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Abstract: TheGLK gene family is of great significance in regulating chloroplast development andpar‑
ticipating in chlorophyll synthesis. However, the mechanism of GLK involvement in Citrus chloro‑
phyll synthesis remains unclear. In this study, bioinformatics methods were used to analyze the
gene structure, protein evolution, chromosome distribution, promoter elements and expression pro‑
file of GLK gene family in Citrus. Overall, 27 CsGLK TFs were identified from Citrus genome and
divided into three subgroups according to the conserved domains. All members were distributed on
nine chromosomes. The tandem replication events (ka/ks < 1) indicated that CsGLK TFs underwent
a purification selection evolutionary process. The intron variation might be a vital configuration
for the evolution of CsGLK genes. The expression pattern of CsGLKs showed that family members
had higher expression levels in different tissues and at different growth stages and could actively
respond to dark stress. CsGLK TFs of the same group had similar structures, but their expression pat‑
terns were quite different, indicating that they may have different functions and not be redundant.
Correlation analysis showed thatCsGLK2, CsGLK9, CsGLK10, CsGLK11, CsGLK20 andCsGLK24were
significantly positive correlations with Chl a and Chl b contents. In addition, CsGLK2, CsGLK5, Cs‑
GLK10, CsGLK11, CsGLK12, CsGLK15, CsGLK20 and CsGLK24 were significantly positive related to
Mg‑Proto IX, Proto IX and Pchl.

Keywords: Citrus sinensis; G2‑like family; bioinformatics analysis; expression profile; dark stress

1. Introduction
Golden2‑like (GLK) protein is an important transcription factor in the GARP super‑

family [1–3]. In this family, GLK genes are monophyletic, but the gene replication occurs
independently in monocots and eudicots [4]. Most GLK genes have a Myb‑DNA‑binding
domain (DBD) and C‑terminal domain (GCT‑box) [5]. In addition, some members of sub‑
groups have conservedMYB‑CC‑LHEQLEdomains [6,7]. TheDBD sequence, which exists
in green algae and terrestrial plants, is highly conserved among GARP superfamily mem‑
bers [8], while the GCT box is only found in terrestrial plants and has specificity for the
GLK gene [9].

It is found that GLK family members are essential for chloroplast formation and de‑
velopment [10–13]. GLK regulates the chloroplast development of tomato (Solanum lycoper‑
sicum), peach (Prunus persica L.cv LuYou Tao1) andArabidopsis thaliana [10,11,14–16], and it
coordinates the expression of photosynthetic genes in the nucleus to adapt to different en‑
vironments and developmental conditions [17]. The overexpression of GLK in Arabidopsis
leads to the biogenesis and photosynthesis of chloroplasts in non‑photosynthetic organs
(root and fruit) [18]. Moreover, GLK genes promote the production of plant chloroplasts
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and optimize photosynthesis under different biotic and abiotic environmental stress con‑
ditions [12,19,20].

Meanwhile, the overexpression of GLK gene in peach and tomato can increase plas‑
tid number and pigment content [21,22]. Analysis of phenotypic and transcriptome data
for leaves in diploid and triploid E. urophylla revealed a positive correlation between Egr‑
GLK genes and chlorophyll synthesis [23]. Studies have shown that GLK is involved in the
regulation of multiple chlorophyll synthase activities [24], such as δ‑Aminolevulinic acid
dehydratase (ALAD, catalyzing the synthase of ALA), protoporphyrinogen deaminase
(PGBD, catalyzing the synthase of PBG), protoporphyrinogen oxidase (PROTOX, catalyz‑
ing the synthase of protoporphyrinogen IX), magnesium chelatase (MGCH, catalyzing the
synthase of protoporphyrinogen IX), magnesium protoporphyrin ester cyclase (MPECYC,
catalyzing the synthase of protoporphylide), protochlorophyll oxidoreductase (POR, cat‑
alyzing Chl a and Chl b synthesis), etc. [21]. Through transient in vivo induction of Ara‑
bidopsis, GLK1 and GLK2 transcripts and ChIP analysis of anti‑GLK1 antibodies, the key
genes of chlorophyll biosynthesis were determined [17].

Previous studies have shown that, although GLK1 and GLK2 have the same function,
they have different regulatory pathways and tissue‑specific characteristics in various or‑
gans [7]. In corn, ZmGLK1 and ZmGLK2 are a pair of homologous genes with basically the
same function, which are expressed in mesophyll cells and vascular bundle sheath cells,
respectively [25]. GLK1 is mainly expressed in leaf tissue and GLK2 is mainly expressed in
fruit [26]. In tomato, SlGLK2 is only expressed in the fruit and affects the content of sugar
and carotenoids by regulating chloroplast development [13,27]. In addition, some stud‑
ies have found that the KNOTTED1‑LIKE HOMEOBOX (KNOX) gene acts downstream of
SlGLK2 and only affects the chloroplast development in tomato fruit, but does not affect
leaf tissue [28].

GLK gene has an important impact on chloroplast development, chlorophyll synthe‑
sis, leaf growth and development. Identifying members of GLK family and finding out
members that respond positively during growth and under dark stress are of great signifi‑
cance for improving photosynthetic capacity and fruit quality. Sweet orange, which is also
a very appropriate researchmodel of woody plant, accounts formore than 60% of the yield
of Citrus, being both rich in nutrients and economic value. In this work, we performed a
comprehensive examination of the GLK gene in Citrus, including genome‑wide identifica‑
tion, phylogenetic classification, gene structure, chromosomal position, replication events,
collinearity and expression levels in various tissues, growth stages and dark stress.

2. Materials and Methods
2.1. Plant Materials

On the 3rd, 7th, 11th, 18th, 25th and 32nd days after the summer shoot sprouting, the
sweet orange leaves were collected and named D3, D7, D11, D18, D25 and D23, respec‑
tively. At the same time, after 11 days of shoot pulling, the plants were put into the incuba‑
tor for dark treatment, and the control group (LT) grew under 16 h light
(200 µmol·m−2·s−1)/8 h dark conditions. Take samples (DK1, DK2, DK3) on the first, sec‑
ond and fourth days after dark treatment. The 5 plants were treated for each treatment,
with 3 repetitions.

2.2. Identification and Physicochemical Properties Analysis of CsGLKs
The GLK protein sequences of Arabidopsis thaliana were downloaded from Plant

TFDB V5.0 (http://planttfdb.gao‑lab.org/index.php, accessed on 15 April 2022), and the
hidden Markov model (HMM) was constructed by HMMER 3.0 (http://hmmer.org/, ac‑
cessed on 17 April 2022) software. The GLK family protein sequences (http://citrus.hzau.
edu.cn/index.php, version2, accessed on 17 April 2022) were searched by HMMER 3.0 soft‑
ware. The CD Search website [29] was used to examine the domains of all candidate GLK
proteins in Citrus. Finally, the complete sequence of Myb DBDwas retained and renamed
CsGLK1~27.

http://planttfdb.gao-lab.org/index.php
http://hmmer.org/
http://citrus.hzau.edu.cn/index.php
http://citrus.hzau.edu.cn/index.php
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2.3. Structural and Phylogenetic Analysis of CsGLKs
The conserved motifs of Citrus GLK family members were analyzed by MEME (https:

//meme‑suite.org/, accessed on 16 April 2022). TBtools was used to extract and visualize
gene structures. The phylogenetic tree was constructed by neighbor‑joining (NJ) method
with 1000 bootstrap replicates after aligning multiple protein sequences of Arabidopsis,
rice and Citrus using ClustalW.

2.4. Chromosomal Locations, Duplication Events and Collinearity among CsGLKs
Information on the chromosomal position image of the CsGLK genes was obtained

based on the gff3 file of Citrus Pan‑genome to Breeding Database (http://citrus.hzau.edu.
cn/index.php, accessed on 20 April 2022). Gene duplication of CsGLKswas detected using
MC Scan X. TBtools software was used for the collinearity analysis.

2.5. Measurement of Chlorophyll Precursor
The contents of ALA, PBG, Mg‑ProtoIX ME, Proto IX, Mg‑Proto IX, Pchl and POR

were measured by Elisa test kits (ZhenKe, Shanghai). The method to determine chloro‑
phyll content referred to Moran and Porath [30]. The determination of chlorophyll a (Chl
a) and chlorophyll b (Chl b)was performed the followingmethod: add 5mLof 95% ethanol
(V:V) and 5 mL of 80% acetone solution to 0.5 g leaves, then extract in dark for 24 h, until
the leaves turn white. The absorbance values of the extract at 665 nm and 649 nm are then
measured in the dark.

Chl a = (12.7 × OD663 − 2.69 × OD645) × V/W

Chl b = (22.9 × OD645 − 4.68 × OD663) × V/W

T‑Chl = (20.0 × OD645 + 8.02 × OD663) × V/W

2.6. Analysis of GLK Expression Pattern in Citrus
Based on the transcription data, the expression profiles of CsGLKs in different tis‑

sues (pericarp, pulp, leaf, root) were studied. The expression level was expressed as Log2
(FPKM + 1).

The expression patterns of GLK family members in different periods and under dark
stress were analyzed by quantitative real‑time PCR. Primer 3.0 was used to design spe‑
cific primers. M5 HiPer Plant RNeasy Complex Mini Kit (Mei5bio, Beijing, China) was
used to extract and purify RNA. After detecting RNA concentration and integrity, the 2X
M5 HiPer SYBR Premium Estaq was used for fluorescence quantification. The primer se‑
quences were listed in Table S1. The relative gene expression values were calculated by the
2−∆∆Ctmethod. In order to compare the expression amount between different periods and
members synchronously, CsGLK7, with the lowest expression in D3, was used to normal‑
ize all members. The experiment included 3 biological replicates and technical replicates.
TBtools was used for visualization.

2.7. Data Analysis
The significance analysis was performed using SPSS 20.0 software using one‑way

ANOVA or Tukey test (p < 0.05). The correlation analysis was conducted by Origin2021.

3. Results
3.1. Identification and Physicochemical Properties of CsGLKs

According to the predictions made by Plant TFDB database, 105 CsGLKs were prelim‑
inarily identified. Then, combining local blast with hmmer 3.0, 27 CsGLK TFs were finally
obtained anddivided into three groups (I to III), and their basic physicochemical properties
were predicted and analyzed (Table 1, Table S2). Amino acid length (number of aa) of Cs‑
GLKs protein was 236 to 664, molecular weight (MolWt) ranged from 26941.09 to 73051.88,

https://meme-suite.org/
https://meme-suite.org/
http://citrus.hzau.edu.cn/index.php
http://citrus.hzau.edu.cn/index.php
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the isoelectric point (pI) range was 5.1–10.45, the range of instability coefficient (II) was
27.25 to 70.30 and the hydrophobicity index (GRAVY) ranged from −0.1057 to −0.579.

Table 1. Physicochemical properties of CsGLKs.

Group Number of aa MolWt pI II GRAVY Number of Intron

I 236–513 26941.09–57449.43 5.14–10.45 27.25–65.29 −1.057–−0.593 2–12
II 370–495 40880.03–54076.87 7.09–8.72 57.16–70.30 −1.032–−0.609 3–4
III 585–664 65447.82–73051.88 5.1–7.04 45.13–39.65 −0.415–−0.579 4–5

3.2. Structural and Phylogenetic Analysis of CsGLKs
In order to investigate the evolutionary relationships of theGLK family, a NJ phyloge‑

netic treewas constructed by the aligned amino acid sequences fromC. sinensis,Arabidopsis
thaliana and Oryza sativa. According to the phylogeny and motif analysis, the GLK family
was divided into three groups. Group I was the largest group, containing 20 members. By
contrast, Group II and III contained only three and four genes, respectively (Figure 1).
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Figure 1. Phylogenetic analysis of Citrus sinensis, Arabidopsis thaliana and Oryza sativa GLKs.
Circles of different colors represented different subgroups. ☆ represented citrus, # represented
maize and △ represented Arabidopsis. * referred to proteins that were not clustered. The tree was
constructed from amino sequences using MEGA‑X software by the neighbor‑joining program with
1000 bootstrap replicates. Clades with different colors represent diverse subgroup.

The phylogenetic relationship was also proved by the motif analysis of 27 GLK genes
in Citrus. The conserved motifs of 27 CsGLKs genes were analyzed. A total of 20 motifs
(Figure 2B) were detected. The MEME website was used for motif alignment of two major
domains (MEME‑1) SHAQKYF (myb‑like DNA‑binding domain) and (MEME‑2) Myb‑CC‑
LHEQLE. It was found that the positions and types of amino acids in the two domains
were conservative in all members (Figure 2E). The motif sequence was shown in Table S3.
Through the CD search tool of NCBI, five motifs were functionally annotated and defined
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as Myb DNA‑binding domain, Myb‑CC‑LHEQLE, Myb‑CC‑LHEQLE superfamily, Alfin
and Response_reg. Myb DBD, which acts as a transcriptional activator to bind to the I‑box
located in the C‑terminal DNA‑binding domain in plants and yeasts [31,32], was highly
conserved in CsGLKs and contains a SHAQKYF structure. In addition to two conserved
binding domains, Group I and Group III contained exclusive motifs, which may repre‑
sent the function diversity and specificity among members of each group. Group I had a
Myb‑CC‑LHEQLEdomain, which had a highly conservedLHEQLE sequence. The domain
seems to respond to various abiotic stresses, such as phosphate starvation signals [6,33].
Group III contained the Response_Reg domain, a response‑regulated receiving domain
that receives signals from sensors in bacterial two‑component systems [34].
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In the analysis of gene structure, different intron regions were found in CsGLK genes
(the number ranged from 3 to 12). Generally, CsGLKs clustered in the same group showed
similar exon number and intron length, such as the members of Group II and Group III
(Figure 2C). However, the members of Group I differ greatly in gene structure, with a
maximum of 12 introns (CsGLK9) and a minimum of 2 (CsGLK25). The variation of introns
might be one of the critical factors leading to the functional diversity during evolution.

In order to further determined the similarity between Citrus GLK domains, 27 CsGLKs
domain sequences were compared with DNAMAN 8 (Figure 3). The results showed that
Myb DBD in CsGLKs contained an HLH structure, and its two regions were particularly
conserved. The initial sequence PELHRR of the first helix always contained 14 amino acids,
and the second helix contained the initial NI/VASHLQmotif. In many transcriptional reg‑
ulators, the HLH domain bound to DNA and mediated dimerization [35,36].
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3.3. CsGLKs Chromosomal Location, Collinearity Analysis and Gene Replication
In total, 27 CsGLKs were distributed on each chromosome. The number of CsGLKs on

chromosomes 4 and 7 were the largest, and there was only one GLK gene on chromosome
1 (Figure 4). The uneven distribution of CsGLKs was similar to that of maize [37].
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To further inferred the evolutionarymechanism ofCitrus CsGLKs, the collinearitywas
constructed. There were 19 homologous genes between Citrus and Arabidopsis (Table S4)
and 11 homologous genes between Citrus and rice (Table S5). 6 CsGLKs were collinear
with both Arabidopsis and rice, indicating that these 6CsGLKsmay have existed before the
differentiation ofmonocotyledons anddicotyledons, and the number of direct homologous
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pairs of CsGLK‑OsGLK was less than that of CsGLK‑AtGLK. These results showed that the
differentiation between rice and dicotyledons occurred before the differentiation of Citrus
and Arabidopsis.

CsGLKs replication events in Citrus genome were estimated by collinearity analysis.
It was found that only one gene tandem replication event occurred in the evolution pro‑
cess, including two genes (CsGLK16 and CsGLK17), located in Chr6 (Figure 5A). The ka/ks
value of the collinear pair was less than 1 (Table S6), indicating that CsGLKs underwent a
purification selected evolution process.
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3.4. Analysis of GLK Expression Pattern
In order to detect the transcription ofGLKs gene ofCitrus, the transcriptome datawere

analyzed. The 27 CsGLKs expression profiles of four tissues were mapped into heat maps
and clustered with similar expression patterns (Figure 6A). The GLK family is divided
into three subfamilies (S1–S3) according to the expression pattern. S2 and S3 contained 8
and 7 genes, respectively. The expression of these 15 genes was higher than that of the
other 12 genes, and most of them belong to the Group1 of GLK. The tissue expression of
S1 subfamily was unbalanced, the expression of CsGLK17 was higher in peel, that of Cs‑
GLK18 in root is higher, CsGLK1 was highly expressed in pulp and CsGLK27 was highly
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expressed in leaves. 7 genes (CsGLK2, CsGLK8, CsGLK9, CsGLK11, CsGLK15, CsGLK20,
CsGLK27) in leaves, 9 genes (CsGLK2, CsGLK8, CsGLK9, CsGLK11, CsGLK13, CsGLK15,
CsGLK18, CsGLK20, CsGLK21) in root and 9 genes (CsGLK2, CsGLK6, CsGLK9, CsGLK11,
CsGLK15, CsGLK16, CsGLK19, CsGLK20, CsGLK21) in pulp, 8 genes (CsGLK2, CsGLK6, Cs‑
GLK7, CsGLK9, CsGLK11, CsGLK15, CsGLK16, CsGLK25) presented high expression lev‑
els (Log2 (FPKM + 1) > 4). Among them, CsGLK2, CsGLK9, CsGLK11 and CsGLK15 were
highly expressed in the four tissues. The members with high tissue specific expression
were CsGLK7 and CsGLK25 (in peel), CsGLK6 and CsGLK19 (in pulp), CsGLK13 and Cs‑
GLK18 (in root) and CsGLK8 and CsGLK27 (in leaf).
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The qRT‑PCR results showed that many members of the GLK family showed high ex‑
pression levels during the growth process (Figure 6B), such as CsGLK2, CsGLK5, CsGLK8,
CsGLK9, CsGLK12, CsGLK15, CsGLK18, CsGLK20, etc. Conversely, there were some genes
with low expression, such as CsGLK1, CsGLK4, CsGLK6, CsGLK10, CsGLK17, CsGLK24, Cs‑
GLK27, etc. The expression of CsGLK1, CsGLK3, CsGLK4, CsGLK7, CsGLK10, CsGLK13, Cs‑
GLK23 and CsGLK27 remained low throughout the growth period (Figure 6C). The expres‑
sion of some members fluctuated in different growth periods, such as CsGLK8, CsGLK11,
CsGLK12 and CsGLK25, which were lower in the early growth stage, and then increased in
the late growth stage. In dark environment, the expressions of CsGLK2, CsGLK9, CsGLK11,
CsGLK15, CsGLK18, CsGLK19 and CsGLK24 were significantly increased, indicating that
these genes may be the positive regulators of dark stress (p < 0.05, Table S7). The expres‑
sion levels of CsGLK5 and CsGLK13were significantly decreased (p < 0.05, Table S7). Genes
highly expressed during leaf growth and under dark stress included CsGLK2, CsGLK9, Cs‑
GLK15, CsGLK18 andCsGLK20. Theymay be the keymembers to optimize photosynthesis,
promote chlorophyll synthesis and chloroplast development under abiotic stress.

3.5. Chlorophyll Precursor Content
During leaf growth, ALA, POR, Chl a, Chl b and T‑Chl showed an overall upward

trend; Mg ProtoIX ME, ChlM and UROD first increased and then decreased; Glu‑tRNAs
activity reached the maximum on the 11th day; and the changes in other periods were
not significant (Figure 7). The expression of GLK members during the growth period also
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showed a fluctuation. To further study the relationship between chlorophyll precursors
and GLKmembers, the correlation analysis was conducted.
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3.6. Correlation Analysis
CsGLK5, CsGLK8, CsGLK9, CsGLK11, CsGLK15, CsGLK16, CsGLK18, CsGLK20, Cs‑

GLK25 and CsGLK26 were positively correlated with the contents of Proto IX, Mg Proto
IX and Pchl (Figure 8). CsGLK2, CsGLK9, CsGLK10, CsGLK11, CsGLK20 and CsGLK24were
significantly positive correlations with Chl a and Chl b contents. CsGLK2, CsGLK5, Cs‑
GLK10, CsGLK11, CsGLK12, CsGLK15, CsGLK20 and CsGLK24 are positively significantly
related to Mg‑Proto IX, Proto IX and Pchl. By contrast, CsGLK1, CsGLK2, CsGLK10, Cs‑
GLK1, CsGLK12, CsGLK14, CsGLK16 and CsGLK20 had a negative correlation with ALA
and PBG. All members had little significant correlation with the activities of ChlM and
Glu‑tRNAs (Table S8).
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4. Discussion
The HLH region and GCT box in GLK TFs family were highly conserved [10]. Two

conserved helix structures of HLH were identified in this study. Multiple sequence align‑
ment showed that the second helix region (VK/VASHLQ) among CsGLK genes was highly
conserved, while many variants of CsGLK genes were observed in the first helix, but L and
Hwere relatively conserved. This indicated that the first helix might be the decisive factor
for the functional differentiation and diversity of CsGLKs. Functional diversity caused by
sequence variation also appeared in maize [37].

Polygenic families are usually derived from gene replication, and amplificationmech‑
anisms include fragment/tandem repeat, reverse transcription transposition and genome
polyploidy [38,39]. In this study, we found that only one gene replication event (CsGLK16,
CsGLK17) occurred in sweet orange, indicating that the main way of evolution ofGLK fam‑
ily members may not be gene replication. Intron loss and insertion often occur, whichmay
be of great significance to gene evolution. The number of introns in eukaryotes has been
greatly reduced in the process of evolution, while the increasing frequency is low [40]. In
addition, the analysis of rice fragment replication events show that loss of introns more
than acquisition [41]. In this study, the distribution of introns in CsGLK gene had great
variability, ranging from 2 to 12 (Table 1). Therefore, it was inferred that the variation of
introns was the main structure of CsGLK gene evolution since its origin. The variation of
gene structure was not only manifested in the number of introns, but also in the length
of exons, which suggests that the changes of transcription length (extension or termina‑
tion) affected the gene structure and acquisition or loss of domain, thereby changing the
function of protein.

When gene replication occurs, each duplicated gene has two different possibilities:
(1) a copy mostly keeps stable and maintains the original feature by negative selection or
(2) the remaining copies are not selected and became pseudogenes [42]. The expression
of CsGLK1, CsGLK4, CsGLK6, CsGLK10, CsGLK17 and CsGLK27 was very low or not ex‑
pressed in all tissues and growth period, indicating they may be a pseudogene or a silent
paralog. It seems that mutations in the regulatory regions, up/downstream and coding re‑
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gion (exon site) might affect the expression and function of the newmembers of GLK gene
family under evolution events [43,44].

The GLK gene is essential for chloroplast development in plants [11]. However, the
expression levels of CsGLK2, CsGLK20 and CsGLK21were very high in roots. In the study
of tissue‑specific expression of maize GLK gene, it was found that ZmGLK2, ZmGLK9,
ZmGLK28, ZmGLK35 and ZmGLK44 were also relatively high in roots [37]. These genes
may be involved in stress response.

Research shows thatGLK induced upregulation in three main steps: (1) the formation
of diethylene protochlorophyllide, (2) the formation of chlorophyll a and (3) the formation
of chlorophyll b [17]. In this study, CsGLK8, CsGLK11, CsGLK15 and CsGLK22were signif‑
icantly positive correlations with Chl a and Chl b contents. In addition, CsGLK2, CsGLK9
andCsGLK18 are also significantly related toALA,Mg‑ProtoIXME,Mg‑Proto IX and Proto
IX. Meanwhile, these genes were also highly expressed at different stages and dark. They
may adapt to different environments by increasing the content of the above precursors.

5. Conclusions
In general, 27 CsGLKs were identified in the sweet orange genome and divided into

three groups according to gene structure, motif composition and phylogenetic analysis. Be‑
fore the differentiation of monocotyledons and dicotyledons, the GLK transcription factor
family already existed. The variation of introns suggested that it might be a main configu‑
ration for the evolution of CsGLKs. The CsGLKswere unevenly distributed across all nine
chromosomes. There was only one pair of tandem duplicated CsGLK genes. The expres‑
sion of GLK family members was variable, with different expressions at different growth
stages and tissues, and could actively respond to dark stress. CsGLKs of the same group
had a similar structure, but their expression patterns were quite different. They might
have different functions but not be redundant. This means that the primary and secondary
metabolic pathways during plant development are a very complex system. Therefore, the
specific functions ofCsGLKs need to be further verified, and it is great significance to reveal
the homologous sequences in each branch.
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