
Citation: Zhou, Y.; Underhill, S.J.R.

Characterisation of Breadfruit

(Artocarpus altilis) Plants Growing on

Lakoocha (A. lakoocha) Rootstocks.

Horticulturae 2022, 8, 916.

https://doi.org/10.3390/

horticulturae8100916

Academic Editor: Esmaeil Fallahi

Received: 2 September 2022

Accepted: 30 September 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Characterisation of Breadfruit (Artocarpus altilis) Plants
Growing on Lakoocha (A. lakoocha) Rootstocks
Yuchan Zhou * and Steven J. R. Underhill

Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Sippy Downs,
QLD 4556, Australia
* Correspondence: yzhou1@usc.edu.au

Abstract: Breadfruit (Artocarpus altilis) is a traditional fruit tree of 15–30 m tall in Oceania. The species
is a staple crop for food security in the tropics. Tree loss from tropical windstorms, together with
transition toward high-density planting has driven an interest in the dwarf phenotype of the species.
Information on dwarfing rootstocks for breadfruit is currently limited. The aim of this study was
to assess the performance of breadfruit growth with lakoocha (Artocarpus lakoocha) as rootstocks.
We compared the phenotype of breadfruit trees on lakoocha rootstocks with those on self-graft and
non-graft within 21 months after grafting. These led to the discovery of a rootstock-induced dwarf
trait in breadfruit species. Breadfruit scions on lakoocha rootstocks displayed a reduction in tree
height, stem thickness, and internode length, with fewer branches and leaves, resulting in about
32% of the standard height at the end of 21 months after grafting. These suggest lakoocha rootstocks
have the potential to control breadfruit tree vigor. Non-structural carbohydrate analysis showed
the composite trees exhibited lower hexose concentration in both scion stems and roots, but higher
sucrose level in scion stems, and higher starch level in roots. The significance of these parameters in
rootstock dwarfing is discussed.

Keywords: rootstock; scion; dwarfing; phenotype; non-structural carbohydrate; stems; roots;
Artocarpus altilis; Artocarpus lakoocha

1. Introduction

Breadfruit [Artocarpus altilis (Parkinson) Fosberg)] is a traditional fruit tree in the
tropics. With significant nutritional and ecological benefit, the species is regarded as a
staple crop for food security in Oceania [1–4]. However, as an evergreen tree of 15 to 30 m,
breadfruit is prone to wind damage. Intense tropical windstorms, such as cyclones and
hurricanes on the islands in recent decades, have resulted in the destruction or uprooting of
numerous mature breadfruit trees [5–8]. Tree height also creates major constraint for disease
control and fruit harvesting, leading to increase in production cost [5,9]. In response to these
constraints, there is increasing interest in searching for the dwarf phenotype of the species.
Breadfruit has hundreds of cultivars, displaying great morphological and agronomic di-
versity; however, a naturally dwarf variety of the species has not been discovered [10–12].
Dwarfism has been achieved largely through the use of dwarfing rootstocks in many other
fruit tree species, including the M9 and M27 for apple rootstocks [13], the ControllerTM

series for peach rootstocks [14], the Gisela 5 (Prunus cerasus × Prunus canescens) for sweet
cherry rootstocks [15], the trifoliata ‘Flying Dragon’ orange (Poncirus trifoliata L. Raf.) for
citrus rootstocks [16], and the Pectinifera for Fremont mandarin rootstocks [17]. These
dwarfing rootstocks have revolutionised fruit production by conferring smaller tree size,
increasing precocity, and substantially decreasing production costs in high-density plant-
ing [18,19]. Dwarfing rootstocks for breadfruit are still less known. Vegetative propagation
is essential for the seedless breadfruit varieties, but also preferred for the seeded varieties
as a result of their recalcitrant seeds [12]. Breadfruit vegetative propagation is generally
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through cuttings, air layering, and root suckers [12]. Breadfruit grafting was practised in
the tropics where its closely related species, A. mariannensis and A. camansi, were used as
rootstocks [20–22]. Breadfruit grafting onto other interspecific rootstocks, including pedalai
(A. sericicarpus) and marang (A. odoratissimus), were also reported [23]. Of these rootstocks,
marang rootstock has been shown to induce dwarfing of breadfruit scions [24]. A recent
assessment suggested that the dwarf phenotype on marang rootstock was not associated
with graft incompatibility [25], but rather caused by an intriguing interaction of scions
and rootstocks that involved disruption in networks of hormone transduction, nutrient
transport, and sucrose utilisation, leading to inhibition of cell elongation in scions [25,26].
There is currently limited information on the impact of other Artocarpus rootstocks on
the performance of breadfruit species. The genus Artocarpus comprises approximately
60 species, including A. heterophyllus (jackfruit), A. integer (chempedak), A. hirsutus (wild
jack), A. lanceifolius (keledang), A. anisophyllus (entawak), and lakoocha (A. lakoocha) [27].
While most of these species are tall rainforest trees, they display great diversity in tree
stature [28]. Notably, Artocarpus lakoocha Roxb. (Syn: A. lacucha Buch.-Ham.), also known
as ‘lakoocha’ or ‘monkey jack’, is a tropical evergreen tree species of 6 to 15 m tall [28–30].
Native to India, the species is widely distributed in tropical counties, ranging from south-
east Asia to the Himalayan countries of the Indian subcontinent [30,31]. Breadfruit grafting
onto lakoocha rootstocks has not been reported. We hypothesized that the smaller tree size
habit of the lakoocha species could create potential for rootstock-induced control over the
vigor of breadfruit trees.

In this study, we investigated the morphological characteristics of breadfruit trees
growing on lakoocha rootstocks following a recent success in generating the composite
trees. We identified a distinct dwarf habit in breadfruit trees when lakoocha was used as
a rootstock. Further comparative biochemical analysis revealed lakoocha rootstocks also
affected the content of non-structural carbohydrates, including sucrose, glucose, fructose,
and starch in stems and roots of the composite plants. The potential role of these biochemical
properties in rootstock-induced dwarfism of breadfruit is further discussed.

2. Materials and Methods
2.1. Plant Materials

Breadfruit plants (Artocarpus altilis cv. Noli), grown from stem cuttings and seedlings
of lakoocha (Artocarpus lakoocha), were obtained from a commercial nursery in northern
Queensland. Both scions and rootstocks were grown as pot plants in glasshouse at 25~28 ◦C
with water supply and fertilizers as previously described [24]. Breadfruit scions were
grafted onto lakoocha seedlings (cross-species graft), and also grafted onto the same
breadfruit cultivar as rootstocks (self-graft). Graft success was determined as the survival
rate at 3 months after the beginning of grafting. The final survival percentage was measured
at 21 months after grafting. Any survival graft after 3 months from grafting was sampled as
one biological replicate for further observation. For grafting, breadfruit scions of 30~50 cm
were grafted onto lakoocha seedlings of similar size using approach grafting [23]. Six
months after grafting, every established grafted plant was transferred to an 85-litre pot
and continued to grow under the same condition. The non-graft controls (own-rooted
breadfruits) were selected with similar height to the self-graft at the end of 3 months after
grafting and were grown alongside for comparison. Breadfruit scions were also grafted
onto the same breadfruit cultivar as the self-graft control. Four trials were performed, each
trial started with at least six replicates for each scion/rootstock combination at 3 months
after grafting.

2.2. Morphological Comparison of Breadfruit Trees on Different Rootstocks

Stem elongation of grafted and non-grafted plants was measured as previously de-
scribed [24]. Internode length was measured from the second internodes after elongation
ceased. Node and branch number (with at least one node) was counted on the main scion
stems. Stem diameter was calculated based on the averaged stem circumference of the
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top five internodes. Leaf size was examined from three fully matured leaves per plant as
previously described [24]. Leaf characteristics, such as leaf shape, leaf lobe number, leaf
margin, base, and apex were inspected concurrently. The ratio of stem diameter above and
below graft union was examined at 5 cm above and below the graft union at 21 months
after grafting. Graft compatibility rate was assessed at both 12 and 21 months after graft-
ing. Plants showing graft compatibility were defined as displaying active growth with
continuous development of green leaves from the apex, and progressive emergence of new
internodes from apical buds (Supplementary Figure S1). The 1-year or final (21 months)
graft compatibility was determined by the percentage of compatible plants collected from
two independent trials (each with 8 replicates for each graft combination from the begin-
ning) out of the total survived grafts at 3 months after grafting. Phenotype comparison was
only performed on compatible grafts.

2.3. Measurement of Leaf Chlorophyll Content

Chlorophyll concentration was estimated every 3 months with a chlorophyll meter
(atLeaf Chl meter, FT GREEN LLC, Wilmington, DE, USA), and converted to total chloro-
phyll content [24]. The final chlorophyll content at 21 months after grafting was determined
analytically as previously described [25].

2.4. Non-Structural Carbohydrate Analysis

All sampling occurred between 8 am and 9 am. Upon separation from plants, tissues
were snap-frozen in liquid N2 immediately. Stem tissues were sampled at the second
internode from the top in each plant. For root sampling, roots were carefully removed
from pots, washed to remove soils, and healthy fine roots were collected under water.
Soluble sugars of each sample (50 mg) were extracted in 80% ethanol at 60 ◦C for 2 h. Su-
pernatants were evaporated and dissolved in sterile water. Soluble sugars were determined
enzymatically, with glucose and fructose according to D-Fructose/D-Glucose assay kit
(Megazyme, Bray, Ireland), and sucrose according to Birnberg and Brenner [32]. The pellets
of ethanol extraction were digested with amyloglucosidase and α-amylase, as previously
described [25], and the released glucose units were determined enzymatically as above.

2.5. Statistical Analyses

Statistical analysis of all data was performed in SPSS (IBM Statistics version 27).
Significant differences related to concentration, growth rate, stem height, and diameter were
analysed using analysis of variance (ANOVA) followed by Tukey’s multiple comparison
test at p < 0.05. Significant differences in number of leaves, nodes, and branches were
analysed with the Kruskal–Wallis test. Significant differences of graft compatibility were
analysed by Fisher’s exact test.

3. Results
3.1. Growth Habit of Breadfruit Plants on Different Rootstocks

Grafting of breadfruit scions was achieved on lakoocha rootstocks (Supplementary
Figure S2). The graft success rate for the breadfruit/lakoocha combination was 51.6% at
the end of 3 months after grafting. The successful grafting events were initially identified
by survival of grafted scions for >4 weeks only dependent on the rootstocks at 3 months
after grafting, consistent with previous findings in breadfruit grafting on interspecific
rootstocks of marang (A. odoratissimus) and pedalai (A. sericicarpus) [23]. By 6 months, the
successful grafts could be confirmed by the emergence of new leaves and new shoot growth
(Supplementary Figure S2).

Growth curve analysis in the period from 3 to 21 months after grafting (Figures 1 and 2,
also see Supplementary Table S1) showed plants growing on lakoocha rootstocks displayed
significantly shorter stature compared with the standard size (non-grafted plants). The
decrease in scion height began to appear from 9 months, where a reduction of 52.2%
was observed compared with those of the self-graft. The height of scions between the
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self-graft and the non-graft was not significantly different at any time point in the period
(Figure 2). Consistently, the self-graft scions elongated at a similar rate as those of the
non-graft, while a decreased elongation rate was shown in plants growing on lakoocha
rootstocks (Table 1). As a result, at the end of 21 months, plants on lakoocha rootstocks
were significantly shorter, with a reduction of 68.3% and 67.9% in height, respectively,
compared with those on self-graft and non-graft, resulting in a dwarf phenotype (Figure 1,
Table 1). Apart from shorter stature, the stem thickness on lakoocha rootstocks was reduced
by 52.9% and 49.8%, respectively, compared with those on self-graft and non-graft (Table 1).
Node number of scion main stems between rootstocks was not changed, but the internode
length on lakoocha rootstocks displayed a reduction of 61.9% compared with those on
self-graft, whereas no difference was found between those of the self-graft and non-graft
(Figure 1, Table 1). By the end of 21 months, plants on lakoocha rootstocks also displayed
reduction in branch number and leaf number. While they had smaller leaves, plants on
lakoocha rootstocks displayed no change in other leaf characteristics, such as leaf shape
and surface, apex, margin, vein, and lobe number (Figures 1 and S1). Total chlorophyll
content measured every three months by a non-destructive method showed insignificant
differences in scion leaves between different rootstock types in the tested period (Figure 3).
Consistently, analytical measurement at 21 months after grafting showed no significant
difference in leaf chlorophyll (Chl) concentration, including Chl a, Chl b, Chl a + b, and Chl
a/b in scion leaves of different rootstocks (Table 1).Horticulturae 2022, 8, x FOR PEER REVIEW 5 of 13 

 

 
Figure 1. Representatives of breadfruit plants growing on different rootstocks. (a) Breadfruit plants 
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Figure 1. Representatives of breadfruit plants growing on different rootstocks. (a) Breadfruit plants
growing on lakooch rootstocks (BL), self-graft (BB), and non-graft (N) at 21 months after grafting.
(b–d) Breadfruit shoots showing internode length growing on lakoocha rootstocks (b), self-graft (c),
and non-graft (d).
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Table 1. Morphological assessment of breadfruit plants growing on different rootstocks *.

Non-Graft Self-Graft On Lakoocha

Final scion height (cm) 151.17 ± 8.60 b 156.67 ± 10.14 b 47.97 ± 5.05 a
Main stem diameter (cm) 2.91 ± 0.80 b 3.10 ± 0.78 b 1.46 ± 0.37 a
Node number on main stems 28.22 ± 4.53 a 27.04 ± 4.61 a 22.48 ± 2.56 a

Number of branches per plant 2.20 ± 0.42 b 2.42 ± 0.27 b 0.61 ± 0.45 a
Main stem elongation rate (cm/month) 7.32 ± 2.19 b 6.96 ± 0.75 b 2.21 ± 0.62 a
Second internode length in Main stems (cm) 5.62 ± 1.20 b 5.91 ± 1.25 b 2.25 ± 0.23 a
Leaf numbers per plant 7.23 ± 0.53 b 8.40 ± 0.60 b 4.00 ± 0.35 a
Leaf chlorophyll a (mg/g) 2.22 ± 0.55 a 2.49 ± 0.61 a 2.12 ± 0.42 a
Leaf chlorophyll b (mg/g) 0.83 ± 0.10 a 0.87 ± 0.12 a 1.32 ± 0.34 a
leaf chlorophyll a + b (mg/g) 2.76 ± 0.81 a 3.36 ± 0.61 a 3.44 ± 0.63 a
Leaf chlorophyll a/b 3.04 ± 0.56 a 3.01 ± 0.88 a 1.97 ± 0.47 a
Leaf length 82.55 ± 1.16 b 78.50 ± 3.18 b 55.89 ± 5.90 a
Leaf width 58.50 ± 2.43 b 60.25 ± 2.56 b 39.25 ± 3.67 a

Stem diameter at 5 cm above graft union 3.25 ± 0.25 a 1.71 ± 0.10 b
Stem diameter at 5 cm below graft union 3.31 ± 0.34 a 1.60 ± 0.16 b
Stem diameter difference above and below graft union 0.18 ± 0.06 a 0.17 ± 0.09 a
Ratio of stem diameter above and below graft union 0.99 ± 0.04 a 1.09 ± 0.08 a
Final survival (%) 59.72 ± 6.15 a 40.05 ± 4.85 b
1-year graft compatibility (%) 81.25 ± 8.84 a 68.75 ± 8.84 a
Final graft compatibility (%) 75.00 ± 0.00 a 62.50 ± 0.00 a

The 1-year and final compatibility represent the mean ± SD of two independent trials, with eight replicates for
each graft combination at each trial. All other values represent the mean ± SE of five replicates. Values with
different letters in the same row are significantly different (p < 0.05). * Measurement conducted at 21 months
after grafting.

Apart from dwarf habit, the composite trees on lakoocha rootstocks grew normally
in the current condition. Regardless of the rootstock types, all grafted plants displayed
continuous emergence of green leaves from the apex, with new internodes progressively
formed from apical buds or axillary buds (Supplementary Figure S1). Of the grafts that
survived for >3 months after grafting, the differences between the 1-year and final graft
compatibility rates across types of rootstocks were not significant (Table 1).

3.2. Effect of Rootstocks on Non-Structural Carbohydrate Contents

Non-structural carbohydrate contents (NSC) of root and scion stem tissues were
measured at 15, 18, and 21 months after grafting. Significantly lower levels of glucose and
fructose were detected in scion stems growing on lakoocha rootstocks at all the three time-
points, with a reduction of 36.6%, 37.2%, and 45.6%, respectively, at 15, 18, and 21 months in
glucose, and a reduction of 43.1%, 33.1%, and 41.8%, respectively, at 15, 18, and 21 months
in fructose, compared with those on self-graft at the same time points (Figure 4a,b). In
contrast, scion stems on lakoocha rootstocks showed higher levels of sucrose in all the
three time-points, with an increase of 42.2%, 99.2%, and 128.1%, respectively, at 15, 18,
and 21 months compared with those on self-graft (Figure 4c). These sugar levels were not
significantly different between those on self-graft and non-graft. The difference in starch
content of scion stems across different rootstocks was not significant (Figure 4d).

In root tissues, significantly lower glucose and fructose levels were also detected in
lakoocha rootstocks at both 18 and 21 months after grafting, with a reduction of 43.1%
(18 months) and 39.7% (21 months) in glucose, and a reduction of 45.6% (18 months) and
39.2% (21 months) in fructose compared with those of self-graft at the same time (Figure 5).
Levels of glucose and fructose in root tissues were not significantly different between the
self-graft and non-graft. While there was no difference in sucrose levels between the types
of rootstocks, higher starch contents were detected in roots of lakoocha rootstocks for all the
time-points, all with an increase of over 50% compared with the self-graft and non-grafted.
Levels of starch in root tissues were not significantly different between the self-graft and
non-graft (Figure 5).
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4. Discussion

In the current study, breadfruit scions were successfully grafted onto lakoocha root-
stocks, and the phenotype of the composite plants was characterised for the first time.
As expected from the lakoocha species being a smaller tree in nature [29,30], breadfruit
scions on these rootstocks displayed a distinct dwarf habit compared with their standard
size (self-graft and non-graft), and were also characterised by decreased stem thickness
and internode length. The composite trees also had fewer branches and smaller leaves
(Figures 1 and 2, Table 1). The difference in growth pattern between the self-graft and
the self-rooted breadfruits (non-graft) was negligible, suggesting the impact of the graft
union on the growth of self-graft was not significant during the tested period. The growth
habit of breadfruit trees on lakoocha rootstocks is in agreement with the rootstock-induced
dwarfing of many other species [16,33–35]; it also shared similarity to the dwarf traits of
the species on marang rootstocks [24]. In addition, our findings that the rootstock-induced
dwarf traits in breadfruit scions developed in the early stage of vegetative growth support
previous findings that the effect of most dwarfing rootstocks on scion architecture occurs in
the first or second year after grafting [36,37]. Furthermore, architectural modelling in the
rootstock-induced dwarfing of apple trees suggests that several growth parameters, includ-
ing internode length, stem cross-sectional area, and number of axillary shoots observed in
the early growth season are highly correlated with the long-term dwarfing potential [36,38].
Therefore, the growth parameters affected by lakoocha rootstocks, including decrease in
stem thickness and internode length, and reduction in branch numbers could be applied to
the prediction of dwarfing phenomenon over time for the breadfruit/lakoocha composite
trees. Our results that breadfruit scions growing on lakoocha rootstocks were less than
32% of the standard height at 21 months after grafting point to the potential of lakoocha
rootstocks in breadfruit tree vigor control for wind resistance and high-density planting.
However, long-term assessment for the effect of lakoocha rootstocks on breadfruit growth,
and other agronomic traits, including flowering and fruiting, is required in the future.

Rootstock performance and its ultimate success in commercial application not only
depends on the interaction between genotypes of scion and rootstock, but also the com-
patibility of the rootstock with scion [18,39,40]; it is therefore necessary to assess the graft
combination of breadfruit/lakoocha for graft compatibility. Graft compatibility indexes,
including the ratio and difference of diameter in stems above and below the graft union,
examined at 21 months after grafting showed these values were not significantly different
between the self-graft and breadfruit/lakoocha graft (Table 1). In both combinations, the
difference between diameter in stems above and below the graft union was very small, and
the ratio of scion to rootstock stem diameter in the breadfruit/lakoocha combination was
very close to 1. The growth differences above and below the graft union has often been
used to correlate growth characteristics with graft incompatibility [41]; in particular, the
ratio of the stem diameter above and below the graft union has been applied as an early
determinant of long-term graft incompatibility [41–43]. Based on these indexes, the in-
compatibility was not apparent in the breadfruit/lakoocha combination at 21 months after
grafting. Consistent with the compatibility indexes, scion leaf chlorophyll (Chl) on lokoocha
rootstocks, including Chl a, Chl b, Chl a + Chl b, and Chl a/b was not significantly different
from those of the self-graft (Figure 3, Table 1). Chlorophyll content served as an indicator of
carbon assimilation, nitrogen uptake, and stress adaptation for the proper functioning of a
composite plant, and has provided a sensitive tool to identify graft incompatibility [41–43].
Furthermore, there was no difference in the 1-year and the final compatibility rates between
the breadfruit/lakoocha grafts and the self-grafts. Taken together, these evidences suggest
that, at this stage, the dwarf phenotype of breadfruit scions on lakoocha rootstocks was not
associated with graft incompatibility. Over the course of the experiment, we observed some
breadfruit/lakoocha combinations developed a thinner rootstock stems compared with
their scion stems at the early stage of graft establishment (during 3~6 months after grafting).
However, this structure did not sustain to the second year after grafting (Figure S2). It is
not known whether this pattern is associated with the approach grafting techniques. In this
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procedure, both scions and rootstocks were bound tightly together in the first 2 months;
they were self-sustained by their own roots [44]. During this period, some breadfruit scions
grew faster than lakoocha rootstocks, resulting in thicker scions by the time they were
separated from the scion roots. It was also possible that there was scion swelling above
the graft union at the early stage of graft establishment. The nature of this pattern or
whether it could be used as a reliable indicator for graft incompatibility in the long run
for breadfruit species needs further investigation. Given that an incompatible graft can
grow for years without any external indication in woody species [45], and not all methods
are reliable indicators for graft incompatibility for a given species [41], it is essential that
evaluation for graft compatibility of the breadfruit/lokoocha combination be done in actual
field conditions over a long period of time for its efficiency to produce satisfactory yields at
a commercial scale.

The lower hexose levels in combination with higher sucrose levels detected in scion
stems on lakoocha rootstocks (Figure 4) may reflect a disruption of sucrose utilisation
induced by the rootstocks. In higher plants, sucrose produced during photosynthesis in
leaves (sources tissues) is transported to different sink tissues, such as roots and stems.
Sucrose is hydrolysed to produce hexose in sink tissues (such as stems and roots) for
cell metabolism, energy production, and macromolecule biosynthesis [46]. The lower
levels of hexose observed in scion stems and roots growing on lakoocha rootstocks are
in agreement with previous findings in apple trees on dwarfing rootstocks ‘M27’ and
‘M9’ [13]. These evidences suggest that hexose depletion leading to reduction of carbon and
energy metabolism may have a role in the growth inhibition of composite trees growing on
dwarfing rootstocks. On the other hand, as a signalling molecule, intracellular sucrose can
communicate metabolic demand to regulate sucrose influx [47]; the evidences that high
sucrose concentration negatively regulates phloem loading through repressing its own
transport [46] also point to the potential role of disruption in carbon partitioning in the
dwarfing effect of lakoocha rootstocks.

Our findings that roots of the breadfruit/lakoocha composite trees accumulated higher
levels of starch than those in self-graft are in agreement with previous findings that dwarf-
ing citrus and apple rootstocks contained more starch than vigorous rootstocks [13,48,49],
and suggest an impaired balance of starch reserve and hexose level in dwarfing rootstocks.
Higher starch concentration in roots of woody plants was associated with inhibition of
shoot elongation, such as during dormancy [44]. On the other hand, root starch plays
a crucial role in plant growth and development under depressed photosynthesis, as it
can be immediately degraded to supply respiratory substrates, therefore maintaining root
functions, such as water and nutrient uptake [50,51]. For example, perennial plants with
disturbed aerial parts often have higher starch content in their roots [52]. Therefore, increase
in starch reserve at the expense of hexose for cellular activity and growth may be a strategy
for continuous root function following reduction of total photosynthetic leaf area in scions
growing on lakoocha rootstocks. In support of this hypothesis are findings that scion leaf
chlorophyll contents were not significantly changed when compared with the self-graft
and non-graft. Leaf chlorophyll content is an indicator of carbon assimilation and nitrogen
uptake, and reflects the proper functioning of the composite trees [41–43].

5. Conclusions

We reported the phenotype of grafted breadfruit plants growing with lakoocha as
rootstocks following the successful development of the composite trees. Within the period
up to 21 months after grafting, the composite plants displayed shorter stem height in
combination with decreased stem thickness and internode length, fewer branches, and
smaller leaves, consistent with the phenotype of rootstock-induced dwarfing. Breadfruit
plants on lakoocha rootstocks also showed lower hexose concentration in both scion stems
and roots, but higher sucrose concentration in scion stems, and higher starch concentration
in roots. The information provides opportunity to design rootstock breeding programs that
confer vigor control over breadfruit scions. However, evaluation for graft compatibility
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of the breadfruit/lokoocha combination is required in actual field conditions over a long
period of time for its efficiency to produce satisfactory yields at a commercial scale.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae8100916/s1, Figure S1: Representatives of graft-
compatible phenotype of breadfruit plants on different rootstocks, Figure S2: Representatives of
grafted breadfruit plants on lakoocha rootstocks at 3 and 6 months after grafting; Table S1: Raw data
of scion height of breadfruit plants on different rootstocks.
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