computer reading the MALA Controller software interface when the
GPR instrument has completely crossed the buried position of the third piece of rebar. A
screenshot of MALA Controller software interface is shown in Figure 9e.
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After we acquired the GPR images using MALA Controller software and intercepted
the cell phone screen with ADB tool, according to the characteristics of the MALA Controller
software interface, the image pixel coordinates were re-established after finding the imaging
part of the GPR in the MALA Controller software interface. The image pixel coordinates
before re-establishment are shown in Figure 10.
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We found the GPR-imaging section in the MALA Controller software interface and
established new image pixel coordinates based on this. The re-established image pixel
coordinates are shown in Figure 11.
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Next, we choose a certain length of pixel vertical coordinates as the unit pixel depth;
for example, note that the pixel vertical coordinate corresponding to 0.00 in the vertical
coordinate is y1, while the actual burial depth is d1; note that the pixel vertical coordinate
corresponding to 0.45 in the vertical coordinate is y2, while the actual burial depth is d2.
Then, in the image pixel coordinate system, the difference between y2 and y1 describes the
difference between d2 and d1 with respect to the local coordinate difference, which is the
depth of 0.45 m.

We read the pixel coordinates of the YOLOv5 prediction frame on the image; find the
pixel vertical coordinate Y of the foreign object, i.e., the peak of the hyperbola; and then use
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linear interpolation to solve for the burial depth of the foreign object in the local coordinate
D. The solution formula is shown in Equation (5).

Y − y1

y2 − y1
=

D − d1

d2 − d1
(5)

Since, in the process of the GPR detection of underground foreign objects, the depth
coordinate axis in the image does not change with the change in the GPR moving distance,
then the burial depth obtained by selecting the 0.00 point under the new pixel coordinate
system as the starting point is the burial depth in local coordinates.

However, when the GPR probes more than a certain distance along the survey line,
i.e., when the GPR receives more than a certain number of columns of signal data, the
MALA Controller software will only image the last N columns of signal data and refresh
the horizontal coordinates of the MALA Controller software interface at the same time.
Therefore, when the GPR moves more than a certain distance, the value of the horizontal
axis of the MALA Controller software interface will change, i.e., the distance represented
by the starting point in the new pixel coordinate system will change. Therefore, in order
to obtain the distance of the target foreign object in the actual GPR moving along the
measuring line’s direction, in addition to the above-mentioned linear difference method,
the distance of the GPR moving along the measuring line direction corresponding to the
starting point under the new pixel coordinate system should be added. Take Figure 12
as an example: at this point the distance represented by the point 0.00 of the new pixel
coordinates is 0.51 m.

Since the position of the measuring line distance axis of the ground-penetrating radar
in the GPR image is fixed, we only need to identify the coordinates of the starting point
and the ending point of the measuring line distance axis in the image and read out the
pixel coordinates of the starting point and the ending point of the measuring line distance
axis and the hyperbola vertex of the soil-situated hard foreign matter; then, we can obtain
the measuring line distance of the soil-situated hard foreign matter through the linear
interpolation method.
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In order to solve the above problem, we first obtain the digital images containing only
the starting and ending points of the distance axis of the measurement line corresponding
to 0.51 and 3.34 in Figure 12 by cutting the images, and then use the recognition engine of
Tesseract-OCR to perform OCR text recognition on the cut digital picture, OCR text recog-
nition is then performed on the clipped digital images using Tesseract OCR’s recognition
engine. Thus, the distance of the measured line from the start point of the axis and the end
one are obtained.
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Finally, the distance between the local coordinates of the starting point and the end
point of the line of sight distance axis identified by OCR, as well as the starting point
and the end point of the line of sight distance axis, and the pixel coordinates of the target
foreign object in the ground-penetrating radar image are used to obtain the position of the
soil hard foreign object along the measurement line by linear interpolation method. The
position equation of the target foreign object in the GPR displacement direction is shown in
Equation (6).

X − x1

x2 − x1
=

S − s1

s2 − s1
(6)

where X is the pixel horizontal coordinate of the target foreign object parabola in the GPR
image, x1 is the new pixel horizontal coordinate of the start point of the distance axis of
the measurement line, x2 is the new pixel horizontal coordinate of the end point of the
distance axis of the measurement line, S is the distance of the target foreign object in local
coordinates along the measurement line, s1 is the distance of the start point of the distance
axis of the measurement line in local coordinates along the measurement line, s2 is the
distance of the end point of the distance axis of the measurement line in local coordinates
along the measurement line.

The abscissa in the GPR image is shown in Figure 13, we recognize that the starting
point of the distance axis of the current survey line is 0.51 and the ending point is 3.34
through the OCR text recognition algorithm; then, we can read that the new pixel abscissa
of the image corresponding to the starting point (0.51) is 0, the new pixel abscissa of the
image corresponding to the end point (3.34) is 400, and the new pixel abscissa of the
image corresponding to the hyperbola vertex of the soil-situated hard foreign object is 100.
Consequently, the lateral distance (dist) of the soil-situated hard foreign object is shown in
Equation (7).

dist − 0.51
100 − 0

=
3.34 − 0.51

400 − 0
(7)
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Similarly, through the observation of the depth coordinate axis and the reading of
pixel coordinates, the burial depth of soil-situated hard foreign matter can be obtained with
the help of linear interpolation method

The burial depth and displacement position obtained by linear interpolation method
are shown in Figure 14.
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3. Results and Discussion

We carried out detection experiments in the soil platform of the Key Laboratory of the
Ministry of Education of Southern Agricultural Machinery and Equipment. We selected
15 cm long steel bars as foreign matter in the examined soil. The buried depth of the steel
bars is 15 cm, and the buried positions are 50 cm, 150 cm, and 250 cm away from the
starting point. The specific buried positions are shown in Figure 8.

We used the MALA GX 750 HDR instrument developed by the MALA Company to
carry out detection experiments. The instrument collected 412 samples in each channel with
a sampling spacing of 0.015 m; the diameter of the ranging wheel of the GPR instrument
was 17 cm, and the propagation speed of the electromagnetic wave we selected in the soil
medium was 100 m/µs.

In order to more clearly show the accuracy of the hyperbola position of the target
in the GPR image detected by the detection system, the position where the GPR initiates
detection each time is fixed during the GPR experiment. Therefore, we only need to read
the pixel coordinates of the starting and ending points of the distance axis in the GPR image
and the coordinates of the parabolic vertex in the GPR image, and then obtain the position
of the rebar on the survey line through a linear interpolation.

Firstly, we used the MALA Controller mobile software to read the GPR data in real
time and visualize it; then, the computer acquired the visualized GPR data in real time
through the ADB tool, and the YOLOv5 algorithm automatically detected the hyperbola of
the GPR image acquired by the ADB tool in real time. Consequently, the hyperbolic vertex
pixel coordinates were obtained according to the position of the box, and the real-time
location of the foreign matter in the soil was realized by linear interpolation. Finally, we
compared and analyzed the error between the positioning results of our real-time detection
system and the actual position.

We used the built real-time detection system for an indoor detection test; the real-time
identification results output by the system in the detection process are shown in Figure 15;
Figure 15a shows the real-time detection system used to identify the detection results of the
GPR after the first piece of rebar was detected; Figure 15b shows the real-time detection
system used to identify the detection results of GPR after detecting the second piece of
rebar; and Figure 15c shows the real-time detection system used to identify the GPR results
following the detection of the third piece of rebar. From Figure 15c, it can be seen that the
three target bodies can be marked in real time, and the detection result map also marks
the burial depth and the distance from the detection zero position of the three rebar pieces
identified by the system.
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Figure 15. Target location results of ground-penetrating radar images.

We used the real-time detection system along the detection direction to repeat the
test five times. The comparison of the results regarding the detection of rebar along the
detection line direction from the GPR detection starting point’s location and the actual
burial distance is shown in Table 2, while the comparison of the results obtained by the
real-time detection system regarding the detection of the buried depth of the rebar and the
actual buried location is shown in Table 3.

Table 2. Comparison of the distance between the steel bar detected by the ground-penetrating radar
real-time detection system and the actual buried distance (unit/m).

Rebar 1 Rebar 2 Rebar 3

The actual burial distance of the rebar 0.50 1.50 2.50
The value of the first measurement distance 0.52 1.47 2.42
The value of the second measurement distance 0.52 1.46 2.42
The value of the third measurement distance 0.52 1.47 2.43
The value of the fourth measurement distance 0.52 1.46 2.42
The value of the fifth measurement distance 0.52 1.46 2.42
The average error 0.020 0.036 0.078
Root mean square error 0.020 0.036 0.078
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Table 3. Comparison of the depth between the steel bar detected by the ground-penetrating radar
real-time detection system and the actual buried depth (unit/m).

Rebar 1 Rebar 2 Rebar 3

The actual burial depth of rebar 0.15 0.15 0.15
The value of the first measurement depth 0.16 0.16 0.17
The value of the second measurement depth 0.15 0.15 0.16
The value of the third measurement depth 0.16 0.15 0.16
The value of the fourth measurement depth 0.16 0.17 0.17
The value of the fifth measurement depth 0.15 0.17 0.17
The average error 0.006 0.010 0.016
Root mean square error 0.008 0.013 0.017

From Tables 2 and 3, we can see that the average error of the depth of rebar detected
by the constructed real-time detection system is within 0.02 m, and the error of detecting
rebar along the measurement line from the location of the starting point of GPR detection
is within 0.08 m, as seen from the test results regarding the detection of different diameters
of rebar in five groups.

4. Conclusions

In this study, a detection system based on ground-penetrating radar and the YOLOv5
algorithm for automatically detecting target characteristic curves in ground-penetrating
radar images was built, and the YOLOv5 network framework was used to detect the feature
curves of the GPR pictures and accurately locate the targets after detection, which achieved
the real-time detection of GPR pictures and the accurate localization of soil-situated foreign
objects in GPR pictures. The contributions of this paper are as follows.

(1) We built a real-time detection system, used the ABD tool to take continuous
screenshots of the employed cell phone screen when using the GPR instruments for de-
tection, and used the YOLOv5 algorithm for the real-time target detection of GPR images,
which successfully achieved ideal results regarding the detection of the target features of
GPR images.

(2) Using soil-situated foreign object localization based on the linear interpolation
method, we converted the pixel coordinates of soil-situated foreign object features in GPR
images into local coordinates to determine the specific burial locations of soil-situated
foreign objects. Then, we read the pixel coordinates of the YOLOv5 prediction frame on the
images; ascertained the pixel longitudinal coordinates of foreign objects, i.e., the peak of the
hyperbola; and then used the linear interpolation method to solve for the burial location of
the soil-situated foreign objects in local coordinates.

Since the Faster RCNN, SSD, and YOLOv5 algorithms used herein are only image tar-
get detection algorithms, which are mainly used for the automatic detection of hyperbolas
in GPR images, at this stage, the algorithms we used do not process the parameters of GPR
signals. Therefore, in our future research work, we will use the algorithm to process the
parameters of GPR signals and conduct in-depth research in this direction.
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