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Abstract: Reduction of plant growth, yield and quality due to diverse environmental constrains along
with climate change significantly limit the sustainable production of horticultural crops. In this review,
we highlight the prospective impacts that are positive challenges for the application of beneficial
microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new
breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial
light in sustainable production of horticultural crops. The benefits of such applications are often
evaluated by measuring their impact on the metabolic, morphological and biochemical parameters
of a variety of cultures, which typically results in higher yields with efficient use of resources when
applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play
a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their
protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of
the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and
CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants
using CRISPR, including its role in modulating gene expression/transcription factors in improving
crop production and tolerance, was also reviewed.

Keywords: microbial endophytes; nanomaterials; strigolactones; artificial lights; CRISPR; plant stress
resilience; sustainable horticulture

1. Introduction

The production of horticultural crops faces many challenges nowadays. These chal-
lenges have several root causes that include: (i) an increasing global population (projected
to reach 10 billion people by 2050) skewed towards urban populations that consume rather
than produce our food supply [1–3], (ii) the increased negative impact of environmen-
tal challenges such as salinity, drought, disease pressure, heavy metal toxicity, etc. due
to climate change, which restricts arable land availability and reduces crop yield [4–10],
(iii) challenges with resource use efficiency to limit environmental releases of chemicals [11]
and (iv) increase in the use of pesticides, fungicides, bactericides, herbicides and other
chemical-controlling biotic agents and the environmental and health challenges related to
the over-use of these chemicals [12].

Increasing crop productivity is required without significantly increasing land, water or
fertilizer use. In this respect, the diversity of soil microbes and plant-microbial associations
are among the most studied areas for the use and development of sustainable horticultural,
agricultural and forestry production systems. The use of endophytic microbes that stim-
ulate growth and induce defense mechanisms of host plants (without a negative impact)
is considered to be an affordable, cheap, fast, climate-smart and eco-friendly alternative
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biological approach for increasing the adaptive potential and crop productivity/quality
in changing environmental conditions [13,14]. Nowadays, the ubiquity of endophytic
microorganisms is widely recognized and the opportunities for their use in crop production
are of great interest [14–17]. The physiological action of beneficial microbial endophytes
on host plants is associated with effective competition for space and nutrients with phy-
topathogens [18], improving the bioavailability of macro-/microelements and the mineral
nutrition of plants [19–21], photosynthesis [22,23], stomatal conductance [24], water sta-
tus [25], modulating the endogenous hormonal background influencing the architecture of
the root system [26,27], regulating the production of phytohormones and their accumula-
tion in plants [14,26,27], activating the synthesis of various antioxidant and osmoprotec-
tive compounds [28,29], various biologically active substances [19,29–31] and signaling
molecules that activate induced systemic defense in hosts against biotic [32–34] and abiotic
stresses [35,36]; thereby leading to better plant growth, yield and product quality.

The improvement of productivity, quality and stress tolerance of horticultural crops
through selection and genome editing (GE) approaches [37–39], exogenous application
of nanomaterials (NMs) [40] and phytohormones strigolactones (SLs) [41,42] as well as
controlled environment horticulture (CEH) using artificial lights [3,43,44] are generating
considerable interest as well. NMs and SLs are representing a promising type of eco-
friendly formulation based on natural products, which are commonly used exogenously to
improve tolerance to biotic and abiotic stresses. The use of NMs is one of the youngest areas
of agrobitechnological engineering, which can significantly reduce costs and improve the
quality and yield of horticultural crops while minimizing the adverse effects of chemical
pesticides [40,45,46]. For the first time, the use of nanotechnologies in crop production was
discussed in the late 2000s; it is positioned how the “new technological revolution” has
become a part of human life only since 2001. Recently, a novel class of phytohormones,
SLs, appeared as a driving force, controlling plant growth and development processes, and
playing a pivotal role in managing environmental stressors [41,42,47]. SLs are regarded to
be vital hormones for the maintenance of plant architecture by regulating the generation of
root and shoots in response to several unfavorable environmental conditions [48–50]. To
date, research into the application of NMs and SLs in agriculture and horticulture is still at
an early stage, but is developing rapidly.

The CEH movement is rapidly developing worldwide, mainly through the production
of horticultural crops, and seems to be a revolutionary approach to the sustainable produc-
tion of healthy products with optimized resource use efficiency [3,43,51]. CEH is a new
form of growing crops (especially horticultural crops) within a controlled environment
to optimize horticultural practices and yield [52]. Indoor environments equipped with
artificial lighting are spreading all over the world for growing crops. These are devel-
oped facilities with sophisticated control over various environmental factors (for example,
temperature, humidity, light and CO2 concentration) to minimize the interaction with the
outside climate [3,43]. Due to diverse type of advantages such as versatility, lack of depen-
dency on the season and location, extremely high resource use efficiency, environmentally
friendly impacts, high product quality and phytonutrient content that can be obtained
through the manipulation of the growing environment, elimination of pesticides or other
biocides, long shelf life and reduced transportation costs, production of crops in CEH
facilities is becoming popular and different aspects related to crop production in CEH are
planned to be optimized or under investigation [44,53–55].

In parallel with the innovative techniques discussed above, which focus on external
conditions (endophytes, NMs, SLs and environmental inputs) that maximize horticultural
crop productivity, we also highlight the contribution of improved genetics through the
development of new crop varieties. Crops have been domesticated and improved over
thousands of years using conventional breeding techniques. These techniques have been
accelerated in recent years using newer technologies that directly manipulate the genome
in a targeted fashion. The first generations of commercial genetic-modified crops, which
conferred large-scale herbicide and tolerance, had a huge impact on farming practices and
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economics [38]. The arrival of genome editing holds great promise, as it allows us to modify
the plant’s native genetics in a precise fashion, and target traits with complex genetics such
as yield and pathogen resistance [39].

In this review, we describe the potential of microbial endophytes, NMs and SLs,
as well as the CRISPR approach of genetic engineering and CEH using artificial lights
on major horticultural crop plant growth, stress tolerance, product yield and quality.
Understanding the regulatory mechanisms for these approaches may be helpful for future
crop enhancement programs.

2. Importance of Microbial Endophytes and Potential Use as Bioinoculants in
Horticultural Crop Production
2.1. Microbial Endophytes Diversity and Function in Plants

Plants live in close association with a very diverse microbiota, which live freely in
the soil inhabiting the host plant’s rhizosphere and phylosphere (epiphytes) or the inner
cells (endophytes) [14,15,17,56,57]. Most soils contain high quantities of microorganisms
(~108–109 cells g−1 of soil). Some of these microbes are plant growth promoting (PGPMs).
They are crucial partners, facilitating various important functions that determine hosts’
physiology, stress resilience, crop yield and quality [13,17]. Nowadays, there is grow-
ing attention to the use of PGPMs as bioinoculants due to their capability to facilitate
growth [13,14,57–60] and activate defense mechanisms of host-plants against a variety
of biotic [32,61–65] and abiotic [16,17,66] stresses without adversely affecting hosts, the
environment and human health. Endophytic PGPMs are attractive components for commer-
cial use because they closely interact with the host and bring about long-term phenotypic
benefits [32,67]. Another intrinsic advantage to endophytes is their colonization of plant
tissue, which protects the host from drought, salinity or other stressful conditions in
the rhizophere [16,17]. Moreover, endophytes play a vital role in the bioremediation of
organic/inorganic pollutants, simultaneously promoting plant growth [68–71].

Endophyte research has intensified over the past years with respect to the number of
publications, research agendas and complexity as a potential alternative to epiphytes, for
microbial bioinoculants’ creation. A PubMed query (visited 22 June 2022) demonstrated
that over the past 20 years, the amount of publications containing the word “endophyte” in
the title or abstract was 12,135, of which 5855 (45%) have only been published in the last
4 years (Figure 1).
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Figure 1. An increase in endophyte publications between 1946 and 2022. Publications related to
endophytes were retrieved from PubMed using the word «endophyte» or «endophytic». Total number
of publications at the time of searching were 12,135 (data from 22 June 2022).

The knowledge gained so far suggests that almost every plant, including cultivated
and wild, grassy and mosses that are woody, and sphagnum mosses, contain endo-
phytes [56,72–76]. Over the past 10 years, many studies have been published on pop-
ulations of endophytes (bacterial and fungal) living in a wide range of fruits, vegetables,
medicinal plants and many others [15,56,76]. Endophytes are colonized plant apoplast,
including cell walls’ intercellular spaces and xylem vessels of various parts of plants (leaves,
roots and stems). Endophytes are also found in the tissues of reproductive/disseminating
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organs (i.e., flowers, fruits and seeds) [15–17,56,67,77,78]. Microbes living in plant tissue
can colonize the endosphere de novo from the environment with each new generation or be
passed on to future generations from seed to seed [79,80]. Endophytic microbes belong to
various phylas, including Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes,
Verrucomicrobia, Deinococcus-thermus, etc. [81]. The dominant among the reported genera in
most of plants are Bacillus, Pseudomonas, Streptomyces, Burkholderia and Klebsiella [81], which
have been found successful against phytopathogens (fungi; bacteria) [29,61,63,82–84] and
abiotic stresses [24,35,68,85]. Endophytes are associated with host plants over their lifecycle,
from seed germination to fruit development, and have a beneficial effect in the post-harvest
period [32,67]. Population densities of endophytes are incredibly variable in numerous
plants and have now been found to vary greatly from 105 to 107 of cultivable cells g−1 of root
tissue to 103–104 in leaf and stems, while in seeds, flowers and fruits about 102–103 cells g−1

tissue was found [78]. Typically, the bigger density of microbial endophytes was found in
plant roots (but not always) in comparison to other plant organs [17].

Various reports indicate that different environmental stressors impact the structure of
the endophytic microbes’ community as well as the interaction between microbe–microbe
and plant–microbe [14,57]. Classical crop production management practices (i.e., tillage,
irrigation, chemical fertilizers and pesticides use) have a huge impact on the function
and structure of soil microbe populations. The results of recent metagenomic analy-
sis [76] demonstrated that the changes in the variability of bacterial endophytes was
preferably related to the varietal response characteristics of the drought stress of the tested
plants rather than the stress conditions applied. A long-term study of plant microbiomes
demonstrated the significance of the contribution of microbes to the host’s phenotype and
physiology [85,86]. Being a significant part of different functions of plants, endophytes
determine how plants respond to stress and their productive characteristics. Improving
the quality of products, such as fruits, vegetables and flowers by endophytes, is also doc-
umented [32,61,83,87]. A number of products’ quality characteristics (i.e., size, firmness,
color, shelf life) may also be positively impacted endophyte application [88–90]. Thus,
microbial endophytes have a huge potential to be used as an accessible, cheap, fast-acting,
natural and safe component of biofertilizers and plant protection biologicals to improve
horticultural crop production [17,66]. Each year, the amount of commercial strains and
the quantity of agricultural land set aside for the use of commercial microbial applications
continues to grow [14,57].

2.2. Microbial Endophytes-Mediated Biofertilization and Biostimulation

Endophytic PGPMs play a major role in plant growth and development via multi-
ple direct or indirect mechanisms. It is widely reported that endophyte-mediated plant
growth improvement occurs through biofertilization and biostimulation: (i) providing
the hosts with water and essential nutrients, such as N and P, by transforming them into
effortless types, being digestible (using N fixatives, P solubilizers, siderophore produc-
ers, etc.) [19–21,91]; (ii) the synthesis of growth phytohormones (auxins (IAA), cytokinins
(CKs), and gibberellins (GBs)) or alter the synthesis of stress and signaling phytohormones
(i.e., abscisic acid (ABA), salicylic acid (SA), ethylene, and jasmonates) [19,21,23,92–94];
and (iii) the synthesis of many compounds with protective and signaling functions (i.e.,
antibiotics, enzymes, siderophores, LPs, hydrogen cyanide and others) [30,31,82,90,94,95]
(Figure 2).
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ABA—abscisic acid; ACCD—1-aminocyclopropane-1-carboxylate deaminase; APX—ascorbate perox-
idase; ASA—ascorbic acid; CAT—catalase; CK—cytokinins; Et—ethylene; GA—gibberellins; GR—
glutathione reductase; IAA—indolyl-3-acetic acid; ISR—induced systemic resistance; JA—jasmonic
acid; LPs—lipopeptides; MIST—microbe-induced systemic tolerance; N—nitrogen; P—phosphorus;
POD– peroxidase; ROS—reactive oxygen species; SA—salicylic acid; SAR—systemic acquired resis-
tance; SOD—superoxide dismutase; VOCs—volatile organic compounds.

Endophytes are capable of dissolving water-insoluble and other inaccessible forms of
P, K, Mg and other essential compounds through the production of organic and inorganic
acids, protons, hydroxyl ions and CO2 that facilitate their uptake by plants [96–100]. Some
PGPMs produce organic compounds, such as gluconate, citrate, ketogluconate, tartrate,
oxalate and lactate, which also helps solubilize inorganic P [101]. Endophytes may be
involved in the complete N cycle, as they have protein domains that are involved in N2-
fixation. The endophyte metagenome contains almost all of the microbial N cycling, but
different stages require different oxygen levels. Gene-based evidence was provided for
the aerobic (nitrification), microaerobic (N fixation) and anaerobic (denitrification) parts
of the N cycle [102]. To meet the Fe requirements of endophytes, very specific pathways
have developed with the participation of low-molecular Fe chelates—siderophores, which,
by converting Fe into a form accessible to the cells, increase its availability for plants and
digestibility [97]. Siderophore-producing endophytic PGPMs aid in Fe3+ transport within
the plant cell. They also contribute to plant growth and productivity by synthesizing
ATP, DNA precursor and the heme. Moreover, siderophores give endophytes competitive
advantages in the colonization of plant tissues, and exclusion of phytopathogenic microor-
ganisms from the same ecological niche [97]. Endophytes also help to accumulate in plants
of both significant (N, P, K, Na, Mg, etc.) and minor elements (Zn, Mn, Co, etc.) [100]. For
example, inoculating tomato with K-solubilizing bacteria ensured a rich harvest of the
tomato enriched with K [103]. Secondary metabolites alkaloids, lipids, terpenes, saponins
and phenols present in P-solubilizing bacteria contribute to the flavor and health benefits
of food crops [103].

Another mechanism of the growth-stimulating effect of endophytes is linked by their
ability to alter the levels of phytohormones and to synthesize compounds with hormone
activity [26,104,105]. IAA acts in PGPMs as an indicating molecule because it influences
positive outcomes in plants. It stimulates cell elongation in stems and cell division and
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differentiation. IAA also forms roots from cutting and reduces lateral branching (apical
dominance) and leaf fall (abscission) [106]. The ability of IAA-synthesizing endophytes to
improve growth processes of different plants were widely described [27,107]. For example,
IAA producing P. variotii improved tomato and pepper germination, seedling vigor, root
and shoot elongation [107]. There is also information that the IAA production is more
common in endophytic than epiphytic microbes [108–110]. Most endophytes can produce
high IAA concentrations while increasing root biomass. This can help increase plants’
uptake of nutrients and water, as well as their colonization. Moreover, IAA overproduction
also associated with improved N-fixation in endophyte-inoculated plants [96,97]. It was
reported that CKs and GBs, hormones influencing plant growth [111–114], is also produced
by some endophytes [104,105,115–119]. CK-like compounds from endophytic bacteria
such as Paenibacillus polymaxa, Pseudomonas resinovorans and Acenitobacter calcoaceticus
were suggested to be involved in the growth promotion of ginura plants [112]. Similarly,
GB-producing microbes improved seed germination, stem elongation, flowering, fruit
formation and senescence [113,114]. In addition, the application of the culture filtrates of
GB-producing endophytic Cladosporium sp. MH-6 positively influenced the cucumber plant
growth [120].

Recent studies describe that two or more abilities may be represented by the same
strain [19,20,94,121–125]. For instance, the inoculation of seeds and 45-day-old seedlings
with IAA-producing and P-solubilizing Trichoderma strains isolated from Argentine Pampas
soil significantly increased tomato plant height, their fresh and dry biomass and leaf
chlorophyll, as well as the leaf surface area. The endophytic fungus Paecilomyces formosus
LHL10 enhanced cucumber plant growth through IAA and GAs’ production [121]. In
other studies, IAA-producing and P-solubilizing endophytes Purpureocillium lilacinum,
P. lavendulum and Metarhizium marquandii promoted bean plant growth and the absorption
of P and N [124].

2.3. Microbial Endophytes-Induced Stress Tolerance/Resistance

Endophytic PGPMS, along with growth promoting [126–133] also plays a pivotal
role in maintaining plant resilience to diseases [95,123,126,127,129,132,134–147] and abi-
otic stressors [22,24,66,90,121,139,143,148]. Some endophytes also have the potential to
control insects [147,149,150] and nematodes [62], as well as combined biotic and abiotic
stresses [62,151–153]. Meanwhile, some plants might not survive in extreme environmental
conditions due to a lack of endophytes [154]. In 1991, the first case proving that PGPMs can
induce ISR in plants was published. It demonstrated that cucumber plants were protected
against anthracnose by inoculating with Pseudomonas fluorescens 89B-61 [155]. Further
studies revealed that the ISR can also be induced by endophytes from the genera Bacillus,
Serratia, Ochrobactrum, Pantoea and others in various plants [32,146,147,156,157]. By today,
the protective effects of endophytes upon different environmental stresses were reported
widely in many horticultural plants (e.g., tomato, bell pepper, apple, banana, muskmelon,
watermelon, cucumber and others) (Table 1).

Table 1. Examples of beneficial effects of microbial endophytes on horticultural crops.

Host Plant Endophytes Beneficial Effects/Possible
Mechanisms Effect on Yield and Quality Reference

Newhall
navel orange Piriformospora indica Improved soil properties Increased fruit yield enriched

with Fe and Zn [125]

Potato

Streptomyces spp. Growth promotion, biocontrol
Increased productivity,

reduced disease infestations

[126]

Serratia plymuthica,
Pseudomonas putida

Growth promotion,
biocontrol/Antibiotic

2,4-diacetyl-phloroglucinol
production

[127]
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Table 1. Cont.

Host Plant Endophytes Beneficial Effects/Possible
Mechanisms Effect on Yield and Quality Reference

Burkholderia
phytofirmans PsJN

IAA production, ACC-deaminase
activity

N/A

[128]

Tomato

Bacillus subtilis Biocontrol of A. solani, Ph. infestans [129]
Sphingomonas sp. IAA and GB production [130]

Bacillus sp., Burkholderia
sp., Enterobacter sp.,

Pseudomonas sp.,
Rhizobium sp.,

Staphylococcus sp.,
Stenotrophomonas sp.

Growth enhancement [131]

Trichoderma sp.

Higher expression of swolenin gene
in roots,

increased Bioaccumulation Index
(BI) for Fe and Cr, and decreased BI
for heavy metals Ni and Pb in fruits

Increased fruit yield, total
flavonoids content,

decreased starch
[89]

Bacillus pumilus
Improved growth/N uptake under

N fertilization
N2 fixation

Increased yield, improved
quality [98]

B. subtilis 26D, B.
subtilis Ttl2

Biocontrol of viral diseases (PVX, d
PVY)/Production of ribonucleases,

phytohormones (CKs, IAA),
expression of PR genes

N/A

[33]

B. subtilis SR22

Growth promotion, disease
(Rhizoctonia solani)

reduction/Production of
chlorogenic acid, pyrrolo
[1.2-a]pyrazine-1.4-dione,

hexahydro, propyl thioglycolic acid,
phthalic acid, 2.3-butanediol;

upregulation JERF3 and POD, PR1
gene expression; increased phenolic

content, POD, PPO activities

[34]

Tomato
(susceptible
and tolerant

cultivars)

S. williamsii, S.
herbamans, S. indica, or

S. vermifera

Cultivar-specific responces to
Fusarium wilt (Fusarium oxysporum f.

sp. lycopersici)
Fusarium wilt reduced only by S.

herbamans and S. vermifera

[132]

Citrus species Bacillus sp. IAA production, P solubilization [133]

B. velezensis EB-39
Reduced (by 38%) incidence of
canker (Xanthomonas citri subsp.

citri) on the infected leaves
[82]

Coffee

Escherichia fergusonii,
Acinetobacter

calcoaceticus, Salmonella
enterica, Brevibacillus

choshinensis,
Pectobacterium

carotovorum, Bacillus
megaterium,

Microbacterium
testaceum, Cedecea

davisae

Biocontrol of leaf rust (Hemileia
vastatrix)/IAA and phosphatase

production
[134]

Grapevine

Bacillus pumilus,
Paenibacillus sp.

Biocontrol (Phaeomoniella
chlamydospore) [135]

Bacillus subtilis,
Curtobacterium sp. Biocontrol (Agrobacterium vitis) [136]
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Table 1. Cont.

Host Plant Endophytes Beneficial Effects/Possible
Mechanisms Effect on Yield and Quality Reference

Bacillus, Staphylococcus,
Microbacterium,

Paenibacillus,
Curtobacterium,

Stenotrophomonas,
Variovorax, Micrococcus,

Agrococcus

Growth promotion, biocontrol [137]

Banana
Pseudomonas aeruginosa Biocontrol [138]

Streptomyces
malaysiensis 8ZJF-21

Growth promotion, biocontrol of
Fusarium oxysporum f. sp. cubense

tropical race 4 (Foc
TR4)/Enhancment the expression of

defense-related and antioxidant
enzyme genes, production of

extracellular enzymes, metabolites,
VOCs

[29]

Pochonia chlamydosporia
123

Increased root, corm and leaf length
and leaf weight [88]

Chickpea B. subtilis NUU4

Improve plant growth, suppression
of root rot caused by Fusarium solani
under salt stress/decreased H2O2

and increased proline contents

[139]

Periwinkle Streptomyces sp.
Growth promotion/Increased N, P,
K, carotenoids, ascorbic acid and

alkaloid

Enhancing plant biomass,
phytopharmaceuticals

accumulation
[21]

Strawberry

Bacillus velezensis
IALR308, IALR585, and

IALR619

Disease reduction (C.
gloeosporioides)/Auxin production, P
solubilization, antibiotics surfactin

and iturin production

Increased marketuable fruit
yield

[19]

Bacillus sp., Pantoea sp.
Reduced gray mold disease (B.

cinerea)/Production of diffusible and
volatile antifungal compounds

[140]

Pitaya Penicillium rolfsii Y17

Reduction of disease (Neoscytadium
dimidiatum)/Increased POD, CAT,

PPO activities and total antioxidant
capacity N/A

[141]

Ginseng Bacterial endophytes

Growth promotion/IAA,
siderophore production, P

solubilization, N fixation, and
production of bioactive metabolites

[20]

Apple Trichoderma asperellum
6S-2

Biocontrol (−52.41%) of disease
(Fusarium proliferatum f. sp. malus

domestica MR5), plant growth
promotion/Reduced oxidative
damages, increased protease,
amylase, cellulase and laccase

activities, secretion of Fe carriers,
auxin, ammonia and P solubilization

[123]

Pak choi,
chinese

amaranth,
lettuces

Burkholderia seminalis
869T2 Increased plant growth Increased flower and fruit

production [93]

Olive Aureobasidium pullulans,
Sarocladium summerbellii

Biocontrol of anthracnose
(Colletotrichum

acutatum)/Production of VOCs
(Z-3-hexen-1-ol, benzyl alcohol,

nonanal)

N/A [142]
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Table 1. Cont.

Host Plant Endophytes Beneficial Effects/Possible
Mechanisms Effect on Yield and Quality Reference

Eggplants Endophytic bacteria
SaMR12

Improved plant growth
Phytoremediation of
Cd-contaminated soil

Increased yield with reduces
Cd content [143]

Blueberry

Antarctic fungal
endophytes (AFE)

Penicillium rubens and P.
bialowienzense

Protection against cold events in
combination with drought under

controlled conditions/Higher gene
expression of LEA1 protein, higher

photochemical efficiency, low
oxidative stress

Increased yield, improved
fruit diameter and fruit fresh

weight
[90]

Methylobacterium sp.
CP3, Kineococcus

endophyticus CP19

Increased plant growth and
tolerance in polluted soils (Zn,

Cd)/IAA production, P
solubilization, enhanced Mg uptake

Increased yield with
improved nutritional vallue [94]

Pea
Pseudomonas
thivervalensis,
Paenibacillus

amylolyticus, P.
polymyxa, Paenibacillus
sp., Peribacillus simplex

Shoot growth promotion under
greenhouse condition Increased yield

[28]
[92]

Tomato
Colletotrichum tofieldiae

Ct0861
Growth promotion in greenhouse

and field conditions [144]

Bradyrhizobium,
Trichoderma,

Bradyrhizobium +
Trichoderma

Growth promotion (increased
biomass, 100 seed weight, shelling

percentage, seed and pod
HI)/Increased chlorophyll

Increased yield [23]

Peanut

Bacillus siamensis
EB.CP6, B. velezensis

EB.KN12, and B.
methylotrophycus

EB.KN13

Reduction of disease (Phytophthora)
(8.45–11.21%) and lower fatal rate

(11.11–15.55%), increased plant
height, length of roots and fresh

biomass
N/A

[145]

Black pepper Bacillus megaterium DS9
Biocontrol of root-knot nematodes
(Meloidogyne spp.), plant growth

promotion
[62]

Watermelon,
melon Trichoderma Biocontrol against the main

soil-borne diseases [95]

Recently, it was demonstrated that endophyte Penicillium rolfsii Y17 effectively triggers
pitaya fruit defense responses to canker disease caused by Neoscytalidium dimidiatum, with
an inhibition rate of 70.87% [141]. P. rolfsii Y17 also increased the activities of peroxidase
(POX), catalase (CAT), polyphenol oxidase (PPO) and the total antioxidant potential and
decreased MDA content in fruits. Micropropagated banana plants inoculated with Pseu-
domonas fluorescens Pf1 and CHA0 strains in combination with endophytic bacterial strains
EPB5 and EPB22 (Pf1 + CHA0EP + B5 + EPB22) significantly limited the development of
one of the most serious banana viral diseases—Banana bunchy top virus (BBTV) infection
in the field (frequency infection 33.33%, or 60% less than in the control) [158]. The pro-
duction of POX, PPO, phenylalanine ammonia lyase (PAL), and total phenol was higher,
and morpho-physiological characteristics were better in plants treated with microbial en-
dophytes [34,158]. It was demonstrated that the associated microbes can induce systemic
resistance in bananas, which could be useful in the development of techniques for pro-
tecting the banana from BBTV [159]. Disease manifestations in bean plants treated with
endophytic Bacilli were notably decreased, while the mass of plants and seeds as well as
the number of pods and seeds increased [160]. It has been reported that pea and bean endo-
phytes have antifungal activity against Bipolaris sorokiniana and Fusarium oxysporum [161].
Endophytic Bacillus subtilis 26DcryChS producing the Cry1Ia toxin encourages multifaceted
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potato defenses against phytopathogen Phytophthora and pest Leptinotarsa decemlineata [149].
Recent studies have demonstrated that endophytic B. subtilis 26D and B. subtilis Ttl2 pro-
tected tomato plants from potato virus X (PVX) and potato virus Y (PVY) [33]. B. megaterium
DS9 notably decreased root rot nematodes (Meiloidogyne sp.) in the soil and roots of black
pepper with high inhibition values (81.86% and 73.11%, respectively) while it increased
plant growth [62].

The positive effects of microbial endophytes for inducing different abiotic stress
tolerance were demonstrated on various horticultural plant species [90,94,162–166], in-
cluding tomato [163], strawberry [164,165], pea [28], peanut [167], common bean [168],
blueberry [90] and many others (Table 1). Many studies demonstrated the beneficial in-
fluence of Pseudomonas, Bacillus and others on plant growth under salinity [22,85,167–169].
ACC-producing halotolerant endophytic bacteria Koccuria rhizophila improved the mor-
phological parameters and antioxidant enzymes of pea plants, and minimized the uptake
of Na+ under various salinity regimes [28]. Endophytes Bacillus sp. REN51N and B. fir-
mus J22N increased the peanuts’ pod and haulm yield under salinity. This is due to the
increased ROS scavenging capacity, i.e., production of superoxide dismutase (SOD), glu-
tathione reductase (GR), CAT, ascorbate peroxidase (APX), decreased lipid peroxidation
(LPO) and H2O2 content in the leaf; production of ACCD, IAA, uptake of K, root growth,
regulation of relative water content and increased accumulation of osmolyte proline [167].
Endophytes can also secrete exopolysaccharide under salt stress to alter the soil structure,
regulate soil material composition and increase host permeability in order to alleviate
stress [170]. Endophytic B. subtilis 10-4 and 26D strain-specifically increases the growth
of bean (Phaseolus vulgaris L.) plants under salt stress. It also exerts an anti-stress effect
by inducing lignin deposition in roots and reduced oxidative and osmotic damages [168].
Endophytes also promoted plant acclimation chilling temperatures leading to reduced
cell damages, increased photosynthetic activity and the production of metabolites related
to cold stress [171,172]. B. phytofirmans PsJN led to faster and higher accumulation of
transcripts’ stress-related genes and metabolites, which resulted in more effective cold tol-
erance in vine plants [173]. Recently, Acuña-Rodríguez et al. (2022) [90] isolated two fungal
endophytes Penicillium rubens and P. bialowienzense from blueberry plants to assess their
tolerance to cold and drought stress. It revealed a positive effect of both endophytes on
the plant’s performance under both conditions. Plants inoculated with endophytes had
higher levels of gene expression for the Late Embryogenesis Abundant (LEA1) protein,
higher photochemical efficiency (Fv/Fm), and low oxidative stress (TBARS) than those that
were not inoculated. These endophytes had a positive effect on plant survival. Endophytic
inoculation also improved fruit size and fresh weight. This difference was higher when the
conditions were well-watered [90].

Indirect mechanisms of endophytes-mediated plant growth improvement during
stresses include effective competition and suppression of pathogenic microorganisms
(bacteria, fungi and viruses) via the production of secondary metabolites with antibiotic,
antibacterial, antifungal, antiviral and anti-insect actions [30–34,174–176] (Figure 2). At
once, the discovery of new endophytic metabolites and the study of their involvement in
plant metabolism under stress conditions using a novel technique of study is an active
area of research (recently reviewed [14,57]). It was recently reported that the severity
of late blight in potato plants has decreased after treatment with endophytic bacteria
B. thuringiensis B-5351. It was associated with the accumulation of PR6 gene transcript and
activity of its protein product. This highlights the importance of proteinase inhibitors for
protecting potatoes from late blight [177]. The application of endophytic B. subtilis-based
formulations promoted proteinase inhibitors’ synthesis and reduced diseases in sugar beet
plants, thereby improving the yield and quality of root vegetables [178,179]. The genome
sequence for the Enterobacter 638 endophyte demonstrates that it can produce antibiotic
compounds 2-phenylethanol and 4-hydroxybenzoate [180]. Endophytic Streptomyces is a
known producer of antimicrobial compounds kakadumycins [181] and coronamycin [182],
as well as multicyclic indolosesquiterpenes [183]. Most PGPMs are capable of synthesizing
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compounds such as circulin, colistin and polymyxin. These compounds inhibit the growth
of gram-positive and gram-negative bacteria as well as pathogenic fungi [184]. Almost all
bacteria can produce bacteriocins. These proteins suppress the vital activity of the cells of
related strains or species [185].

Endophytes producing immunosuppressants, antitumor and antiviral compounds
are also known [186,187]. Recent research has demonstrated that endophytes can induce
defense responses in tomato plants against potato virus X (PVX) and potato virus Y (PVY)
via modulating the ribonuclease activity and hormonal balance. Particularly, B. subtilis
26D and B. subtilis Ttl2 decreased the number of viruses in plants and increased the activity
level of plant ribonucleases. They also recovered the infected tomatoes’ fruit yield [33].
Several enzymatic activities, including protease and chitinase activities associated with
the biocontrol of nematodes, have also been found [62]. Endophytic metabolites of alka-
loids and neurotoxins can lead to behavioral disorders, delayed growth/development
and even the death of insects [147,188,189]. In sugarcane, Bacillus may cause giant moths
to develop abnormally, thereby reducing disease and insect pests [150]. The ability of
endophytes to produce siderophores and vitamins increases plant immunity and resistance
to pathogens [97,152,190–193]. For example, siderophore production has been recently
described in the recombinant endophytic Trichoderma harzianum colonizing bean (Phaseolus
vulgaris L.) plants [193]. However, the function of endophytes’ siderophores in systemic re-
sistance is not fully understood. Their relationship with plant ISR is being speculated [194].

Rarely has it been documented that endophytes are able to modulate phytohormonal
level in plants and produce it by themselves as a key mechanism for mitigating various
stresses [33,195–197]. Endophyte-induced changes in the endogenous ABA, IAA and other
hormones can lead to a modification in root system architecture. This can be caused by an
increase in lateral roots’ number and the modification of water status via the regulation of
hydraulic conductivity. Moreover, there is a decrease in leaf transpiration and an increase in
stomatal conductivity as well as an induction of genes responsible for providing plant resis-
tance [33,36,195,198]. Ethylene and strigolactones were reported to stimulate the formation
of root hairs and primary and adventitious root [197]. B. subtilis 26D increased endogenous
IAA, ABA and CKs and repaired the growth of potato plants following the Colorado potato
beetle (Leptinotarsa decemlineata Say) damage [199]. In some studies, during inoculation with
PGPMs in plants, simultaneously with a decrease in the amount of ABA, it also increased
SA and JA, which perform signal functions [195,200,201]. Endophytic B. subtilis (strains
26D and Ttl2) caused the expression genes related to both the SA-dependent (SlPR1b.1 and
SlPR5) and the JA-dependent (SlPR6 and SlLOX) responses in tomato plants infected with
PVX and PVY, thereby increasing plant tolerance to viral diseases [33].

Some microbial endophytes have the ability to increase host plant tolerance to abiotic
stresses and pathogens by modulating the level of ethylene in the soil. This is a stress
hormone which can trigger many defense reactions [162,197]. Ethylene regulates cell
growth, plant ripening and seed germination. However, depending on how much it is
present in tissues, its effects on plant development and growth can be different [202]. By
producing the enzyme 1-aminocyclopropane-1-carboxylate-deaminase (ACCD), which
causes a breakdown of the ethylene precursor, endophytes are able to reduce the ethylene
level, thus reducing the effect of numerous stressors [162]. For example, endophytic
Achromobacter xylosoxidans AUM54 producing ACCD reduced the endogenous ethylene
level in Catharánthus róseus (rose) plants and improved their growth under salt stress [203].
ACCD-producing Pantoea agglomerans Jp3-3 and A. xylosoxidans Ax10 reduced the stress
in Brassica plants that were grown in Cu-contaminated soils, and improved Cu uptake by
the plants [204,205]. ACCD-producing endophytes were able to enhance the rape plants’
growth in soil contaminated with Pb and Zn [206].

It is important to recognize the importance of endophytes for soil bioremediati-
on [68,69,170]. Plants grown on soils contaminated by xenobiotics often have microorgan-
isms capable not only of resisting such compounds but also decomposing them [207,208].
K. rhizophilla isolated from Oxalis corniculate [209] has demonstrated a positive role in the
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biosorbance of Cd and Cr ions in an aqueous environment [210]. The ability to reduce
phenol and benzene was also demonstrated by the endophytic microbes [70]. Moreover,
these endophytic “utilizers” are able to decompose xenobiotics within the plant. This
reduces the phytotoxic effect in relation to herbivorous fauna [152].

2.4. Endophytes for Management of Postharvest Decays

The potential to develop microbial endophytes into a postharvest biological control
agent is remarkable. This can be used on different fresh-cut fruits and vegetables, dur-
ing transportation, storage and handling. Endophytes have a positive influence on the
postharvest physiology and resistance to diseases of different fruits and vegetables. This
results in extended marketing life while maintaining food products’ nutritional values and
quality (recently reviewed [32,211]), in fresh apple [212], tomato [213], grape berries [30],
pear [214], strawberry [215], and other fruits and vegetables [216–226] (Table 2).

Table 2. Examples of endophyte-mediated beneficial effects on fresh fruits/vegetables in posthar-
vest stage.

Endophyte Fruit/Vegetable Effects/Possible Mechanisms
Influences on

Postharvest Quality
and Marketing Life

Reference

Lactobacillus spp.
Apple

Biocintrol of grey mould, soft rot
(P. expansum, X. campestris, M.
laxa, B. cinerea, E. carotovora)

Reduced foodborne
human pathogens in

ready-to-eat fresh fruits
[212]

Serratia plymuthica

Biocintrol of ring rot
(Botryosphaeria dothidea)

(−84.64%)/Expressions of genes
related to membrane, catalytic
activity, oxidation-reduction,

metabolisms of tyrosine,
glycolysis/gluconeogenesis, and

glycerolipid

Reduced fruits
titratable acidity (TA),

enhanced soluble sugar
(SS), vitamin C, SS/TA

ratio, maintained
firmness

[218]

Bacillus velezensis P2-1

Biocontrol of ring rot
(Botryosphaeria

dothidea)/Biosynthesis of
antifungal LPs and polyketides,
enhanced expression of MdPR1

and MdPR5 genes

Did not affect fruit
qualities (firmness, TA,
ascorbic acid, SS) but
reduced postharvest

decay

[219]

B. velezensis Grape berries Biocontrol of grey mould
(B. cinerea)

Reduced postharvest
decay [30]

Trichoderma
afroharzianum, T.

afroharzianum
Chili

Biocontrol of Fusarium
infections (F. oxysporum and

F. proliferatum)

Prevented significant
market losse, reduced
health hazards caused

by Fusarium-associated
mycotoxin

[220]

B. velezensis Banana Biocintrol of anthracnose
(C. musae)

Reduced postharvest
decay [221]

Pseudomonas synxantha
DLS65 Peach

Biocintrol of brown rot
(Monilinia fructicola, M.

fructigen)/competition for
nutrients and space, production

of diffusible toxic metabolites
and VOCs

Reduced pathogens in
ready-to-eat fresh

products
[222]

Bacillus
amyloliquefaciens Kiwifruit Biocontrol of soft rot

(Botryosphaeria dothidea)

Improved disease
resistance, delayed

senescence, maintained
quality during storage

[223]

Enterobacter sp.,
Bacillus sp. Tomato Biocontrol of rot (B. cinerea) Reduced postharvest

decay [213]
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Table 2. Cont.

Endophyte Fruit/Vegetable Effects/Possible Mechanisms
Influences on

Postharvest Quality
and Marketing Life

Reference

Pseudomonas putida
BP25 Mango

Biocontrol of anthracnose
(Colletotrichum

gloeosporioides)/Production of
VOCs, proline, total-soluble
solids, phenols, carotenoid,

flavonoid

Increased fruit
phytonutrient quality

and firmness
[224]

Bacillus safensis B3 Strawberry

Biocintrol of grey mold
(B. cinerea Str5)/Enzymes

(chitinase, hydrolytic lipase,
protease) production

Reduced disease
severity in fruit

products and reduced
postharvest decay

[215]

Daldinia eschscholtzii
MFLUCC 19-0493

Biocontrol of anthracnose
(Colletotrichum

acutatum)/Production of VOCs
(elemicin, benzaldehyde

dimethyl acetal, ethyl sorbate,
methyl geranate, trans-sabinene

hydrate,
3.5-dimethyl-4-heptanone)

[225]

B. subtilis L1-21 Citrus Fruits

Biocintrol of citrus green mold
(Penicillium

digitatum)/Antifungal
compounds surfactin, fengycin,

bacillaene and bacilysin
production

Reduced infestation of
products with

pathogen
[226]

B. subtilis 10-4,
B. subtilis 26D Potato

Biocontrol of Ph. infestans and
F. oxysporum/Modulation of

enzyme production (proteases,
hydrolases), ascorbic acid,
glykoalkaloids (solanine,

chakonine), starch, reducing
sugars

Prolonged shelf-life,
increased vitamin C,

reduced glykoalkaloids
[61,83]

For example, endophytes have been demonstrated to be able to prevent the growth of
postharvest gray mold caused by Botrytis cinerea. Metagenomic as well as metatranscrip-
tomic analysis allowed one to explore the role played by the endophytic microbiome in
carbohydrate metabolism, ripening and maturation of watermelon [216]. The endophytic
bacterium B. subtilis that enters the tissues of the host plants, before planting or during
the vegetative phase, promotes plant (sugar beet; potato) growth, quality and protects the
plants against certain defects [179,217]. These effects were sustained for a longer period
of time, which lead to better preservation of vegetables in storage [217]. Other studies
have demonstrated that B. subtilis effectively penetrate and colonize the internal tuber
tissues when applied immediately prior to storage [61]. It has been demonstrated that
B. subtilis reduces by 30–40% late blight (Ph. infestans) severity and associated symptoms
(i.e., oxidative and osmotic damages and amylase activity) in stored potato tubers. Lower
late blight symptoms were accompanied by a decrease in pathogen-caused toxic glycoalka-
loids (α-solanine, α-chaconine), preservation starch, reduced sugar, total dry matter and an
increase in ascorbic acid in stored tubers [83]. This gives new insight into how to develop
bio-active compounds that increase crop longevity and maintain quality and nutrition.
Unfortunately, the interactions between hosts, endophytes and pathogens are not fully
understood, which is what hinders the development of effective preparations to use them
in green horticultural cultivation.

Although the mechanisms by which endophytes suppress postharvest pathogens are
not well understood, the theories include: (i) competition with pathogenic microflora to
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obtain nutrients and suitable niches for colonization; (ii) production of various metabolites
that are antibiotic-active (siderophores, biosurfactants, hydrogen cyanide, etc.); (iii) synthe-
sis of hydrolytic enzymes (chitinases, glucanases, proteases and lipases), that can destroy
pathogenic fungal cells; and (iv) elicitor activity and induction of systemic host’s resistance
described in greater detail in our previous review [32].

By today, commercially available several endophytes-based bioproducts registered
for postharvest disease control: Phytosporin-GoldenAuthum, Phytosporin AntiGnil (Bacil-
lus subtilis 26D, Russia), Serenade (B. subtilis QST713, USA), Rhio-plus (B. subtilis FZB24,
Germany), Rhapsody (B. subtilis QST713, Germany), Yield plus (Cryptococcus albidus, South
Africa), Pantovital (Pantoea agglomerans, Spain), Blight Ban A506 (Pseudomonas fluores-
cencs-A506, USA), BioSave (P. syringae, USA), Biosave 10LP, 110 (P. syringae 10LP, 110,
USA), Boniprotect (Aureobasidium pullulans, EU), Nexy (Candida oleophila, Belgium), As-
pire (C. oleophila 1–182, USA), Candifruit (C. sake, Spain), Shemer (Metschnikowia fructicola,
Netherlands), AQ-10 (Ampelomyces quisqualis, USA), Contans WG, Intercept WG (Conio-
thyrium minitans, Germany) [32,211]. Further detailed studies of mechanisms of action
on endophytes and on the physiology of post-harvest products and persistence during
pathogenic infection and other environmental stresses are important for developing suitable
formulations and methods of application, and to become registered.

2.5. Limitations of Using Microbial Endophytes and Future Prospects

The use of endophytic PGPMs has a huge potential to replace some agrochemicals and
to be used as a natural, safe component of biofertilizers and plant protection formulations
for increasing plant resilience, crop productivity and quality [16,17]. There are certain
barriers remaining that limit the widespread use of endophytes as bioinoculants, especially
in the field. As for the industrial use of endophytes in biotechnology and the production
bioinoculant preparations, the main problem is to find the most effective strain or combina-
tion of strains. More than 80% of endophytes are not detected when seeded on conventional
nutrient media, which creates difficulties in obtaining a pure culture, identifying and using
many strains. In addition, it is necessary to be sure that the isolated endophyte will again
populate plant inners and will have a positive effect. The development of modern methods
of microscopy and molecular technologies made it possible to better understand inter-
actions of plant-endophytic microorganisms’ system, the mechanisms of mutualism and
pathogenicity, which was clearly demonstrated [15], providing ecological and evolutionary
justification for the term “microbial endophytes” [14]. The study of microbial communities
has observed a radical shift in the way DNA and RNA sequencing are approached [15]. As
a result of the application of these methods, a lot of new data on microorganisms associated
with plants has been obtained, however, this raises the problem of interpreting and analyz-
ing this huge amount of genetic information to its effective use [14]. Complete sequencing
of the endophyte metagenome remains a challenge, as it requires the separation of the
host plant genome and the endophyte metagenome. The analysis of microbial endophytic
community compositions using PCR is an easy technique. It allows for the determination
of taxonomic composition and its structure [102]. Functional modifications in groups of
microorganisms may be reflected in this way.

Another difficulty is the compatibility of endophytes isolated from one plant species
with plants of another species. In addition, the effectiveness of endophytes also depends
on the correct interaction between crops, environmental conditions and bioinoculants.
Frequently, endophytes-based bioinoculants are often dose- and crop-specific. This poses
major challenges to developing commercial biologicals for field use. The categorization
and definition of the mechanisms of action of endophyte-based bioinoculants is difficult
because it can depend on the location in the environment, the growing season, crop species,
specific organs and crop growth phases [14,35,36,168]. Thus, for a more complete use of the
potential of representatives of microbial endophytes as inoculants that ensure sustainable
horticultural crop productivity (especially against the background of constant climate
change), it is extremely important to understand the characteristics of these plant–microbial
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interactions and the mechanisms underlying the physiological effect that endophytes
have on plants, in particular when protecting against dominant environmental stress
factors. Integrating different approaches will help to gain a deeper understanding about
the interaction between microorganisms and plants. This will turn lead to more promising
projects and strategies for putting the data into practice [13]. Additionally, collaboration is
required among plant physiologists, chemists, local manufactures and other professionals
involved in sales and distribution to ensure that microbial bioinoculants are used, registered,
certified and sold.

3. Potential Uses of Nanomaterials in Horticultural Production

With the advent of the new millennium, the era of nanotechnology began, and is
rapidly developing today [40,227]. The prospects for this industry are grandiose, since
they can radically change all areas of our lives. The creation of a nanotechnological
industry will give humanity a fundamentally new way of the environmentally friendly
production of products from atoms and molecules, which will help solve the problem of
the ecological and energy crisis [227,228]. The use of nanomaterials (NMs), which can
significantly reduce costs, improve quality and yield horticultural crops and reduce the
negative effects of chemical pesticides, are gaining in interest [40,227–233]. For the first
time, the use of nanotechnologies in crop production was discussed in the late 2000s; it
is presented how the “new technological revolution” has become a part of human life
only since 2001. To date, research into the application of nanotechnologies in horticulture
is still at an early stage, but is developing rapidly [40,228,233–236]. NMs are materials
created using nanoparticles and/or by means of nanotechnologies that have some unique
properties due to the presence of these particles in the material. NMs include objects, one of
the characteristic sizes of which lies in the range from 1 to 100 nm [228]. One nanometer is
approximately equal to ten hydrogen molecules lined up. When the particle size is reduced
to 100–10 nm, all material properties change significantly. A product of nanotechnology
is much more complex than atoms and molecules, but it does not require large-scale
production, since even 1 g of such a substance can solve many problems [40,231,233]. This
is especially important, since the use of pesticides leads to a significant deterioration of
the environmental situation. The use of nanotechnologies is an alternative to classical
technologies, leading to the realization of sustainable horticultural crops [228,231,237].
There are four types of NMs: (1) inorganic-based; (2) carbon-based; (3) organic-based;
and (4) composite-based [227,233,238,239]. Inorganic-based materials can include different
metals and metal oxides. Silver (Ag), gold (Au), aluminum (Al), copper (Cu), iron (Fe), zinc
(Zn), lead (Pb) and cadmium (Cd) are examples of inorganic metal-based NMs. Inorganic
metal oxide-based NMs includes Cu oxide (CuO), Zn oxide (ZnO), titanium oxide (TiO2),
Fe oxide (Fe2O3), magnesium Al oxide (MgAl2O4), etc. Carbon-based NMs are graphene,
fullerene, carbon nanotube, single-walled carbon nanotube, multiwalled carbon tube, etc.
Organic-based NMs are made from organic materials that do not contain carbon materials.
These include dendrimers, cyclodextrin, micelle and liposome, for example. The composite
NMs can be made from any combination of metal-based or metal oxide-based, carbon-
based, and/or organic-based NMs. All of these NMs often have complex structures, such
as a metal–organic framework [227,238].

NMs are produced by chemical and biological methods [239]. The chemical method
requires chemical reducing agents and is more expensive. Biosynthetic methods are much
more affordable. They involve using plant extracts and natural secondary metabolites
to create NPs. Biogenic NPs are a safer alternative to chemical NPs. Biogenic NPs have
self-assembling properties and mechanisms to control their morphology. These can be
produced from various parts of plants, algae and microorganisms [239]. Studies of the
effects of NMs on living organisms are ongoing, but there are not too many studies related
to plants.

The use of NMs in horticulture can help plants cope with a range of environmental
challenges [227]. NMs in a non-solid form can be incorporated into soil, which helps plants
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absorb nutrient-rich elements [227,228]. They also enhance the solubility and coverage of
hydrophobic leaf surfaces. This may help plants to better absorb foliar and root-borne active
substances [228,240]. NMs can also be used as effective fertilizers [227,234,240] that reduce
the need for pesticides [230–232]. For the manufacture of nanobiofertilizers, common NPs
include silicon, Cu, Ag, Fe and Zn [40]. The following are three ways nanobiofertilizers
can supply nutrients to plants: (i) the nutrient can either be covered with nanoparticles or
nanotubes or in nanoporous materials; (ii) wrapped in a thin protective film of polymer; or
(iii) provided as an emulsion, or particles at nanoscale measurements. The plants are given
nanofertilizers slowly, efficiently and target-specifically [40,227].

The most important properties of nanobiofertilizers include: (i) an individual particle
size of 100 nm, (ii) a bulk size of around 100 nm and (iii) nanoproducts must be safe for
the environment and long-lasting. A nanobiofertilizer also has the property of keeping
its nanosize and aggregates intact during interactions with soil particles or roots of crop
plants. The nanobiofertilizers can be subcategorized into macronutrient and micronutri-
ent nanofertilizers based on their distribution, nutrient content and how much they are
required by plants [40,228]. A recent study demonstrated that nanobiofertilizer applied
on pomegranate trees increased fruit yield by 34% and increased the number of fruits per
tree [240]. It also increased fruit size and physical parameters without increasing cracking.
Furthermore, it increased the pH of the fruit juice. NMs may also decrease the need for
harmful pesticides and other chemicals [227,229].

It is very important not only to get a good harvest of vegetables and fruits, but also
to prolong their freshness for as long as possible. The application of NMs in horticulture
can increase productivity and quality, as well as reduce post-harvest losses [40]. Important
in this process is the use of substances that would be of natural origin and would not
harm human health. This is where nanotechnology products come to the rescue [227,233].
Agro-industrial waste of plant and animal origin (leaves, peel, stems, seeds, husks, peel
and shell) [241] are significantly rich in biologically active compounds such as alginates,
chitosan, pectin, polysaccharides and proteins, lipids [242,243]. These compounds have
antioxidant and antimicrobial properties, and this allows them to be used as a biofilm to
preserve the freshness of plant products [242,243]. Essentials oils obtained from various
species of herbs and other sources of plants such as clove, garlic, onion, sage and thyme
along with the combination of metal alkoxide and organo-modified metal alkoxide pre-
cursors are used in a specific ratio for the fabrication of nanostructured edible coatings
to preserve fruit items [244,245]. Many types of NMs along with increasing plant growth,
nutrition, resilience, and productivity are also capable of improving the products’ shelf-life,
decreasing post-harvest damage, and improving the quality of harvested horticultural
crops (Figure 3).

NMs can be used to prolong the shelf-life of harvested fruits/vegetables and to
enhance the vitality and beauty of cut flowers [40]. For storage and transport of fruits and
vegetables, antimicrobial NMs such as nanofilm on harvested product and/or packaging
materials are ideal. Nano-based technology is one of the most promising food processing
and packaging technologies as well [227]. NMs can be used to wrap and process food,
preserving its superior quality and longevity. Active food nano-packaging materials contain
metal NPs (ZnO NPs, Ag NPs, MgO NPs, TiO2 NPs and CuO), carbon nanotubes, quantum
dots, chitosan nanoparticles, etc. Because they possess anti-microbial activity, they are
highly commercially important for improving the shelf-life and quality of vegetables, fruits
and exporting foods [40]. Research demonstrates that as much as 30% of the horticultural
crop product is lost to disease and other physiological processes in developing countries [32].
This can be significantly reduced by using nanofilm and nanopackaging with antimicrobial
micromaterials [40]. This will result in a huge savings on nutritious foods. These losses
can be reduced, which will not only increase farmers’ income but also improve the quality
and nutritional content of food products. Moreover, some NMs has the potential to be
used in horticulture as nanopesticides, nanoinsecticides, nanofungicides, nanonematicides
(recently reviewed [40]).
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To date, work is underway to create NMs that would have a wide range of positive
effects on plants [40,228]. A big problem for researchers was to obtain NMs bearing
fertilizers and pesticides that can act only under certain changes in the environment. This
will allow one to release active substances strictly in certain portions at the most necessary
moments. The main objectives of the garden production are to increase yields, biomass,
organoleptic qualities and protection from various diseases and stresses [227,228]. The
current direction is the development of ways to preserve the products obtained as long as
possible in the post-harvest period [40]. Judging by the considerable amount of literature
data, the use of nanotechnology products successfully copes with the main problems of
modern plant growing. Nanocapsules, nanotubes, nanofibers and nanocompositions with
metals have found wide application [233–236]. At the same time, a thorough study of all
the potential consequences and risks of the widespread introduction of nanotechnology in
horticulture is required [227].

3.1. Nanocapsules

To date, preference is given to natural polymers such as chitosan, zein and alginic
acid [227–230]. A nanocapsule usually consists of a polymer component and an active
substance [231]. Recently, a significant number of such compositions have been created that
perform a wide range of tasks in the horticulture. A big breakthrough in the use of nanocap-
sules for the delivery of pesticides is observed today. In the work of Chen et al., (2021) [229],
AvpH-cat@CS nanocapsules were manufactured, the release rate of the active substance
is close to the habitat of pests and the high adhesion of nanocapsules to cabbage and
cucumber leaves significantly increases the effectiveness of the pesticide. In another study,
Chen et al. (2022) [230] developed smart formulations for Quaternary Ammonium Chi-
tosan (Av) Avermectin (QACS) nanocapsules (Av−Th@QACS) with release properties
controlled on request towards the ambient temperature and maximum synergistic biologi-
cal activity of Av and QACS. Th@QACS regulated the amount of pesticides released as a
result of changes in the ambient temperature, to the extent that this release is a means of
responding to changes in pest populations, maximizing synergistic activity. In addition, the
Av−Th@QACS were very tacky on cucumber leaves and Av−Th@QACS exhibited greater
control against aphids [230].

Fabrication using nanostructured lipid carriers of nanocapsules with insecticides such
as pirimicarb and pymetrozine is an effective approach to control the green peach aphid,
Myzus persicae. This approach is effective due to lower financial costs and increased residual
activity of insecticides. This is evidenced by the data obtained on bell pepper (cv. Pardon)
plants [232]. All these data speak of the obvious financial and environmental benefits
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of using nanocapsules to grow various garden plants. Work continues on the creation
of nanocapsules for insecticides, which should release their deadly contents only after
entering the pest’s digestive tract. In addition, at the same time, the preparation will
contain a nanosensor that determines the type of insect [40].

3.2. Nanotubes

Two major classes of carbon-based nanoparticles are fullerenes (FNTs) and carbon
nanotubes (CNTs). Fullerenes are a nanomaterial made from globular hollow-cage carbon,
such as allotropic forms. Because of their high electrical conductivity and structure, electron
attraction and versatility, they have attracted significant commercial interest [227]. Carbon
element in sp2 hybridization forms a large array of CNTs structures containing carbon
atoms. These atoms are placed in a row of fused benzene rings, which meander through
a tubular structure [233]. The carbon-based nanomaterials family consists primarily of
carbon dots (CDs), carbon nanotubes (CNTs), carbon fullerenes (C60), grapheme (GRA),
graphene oxide (GO), nanohorns (CNHs) and carbon nanofibers (CNFs) [234].

CNTs are widely used in the delivery of mineral and protective substances, as nanosen-
sors for monitoring the condition of plants, and nanotubes are effective for converting
ultraviolet and infrared radiation into visible light, which can be a potential means of
enhancing plant photosynthesis [234–236,246–248]. Haghigh and da Silva [237] discov-
ered the effect of nanotubes on the germination and growth of plants, depending on the
concentration used and their ability to localize in plant tissues. CNTs to 10–40 mg L−1

improved the sprouting of tomato and onion more than for radish and turnip, which
was the highest percentage of sprouting in tomato and onion. At the same time, CNTs
have not influenced the sprouting and growth of turnips. There is evidence that CNTs
increased the root elongation in cucumbers and onions but suppressed root elongation in
tomatoes [238]. Khodakovskaya et al. [248] demonstrated that multiwall carbon nanotubes
(MWNTs) stimulate growth and increase the number of flowering tomato plants [249].
Nanopriming with MWCNTs and carboxylic acids (MWCNT–COOH) increased the vigor
of seed germination in two boreal peatland species of Bog birch (Betula pumila L.) and
Labrador tea (Rhododendron groenlandicum L.). This effect is associated with the ability of
MWCNT–COOH to influence the lipid metabolism of the cell membranes of the seeds of
these species’ trees [246]. It was reported that CDs are able to enhance and change light
absorption spectra and improve photosynthetic activity in bean and lettuce plants [247–250].
In addition, it was found that the use of MWCNTs for grape plants at a dose of 90 µg mL−1

had a growth-stimulating and protective effect in salinization conditions. An important
role in the observed effects is played by the ability of MWCNTs to regulate the state of
the antioxidant system, positively regulating the level of gluthathione and the activity of
antioxidant enzymes [251].

It is believed that carbon nanotubes can open up a new age of fertilizer for horticulture.
It was found that tomatoes seeds soaked in nutrient solutions containing CNTs can germi-
nate faster and more intensely. Because of their microscopic size, nanotubes can easily pass
through the seed’s skin, allowing for better water and nutrient penetration. This affects
the seeds’ germination rate [252]. Preliminary tests have demonstrated that CNTs are not
toxic to tobacco plant cells. However, the data received are not yet sufficient to establish
the possibility of environmental uptake and accumulation of nanomaterials in plants. It
is not known how biological and biochemical processes in the plant will be affected, and
what may happen to food crops and their food?

Work on the interaction of CNTs with plants is perceived by many scientists am-
biguously. Some believe that the use of such «nano-fertilizers» can lead to unpredictable
consequences. Individual experiments with the «fertilizing» of tomatoes with CNTs demon-
strated that the fruits were «toxic» for the fruit flies of fruit drosophila. Some researchers
believe that CNTs are carcinogens for animal organisms. Of course, it is necessary to study
the biological activity of these substances, as they interfere with the natural movement of
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processes that have been used by nature for millions of years. The effects on human health
and the environment are not fully known [252].

3.3. Metal-Based Nanoparticles

Metal-based NPs (MNPs) are made only from metals’ precursors. These NPs have
unique optoelectrical characteristics due to their well-known localized plasmon resonance
properties. The NPs of alkali and noble metallics, i.e., the visible spectrum of the electro-
magnetic sun spectrum, has a wide absorption band for Cu, Ag and Au. In cutting-edge
materials of today, the facet, size and shape-controlled synthesis is crucial [227,238]. MNPs
are used in many areas of research due to their superior optical properties. Nanoparticles of
metals and metal oxides are used in modern agrotechnical production as well. It should be
noted that MNPs are a dispersion medium. In it, the dispersion phase is metal particles or
its oxide, and the dispersion medium is liquid. This makes it easy to change their relation-
ships in accordance with the tasks [253,254]. Important characteristics of nanoscale metals
and metal oxides are their high availability and translocation within plants [254,255].

The use of ZnO NPs may serve as a novel nanobiofertilizer for enriching Zn-deficit
soil [46] and increase the resistance of eggplant (Solanum melongena L.) to drought [256].
There is evidence that FeO and ZnO nanoparticles increase the growth and yield of cab-
bage [257]. CuO, ZnO and FeO significantly improve growth indicators and reduce oxida-
tive stress and the level of infection in the presence of soil infection Ralstonia solanacearum
in tomato plants [258]. Mokarram et al. [259] found that inoculating plants with arbuscular
mycorrhizal with a low dose of Fe-NPs significantly increased heavy metal phytoremedia-
tion, improving the root zone and leaf space of young plants of white willow. Furthermore,
the application of ZnO NPs to salt-stressed tomato plants improved growth, photosynthe-
sis and antioxidant enzyme activity (i.e., POD, SOD CAT) [260]. Sohail [261] found that
both the treatment of seeds and vegetation cabbage plants with Zn NPs improved water
exchange and photosynthesis productivity. The application of nano ZnS on sunflower
plants increased the chlorophyll and seed oil content [262]. SiO2-NPs is another common
example of a NMs used in horticulture. It has been demonstrated to improve the growth of
plants, as well as increase net photosynthesis, the rate of transpiration and the conductance
of the stomata. It can also help reduce salt stress and increase chlorophyll content [227].

Cu is a key microelement that ensures the growth and development of plants. Cu NPs
have great potential and are widely used in crop production [40]. They have antimicrobial
properties and may be ideal for the targeted delivery and controlled release of pesticides and
fertilizers. They have a significant growth-stimulating and protective effect on plants [263].
In addition, Cu is used in nanosensors to detect pesticides, chemicals and toxins [264].
Titanium (Ti) is not an important element in the life of plants. At the same time, TiO2 has
a protective effect on plants, including UV protection [265]. The introduction of TiO2 in
different concentrations leads to an increase in the yield and stability of cucumber [266].
In addition, the combined effects of cold (chitosan/titanium dioxide nanoparticles) CS-
TiO enhance the post-harvest shelf life of products [267–270] including cucumber [267],
tomato [271] and onion [272]. TiO2 NPs are able to regulate the state and operation of the
photosynthetic system by activating the key enzymes of photosynthesis—RuBisCo) and
also regulate the redox metabolism of plants [267,273], and the operation of the potassium-
sodium pump, nitrogen interchange and metabolism in general [271]. Interestingly enough,
the data obtained by Ostadi et al. found that the co-treatment of TiO2 and the fungus
Arbuscular mycorrhizal was beneficial for the productivity and quality of Salvia officinalis L.
plants under drought stress [274]. In horticulture, TiO2 nanoparticles have been proven
to increase yields by up to 91%. They also improve photosynthetic activity in plants.
They have also been proven to promote stem elongation, flowering, ear mass and seed
number [266,268].

Several studies have examined the effects of Ag NPs on plant growth and development.
A variety of potential effects of Ag NPs on various plant growth parameters, including seed
germination, water absorption and P solubilization were identified [275,276]. Additionally,
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studies have investigated the effects of Ag NPs on the activities of some plant-friendly
microorganisms [277]. The antimicrobial properties of Ag NPs can be used to control
microbial growth in crop plants and flowers [278,279]. The size, shape and size distribution
of Ag NPs have a strong impact on their antibacterial activity. A study has demonstrated
that Ag NPs have a lower antibacterial activity against S. aureus and E. coli than against
gram-negative bacteria [227]. Recent studies have found that Ag NPs may have unintended
effects on the soil microbiota of plants. This finding is a cause for concern, because it could
potentially affect the productivity of the crops and ecosystem health. It also highlights
the importance of considering the microbiome in assessing the risks associated with the
nano-enabled agriculture. Ag NPs have a high surface area and contain surface molecules
that have antimicrobial properties [277]. They can inhibit the growth of many types of
bacteria, including multidrug-resistant strains. In addition, these particles have antiviral
activity [278]. These properties may make them useful countermeasures against infectious
diseases, which is a major concern in the medical field. However, the impact of nanoparti-
cles on the soil microbiota may be largely unknown. Nonetheless, their presence in soil has
the potential to negatively impact soil fertility and infertility. In addition, many studies
have found that Ag NPs reduce the microbial activity of soil fungi and bacteria. Further
research is needed to determine whether Ag NPs negatively affect the ecosystems in which
these bacteria and fungi live.

Use of Ag NPs improved the potato tuber yield [275] and increased germination
as well as the root growth rate of tomato plants [276]. In addition, Ag NPs reduce the
susceptibility of plants to various diseases, reducing the infection of tomatoes with rot
caused by the fungus Alternaria solani [277] and the nematode Meloidogyne incognita for
Trachyspermum ammi L. [278]. These studies demonstrate that the protective effect of Ag
NPs is based on their ability to positively regulate the antioxidant system, contributing to
the reduction of oxidative stress caused by these diseases [277,278]. These data indicate
that Ag NPs have antimicrobial properties and are able to increase the time of its freshness
in the post-harvest period [255,279]. Gao et al. [280] found that the post-harvest Ag NPs
treatment reduced the weight loss of cherry tomato fruits and increased the storage period;
similar results were obtained when Ag NPs treated grapes of the varieties Shine Muscat
and Kyoho. Ag NPs contributes to the preservation of the smell and appearance of acacia
and zinnia flowers after cutting [281,282].

NPs have the potential to enhance the yield of crops by suppressing the growth of
weeds, insects and diseases [237,238,242,258,263]. However, NPs can negatively affect the
pH level of the soil, which is critical to plant growth. Soil pH is an indicator of soil acidity
and alkalinity and affects the availability of nutrients in the soil. The optimal pH level for
plants is between 5–7. In Table 4 are presented the effects of NPs upon the germination,
growth and yield of some horticultural plants.

Table 3. Some examples of the effects of nanomaterials on horticultural plants.

NPs Plants Influence on Plants Reference

Silver NPs
(Ag NPs) Tomato

Alleviated salt stress effects, germination percentage,
improved germination rate, root length and seedling fresh and dry weight of

tomato under NaCl stress
[276]

Decreased fungal spores (48.57%), SOD (39.59%), proline (28.57%) in
Alternara alternata infected plants, not variation in terms of soil pH, cultured

population, carbon source utilization pattern and soil enzymes
(dehydrogenase, urease, protenase, and β-glucosidase), increased

photosynthesis

[277]

Multiwalled carbon
nanotubes
(MWCNTs)

Tomato Production of two times more flowers and fruit compared to control plants [249]
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Table 4. Some examples of the effects of nanomaterials on horticultural plants.

NPs Plants Influence on Plants Reference

Grape
Increased root length and germination rate (at 90 µg/mL of MWCNTs),
decreased MDA and increased antioxidant capacity (SOD, CAT, POD,

DHAR, APX, GST, GR) under salinity
[251]

Carbon nanotubes
(CNTs)

Tomato,
radish,
onion

Increased dry weight, improved germination percentage and rate [237]

Turnip No effect on germination and growth [237]

Carbon dots (CDs)
nanocapsules Lettuce Increased photosynthesis rate, production yield, soluble sugar and soluble

protein concentration [250]

Zinc oxide NPs
(ZnO NPs)

Eggplant
Increased relative water content, membrane stability, photosynthetic

efficiency, improved stem and leaf anatomical structures, increased fruit
yield (by 12.2–22.6%)

[256]

Tomato

Increased shoot and root lengths, biomass, leaf area, chlorophyll content,
photosynthetic attributes of plants in the presence/absence of salt stress,
enhanced protein content and antioxidative enzyme activity (POD, SOD,

CAT) under salt stress,
Alleviated of NaCl toxicity in plants

NPK + CeOAgNO2
NPs Cabbage Increased leaf chlorophyll, cabbage head weight increased three times more

than control [257]

Metal NPs
(CuO, ZnO, and

FeO)
Tomato

Reduced incidence of bacterial wilt (Ralstonia solanacearum) disease,
improved morphological and physiological parameters of plants, increase

the Chao1 and Shannon index
[258]

Chitosan/Titanium
Dioxide Nanoparti-

cles/Sodium
Tripolyphosphate
(CS-TiOAgNO2-

STP)

Cucumber Enhanced post-harvest shelf-life (reduced decay after 21-day storage period) [267]

CuO NPs and
TiOAgNO2 NPs Onion

Reduced mitotic index (MI) by 28% and 17%,
increased ROS activity in roots [272]

Al2O3 NPs Augmented MI by 13%, increased ROS activity in roots

AgNO3 NPs and Ag
NPs Grape

Ag NPs and AgNO3 NPs enhanced grape brunches’ longevity and quality of
up to 30 days

Ag NPs produced the best results for soluble solids content, titratable acidity,
MDA content, polyphenol oxidase, POD, and pectin methylestraese activity

[279]

Although the mechanism is not well understood, it has been reported that NPs can
be toxic to plants at higher doses [253]. In experiments with tomato plants, researchers
were able to find a link between Ag NPs and the growth of the plant. In one experiment,
they exposed tomatoes to solutions containing Ag NPs. The plants absorbed the silver
particles and eventually died. The smaller the particles, the faster the plants died. Thus,
the toxicity of Ag NPs on plant growth is size and concentration-dependent. High levels
of silver may decrease seed germination and plant growth, inhibit root development and
reduce seedling growth [239]. Ag may also alter the activities of enzymes and antioxidants
and affect root and shoot mass. This toxicity may result in the increased production of
ROS, which is harmful to plant growth and development. Ag NPs have been used in
a variety of commercial products, including medical devices and textiles. They are also
a component of photovoltaic cells. However, the omnipresence of AgNPs in industrial
countries has led to increasing concerns about their impact on human health [253]. NPs
can also be used to make sensor materials such as nanowires and nanowires [234,235].
Monitoring in real-time can reduce the use of pesticides or fertilizers in crop production.
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This helps to reduce environmental pollution and lower production costs. The application
of nanosensors transforms conventional agriculture into smart farming, which is more
efficient and environmentally friendly for sustainable horticultural practices [264]. Smart
practices in horticultural crop production involve: (i) nanoformulation-based fertilizers
or pesticide delivery systems, which increase the dispersion and wettability of nutrients;
(ii) nanodetectors for pesticide or fertilizer residues; and (iii) remote-sensing-based moni-
toring systems for disease incidence and crop growth. In horticulture, nanosensors are also
might be used to determine the moisture content of soil and pesticide residues [40].

3.4. Limitations and Future Prospects of NMs’ Use in Horticulure

The modern nanotechnology tool is a promising one to promote sustainable horti-
cultural crop production [227,228]. Different types of NMs are used in order to increase
the yield, quality and decrease post-harvest spoilage of the main vegetables and fruits
that a person uses for food [40]. NMs can reduce pesticide and chemical fertilizer use. In
addition, this direction is promising due to lower financial costs, being simple, and the
implementation of the environmentally friendly, harmless to human health production of
horticultural crops [227]. NMs can be produced quickly and efficiently with minimal effort,
without causing harm to the environment. NMs are also used to improve the shelf-life of
cut flowers [40]. Nanosensors monitor the soil moisture and detect pesticide residue. They
also determine nutrient levels and diagnose crop pests [40]. Despite the many benefits
that NMs bring, it is still at the earliest stages of development and their use is limited by
concern over possible side effects. Incorrect use of NMs may cause damage to crops and the
environment. As a result, there is still a need for further research to determine the safest ap-
plications of nanotechnology in horticulture. A substantial application of nanotechnology
could promote growth, increase yields and lower production costs. Furthermore, it would
also reduce post-harvest losses and post-harvest production costs. To ensure food security
and nutritional security in a changing climate, the availability and safety of useful NMs is
crucial. The larger use of nanotechnology will result in climate-smart horticulture, which
will reduce crop losses during vegetation and post-harvest periods as well as improve the
overall quality of food products.

4. Novel Class of Phytohormones Strigolactones: Perspectives of Their Application
in Horticulture

Strigolactones (SLs) are a class of new phytohormones derived primarily by carotenoid
metabolism. SLs are synthesized in different plant species, but are especially widespread in
angiosperms. To date, 30 types of SLs have been identified, and the one and the same plant
could synthesize a mixture of different amounts of SL molecules. The SLs biosynthesis
has similarities with the metabolic pathway of abscisic acid (ABA). SLs are evolutionary
conservative by function and biosynthesis. They can also be controlled by biotic or abiotic
stress-factors [283]. Such a redundancy of active SLs points to the extraordinary importance
of these phytohormones for land plants, including their adaptation to stress conditions. It
should be noted that SLs are anticancer substances [41]; their consumption with agricultural
food or obtaining drugs based on these chemicals is also very perspective and useful. SLs
act as plant growth and developmental regulators endogenously in the plant’s organism
and exogenously in the rhizosphere at very low concentrations [47]. The pleiotropic roles
played by SLs in plants under the absence of the stress-factor and during plant adaptation
to environmental changes can pave the way for new innovative productivity enhancement
applications [284].

SLs together with ethylene may stimulate the leaf senescence [285]. The regulation
of the quality control of postharvest plants by SLs is a very promising method. Moreover,
along with auxines and cytokinines SLs are able to regulate the size of flowers, leaves and
seeds [286], chlorophyll content [287] and the process of photosynthesis in general [288,289].
Therefore, varieties obtained by molecular genetic methods and affecting the SLs’ synthesis
could have, not only the highest yield, but also other useful properties for horticultural
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production, such as controlled adventitious root formation, shelf-life, height, branching,
size of the plant’s flowers and leaves. All of these characteristics are very important and
determine the commercialization of horticultural plants. Besides obtaining new varieties of
agricultural and horticultural plants with changes in SLs’ synthesis or signaling another
perspective, is the exogenous SLs’ application. The synthetic SLs are particularly preferable
owing to their relative stability in the soil and their relatively less complex chemical
structure. Along with SLs and various types of plant growth regulators, their synthetic
analogs and inhibitors have been widely applied in the agricultural industry. For example,
the preparation of synthetic SL combined with carrot’s macerate in a mixture of surfactants
with added citric acid demonstrates significant positive effect on onion (Allium cepa L.)
growth [290].

4.1. Multidirectional SL Regulation of Shoot and Root Architecture

Since SLs inhibit the growth of lateral buds [291] and increase plant height [286,292,293],
SL-induced plant branching control could be very useful for cut flowers and pot plants [294].
High quality cut flowers should produce long and strong flower stalk and stem and one
big flower; on the other hand, pot plants require a short plant height with a lot of branches
with many flowers. Along various dwarf reagents (ancymidol, daminozide, paclobutrazol,
etc.), pinching is the most common way to control plant height and promote branching.
The removed plant’s apical meristem induces the loss of apical dominance. As a result, the
formation of new branches begins to occur. SLs and auxins interaction are known to inhibit
the formation of the lateral branches of tomato seedlings, decrease the tomato nutrient
consumption and reduce the yield of tomato [294]. Instead of a manual regulation of the
lateral buds’ growth, it is economically feasible to treat those plants that require one large
flower and/or a long stem with synthetic SL.

SLs regulate cambium activity, and thus control the plant’s secondary growth [295–297].
This regulation is very important in improving the shoot’s standing ability without any
mechanical support in such horticulture plants such as the pea (Pisum sativum L.), tomato
(Solanum lycopersicum L.) and grape (Vitis vinifera L.). This minimizes crop losses and
enables them to withstand heavy rainfall and winds. The increase in biomass through the
SL-induced secondary growth is crucial for the trees, which are grown to obtain wood.

In order to stimulate adventitious root formation, the cut plants are usually treated
with synthetic auxin. SLs regulate rooting and vegetative propagation of many commer-
cially important plants. For example, peas that are SL-deficient or respond mutants have
increased adventitious rooting [292]. Synthetic SL analog GR24 is widely used in research
on the hormonal regulation in plants. Exogenous GR24 treatment affects the growth of
both stolon buds and tubers of potato, and their inhibition leads to a fewer tuber for-
mation [298]. On the other hand, when the key strigolactone biosynthesis gene CCD8 is
knocked out, potato plants (Solanum tuberosum L.) become shorter, have more primary and
lateral branching, and the growth of the stolons and branches improves [299].

4.2. SL-Regulated Plant Interaction to Biotic Stimuli

Broomrapes (Orobancheceae family) are obligate parasites of roots of dicotyledonous
plants. They attach to the host root via haustoria and extract water with dissolved nutri-
ents from xylem tissue, causing significant crop loss. Orobanche and Phelipanche species
comprises seven weedy parasites of vegetables, legumes and sunflower (Helianthus an-
nuus L.) [48]. The exogenous treatment by synthetic SLs is capable to stimulate the germina-
tion of seeds of parasites in the absence of an appropriate host plant in close proximity. This
can help control their invasions and reduce the plant infection by parasitic weeds [41,300].
The decrease in SLs biosynthesis and, accordingly, SLs’ excretion by tomato roots, reduces
the infection with broomrape Phelipanche ramosa [286].

Excreted from the plant roots [300], SLs also stimulate the branching of arbuscular my-
corrhizal fungi [301] forming nonspecific symbiosis [302]. Arbuscular fungi (genera Glomus
and Paraglomus) form specialized structures called arbuscules, where photosynthates are
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stored. Symbiosis helps host plants to form a more extensive root system with greater root
area and length. This allows land plants to receive water, phosphates and nitrogen, and also
improves their physiological responses to abiotic stressors [303]. Young citrus seedlings
with mycorrhizal symbiosis have increased plant height, stem, shoot, root diameter, total
biomass accumulation, photosynthesis and transpiration rates, and stomatal conductance
compared to control plants under normal growing conditions and salinity [303,304]. In
addition, this symbiotic relationship includes maintaining the ionic equilibrium of plants
via the reduction of Na+ concentration under salinity.

SLs play an important but not vital role in the germination of seeds and in the nodu-
lation of leguminous plants [302,305]. For example, SLs regulate the number of alfalfa
(Medicago truncatula) nodules, depending on the dosage. Moreover, the expression of the
nodule formation marker NOD1 (EARLY NODULATION11) is suppressed in plants treated
with GR24 [306].

SLs also play a major role in the resistance of plants to bacterial and fungal pathogens [307].
For example, the presence of GR24 in the growing medium suppressed the growth root phy-
topathogens Fusarium oxysporum, F. solani, Sclerotinia sclerotiorum, and Macrophomina phaseolina
as well as leaf pathogens Colletotrichum acutatum, Alternaria alternata and Botrytis cinerea [48].
The tomato slccd8 mutants with damage in SL biosynthesis exhibit an increased susceptibility
to foliar fungal pathogens A. alternata and B. cinerea, and also reduce the amount of other
protective hormones—jasmonic acid, salicylic acid and ABA [308]. Transcription factor mo-
tifs associated with pathogens were found in the promoters of SL biosynthesis genes. The
Arabidopsis thaliana is a widely used model plant for genetic and physiological investigations.
A. thaliana SL-mutants max2 have a reduced resistance to the pathogen-triggered apoplastic
ROS, and increased sensitivity to the bacterial necrotroph Pectobacterium carotovorum and the
hemi-biotroph Pseudomonas syringae, probably due to a wider stomatal aperture [309]. The
biotroph pathogen Rhodococcus fascians induce A. thaliana leafy gall syndrome [310]. Mutants
in SL biosynthesis max1, max3, max4 and SL signaling max2 are hypersensitive to R. fascians
in comparison with wild type plants. GR24 treatment restricts the morphogenic activity of
this actinomycete.

4.3. Regulation by SLs of the Plant Tolerance to Abiotic Stresses

SL synthesis and signaling mutants show a hypersensitivity to salinity, drought and
low temperature [49,311]. Mutants max2 are characterized by a thin cuticle and a larger
stomata aperture during drought stress [312]. Exogenous SL treatment of such mutants
induces wild-type phenotypes recovery under the influence of an abiotic stress-factor or
improves the wild-type plant tolerance due to the SLs’ regulation of stomatal guard cell
movement and the number of stomata on the leaf surface [288]. GR24-treated grapevines are
more resistant to drought due to the ABA- or ROS-mediated regulation of stomatal closure,
changes in chlorophyll content and overall modulation of the photosynthesis process, as
well as the activation of antioxidant protection [313]. The exogenous SLs application has
favorable effects on the relative water content and ion homeostasis, increasing the content
of photosynthetic pigments and photosynthesis in general [314,315]. Environmental stress-
factors are known to induce shifts in ROS synthesis and utilization during photosynthesis,
photorespiration and mitochondria electron transport processes. The GR24 treatment
increases gene expression and antioxidant enzymes activity as well as the content and
effectiveness of non-enzymatic antioxidants in such horticultural plants as a cucumber
(Cucumis sativus L.) [314,316] and tomato [317], followed by the oxidative stress decrease in
these plants.

It is very important to control the postharvest of fruits, vegetables and flowers owing
to their short shelf-life. Strigolactones’ treatments could be a very useful approach during
the storage of vegetables and fruits. For example, SL treatment maintains the quality of soft
strawberry (Fragaria × ananassa Duch., cv. Akihime) fruits in a storage period by improving
the antioxidant system and the metabolism of phenylpropanoid [318].
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5. Controlled Environment Horticulture Using Artificial Light
5.1. Fast Development in Controlled Environment Horticulture

Controlled environment horticulture (CEH) is the practice of growing crops (especially
horticultural crops) within a controlled environment to optimize horticultural practices and
yield. Some examples of CEH are vertical farm (plant factory) systems and greenhouses.
Some scientists believe that the production of crops in a system that makes changes from
the natural habitat can be considered as CEH. The CEH is vastly developing all around the
world for mainly the production of horticultural crops and seems to be a proper solution to
the challenges related to the sustainable production of healthy products with optimized
resource use efficiency [3].

Diverse ranges of the advantage have been proposed and documented for the produc-
tion of crops in vertical farming systems (especially for the plant factories or indoor vertical
farming systems). These advantages can be categorized in four main clusters (Figure 4).
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In the case of productivity, growing crops in indoor vertical farming systems offer
high annual production and efficient use of land, high percentages of marketable products,
ease of reproducibility, possible adaptability to different location and feasibility to produce
products in the vicinity of final consumers (restaurants, supermarkets, etc.), full predictabil-
ity of production, traceability of products across the supply chain and balancing between
supply and the demand for the horticultural products [3,319,320]. In terms of quality, the
production in indoor vertical farming systems offer a consumer-favorable quality with the
possibility to change the texture, shape, odor and taste of the product, with products ready
for packaging and consumption with low/null microbial load [3,319,321]. Furthermore,
indoor vertical farming increases the controllability of the production, product quality, sani-
tary, waste and environmental cues such as temperature, humidity, light, CO2, etc. [320,322].
Finally, and maybe most importantly, indoor vertical farming offers optimized resource use
efficiency that makes efficient use of water, fertilizers, CO2 and labor. Furthermore, using
the renewable energy in this kind of cultivation system is feasible [323]. However, there are
some barriers for the further development of CEH for horticultural crop production. For
instance, due to the extremely dense-population of crops, the production of horticultural
crops in CEH is more sensitive than the other methods. Furthermore, the initial investment
for developing controlled environment systems is also considerably higher than the con-
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ventional methods of crop production [3]. Dense-production in multi-layer vertical systems
in CEH is planned to compensate for the high costs of production. However, recent reports
support efficient and even better cost-effectiveness and energy use efficiency in controlled
environment systems than the conventional methods [43,44,52]. Moreover, in the new
CEH systems, production takes place in closed (vertical farming systems) or semi-closed
(greenhouse) environments. In these types of CEH, the recycling of water and nutrients
is a common practice, and the waste of water and nutrient to the environment is fully or
largely limited; in this regard, a water use efficiency of 100% has been reported to the plant
factory system [51]. Due to the closed or semi closed properties of advanced CEH systems,
the release of CO2 and heat would be largely limited to the outside environment, which
enhances the sustainability of this type of production [51,324]. In a study by Avgoustaki
and Xydis [43] on comparing the production profitability of indoor vertical farming with
greenhouse production, approximately a two times higher fresh weight crop production
and half water consumption were reported for the production in indoor vertical farming in
comparison with the greenhouse production. They reported that the crop production in
indoor vertical systems is considerably more profitable than the greenhouse production.
In another study by Graamans et al. [51] on comparing the production on different CEH
environments, including indoor vertical farming and greenhouse production in different
locations, it was demonstrated that although the indoor vertical farming required a higher
electricity energy input but, due to low water and CO2 use for production of biomass, a high
quality and quantity of production and high resource use efficiency, indoor vertical farming
system offers a better environment for crop production than the greenhouses. Therefore, the
production of crops in indoor vertical systems has been challenged by their high electricity
energy input. However, in a recent study by Jin et al. [44] on light use efficiency among
different lettuce production systems, including the indoor vertical farming, greenhouse
and open field, it was demonstrated that light use efficiency is the highest when lettuce
produces in the indoor vertical system. They reported the average of the light use efficiency
of 0.55 g mol−1 dry weight of shoot per Photosynthetic Photon Flux Density (PPFD) for
lettuce grown in a vertical farm, 0.39 g dry weight mol−1 PPFD for the lettuce grown in
the greenhouse and 0.23 g dry weight mol−1 PPFD for the lettuce grown in the open field
condition. Actually, by production of the indoor vertical farms, it is possible to reach to
the theoretical maximum light use efficiency of the crops. Furthermore, in another recent
study [52], the life cycle assessment, cumulative exergy demand, and life cycle cost analysis
was employed to analyze the energy consumption, cost effectiveness and environmental
impacts of conventional and vertical system for the production of watermelon seedlings. It
was demonstrated that the vertical system was more profitable, less energy was needed,
and it was more environmentally friendly for the production of seedlings.

Indeed, the data presented in the recently published reports all support the production
of horticultural crops (those that their cultivations are possible indoors) in CEH systems.
This way, the technological-based production of horticultural crops becomes possible and
rationale with the introduction of new sources for the provision of light energy for the
photosynthetic systems.

5.2. Light as the Most Challenging Environmental Issue in CEH

The most challenging and costly part of production in the most-advanced CEH systems
(vertical farming systems or plant factories) is the lighting component of them [44,52]. There
are plenty of studies in just the last decade that have focused on optimizing the proper
lighting condition [quality or spectrum, intensity, photoperiod and daily light integral
(DLI)] in controlled environment systems [54,55,325,326]. For many years, high pressure
sodium (HPS) takes the dominant role as the artificial light, especially as the supplemental
light for the greenhouse production of crops. However, a recent need for a more-sustainable
source of light with the possibility to manipulate the light quality, quantity and photoperiod
imposes serious challenges on the use of HPS in CEH systems. From the 1960s with the
introduction of hydroponic cultivation methods, the application of supplemental artificial
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light in the greenhouses in North Europe started. The application of fluorescent lamps in
CEH facilities such as in greenhouses and tissue culture chambers was started from the
1990s [319]. From 2010 and onwards, light emitting diodes (LEDs) have been used for the
provision of energy for the photosynthesis of plants in the CEH and become attractive
for both scientists and growers because of the many advantages over many other light
sources. LEDs are more robust, more efficient in converting electricity to light, and create
much less heat than HPS. LEDs provide the possibility to have a specific wavelength of
light spectra, which makes them suitable for investigating the impact of different light
attributes, including the spectrum, direction of lighting and intensity on plant responses in
CEH systems [327–330].

Light provides the source of energy for driving photosynthesis and as a consequence,
the growth of plants. Different characteristics of light including the spectrum, intensity
and photoperiod have been manipulated to optimize the lighting environment in the
CEH systems depending on the aim of the production of products (biomass, secondary
metabolite, keeping quality, etc.). The spectral composition of the lighting environment has
substantial impacts on the plant’s responses. For instance, the wavebands in the range of
red and blue lights are mostly absorbed by the chlorophyll pigments, therefore, these two
light wavebands are the main source of energy for the excitation of electrons’ excitation in
the photosynthetic apparatus of the plants [331]. The effects of red and blue wavebands
either in monochrome or in dichrome form have been the topic of a tremendous number of
investigations on the growth, development, morphology and physiology of various types
of crop species and cultivars in controlled environments [326,330,332–336]. However, it has
been reported that carotenoids also participate in the absorption of blue light; as a conse-
quence, red light is used more for the designing of lighting strategies in CEH. In general,
red light promotes the growth and development of plants [33,321,337], but when applied in
monochrome in CEH systems, it induces a red light syndrome with photosynthetic dysfunc-
tion and morphological disorders [333,335,338,339]. Blue light is suitable for photosynthesis,
chloroplast development, chlorophyll formation, induction of plant compounds, normal
activity of photosystems and electron transfer [332,335,336,339,340]; however, growth re-
tardation has been reported when it is applied in monochrome [333,337,341]. Therefore,
the combination of red and blue lights can more efficiently promote photosynthetic perfor-
mance and plant growth in CEH systems. Together with red and blue light, the integration
of green and far-red light waveband ranges in the induction of growth in the CEH system
has been reported [342–344].

5.3. Importance of Lighting Strategy in CEH

Proper light intensity, photoperiod, and as their combination, DLI, are other chal-
lenging issues in CEH production, since they directly influence plant growth, energy
consumption and the sustainability of the CEH system. The DLI is the total amount of
photosynthetic photons on the leaf surface during a period of one day. It is used to de-
termine the optimal overall photosynthetic photon flux density (PPFD) for the growth
and development of plants, considering the energy saving issues in CEH. In this regard,
12–17 mol m−2 d−1 has been recommended for the production of a leafy vegetable in in-
door CEH to consider the energy-saving issue. The response of photosynthesis and growth
to increase in PPFD is usually positive until a threshold level [54,327–329,345]. This thresh-
old level is usually determined by the photosynthetic light saturation point. Beyond this
threshold, there would not be more induction, and in the extreme intensities, the photoinhi-
bition and stress would be imposed on the plant, which is a response that depends on plant
species [54,55,329,337,346,347]. There is an interaction between light intensity and other
resource usage of crops in CEH. For example, it was reported that proper PPFD during
plant growth can compensate for nitrogen deficiency by improving resource (water and
nitrogen) use efficiency [328], or CO2 enrichment can improve light use efficiency in closed
growth environments [54,55].
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Beside the indispensable role of light in growth, it also acts as an energy input or a
signal for the regulation of plant metabolic processes, including primary and secondary
metabolite production. Because sometimes the production of metabolites is the main aim
of crop production in CEH, it has been demonstrated that both light spectrum and intensity
have also a role in the modulation of metabolite production [54,55,341,348].

The use of artificial lighting is not only limited to their sole application as the only light
source; it is also widely used as the supplement to the sunlight especially in greenhouse
production. As a result of the lack of light, growth, flowering, harvesting time and quality
of the crops would be decreased or postponed in many greenhouse crops [349]. Despite
the high cost of the application of artificial light, there are different reasons that make
the application of artificial supplemental light rational; for instance, high latitude regions
have low light intensity, especially in the winter production of crops in greenhouses.
Furthermore, plants cultivated in greenhouses are often exposed to the lower light intensity
of lighting environments than their original habitats, which necessitate the application of
additional light. Sometimes, the architecture of crops imposes a limitation for enough light
perception. This challenge can be observed in crops with a vertical profile, in a way that
the lower part of canopy receives low light intensity, while at the same time the top part of
the canopy receives extra or enough light. Leaf arrangement in rosette plants also imposes
a light limitation on leaves in the central part of their canopy. In these kinds of plants, their
leaf tips receive more light than their base [350].

The use of supplemental light can provide a tool to compensate the low light intensity
in the greenhouses or on the crop due to the aforementioned light limitations. The sup-
plemental light can be used to shorten the growth period of crops, to increase yield, or to
improve quality [351]. It has been reported that the application of supplemental light using
LEDs can decrease the use of other resources and improve the sustainability of greenhouse
production in the places with light limitations [53]. It has even been demonstrated that
in plant species considered to be not high light-loving plants such as Bromeliads and
Anthurium, providing supplemental light using LEDs with specified spectrum facilitates
and accelerates flower induction and emergence [330].

Since the LEDs can provide specific light qualities in every place and close to the
horticultural commodities, they have also been applied in postharvest studies in order to
demonstrate the effects of light quality and intensity on the vase life or shelf life of flowers
and vegetables [352]. For instance, in cold-room-stored Anthurium cut flowers, the presence
of light is more beneficial for keeping their quality, but when the postharvest stores are
equipped with spectrum containing sole blue light or a high percentage of blue light in the
overall spectrum, the anthurium vase life would be drastically decreased [353]. However,
in another study on cut carnation flowers, it was demonstrated that blue light boosts the
antioxidant defense system, leading to an extension on their vase life [336]. Further studies
demonstrated that blue light postpones the senescence of carnation petals through the
regulation of the genes involved in the ethylene and abscisic acid pathways [335].

With the onset of the third decade of the 21st Century, indoor vertical farming systems
are well-accepted in many countries and researchers are paying attention to apply artificial
intelligence, ICT information and communication technology, internet of things and full
automation, to introduce phenomics-based techniques to have a high throughput screening
for special plant traits and product quality, and to develop robotics for the commercial
production of horticultural products in CEH systems [55,319,331,336,354–357].

6. CRISPR Technology in Horticulture

The foundation of plant biotechnology is the delivery of genetic material into a plant
cell, followed by the development of that cell into seed [358]. The development from cell
to seed is most commonly accomplished by regenerating this cell into a fertile plant using
tissue culture techniques [359], although alternative approaches of modifying germline
cells directly in planta have also been reported [360].
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In classical approaches, the genetic material delivered into the plant cell is exogenous
DNA that integrates into the genome, leading to a transgenic or genetically modified
organism (GMO) [361]. In genome-editing technology, the introduced genetic material
(which can be DNA, RNA, protein or some fusion of these) creates a change in the plant
genome, but does not integrate it [362].

Genome editing (GE) operates by a simple principle: humans create a specific cut in
a plant cell’s genome, and the plant cell repairs it. The cell’s native repair machinery is
intrinsically imprecise, and often repairs the cut imperfectly, causing insertions or deletions
(indels) or base changes (SNPs or single-nucleotide polymorphisms) [363]. This sequence
change at the DNA level affects gene expression by either (1) changing the coding region
so that the resulting protein sequence is altered or (2) changing gene expression elements
so that genes are up- or down-regulated [364].

Multiple technologies for GE exist, and all follow the same mechanism for creating this
specific cut in the plant genome: a two-part machine comprised of a nuclease protein that
cleaves DNA, and an element that targets this nuclease to a specific sequence within the
genome. GE technologies are distinguished by the targeting element: prior to CRISPR, the
most common technologies were zinc-finger nucleases (ZFNs) [365], transcription activator-
like effector nucleases (TALENs) [366] and homing endonucleases [367]. Modifying the
targeting elements in the above systems requires complex protein engineering, which
is expensive and inefficient. Moreover, in the aforementioned systems, the rules that
determine recognition patterns in the DNA are cumbersome, which statistically reduces
the number of possible targets in any genome [368].

CRISPR systems revolutionized genome editing because it is inexpensive, fast and
easy to develop their targeting elements. In CRISPR systems, the targeting element is an
RNA molecule of 17–20 nucleotides that complements the genomic target site [369]. This
guide RNA is secured to a nuclease protein (the most common variants being cas9 and
cpf1), is easily interchangeable and can be synthesized at very low cost. Additionally, the
constraint on target sequence selection is the requirement for a short downstream DNA
motif (protospacer adjacent motif, or PAM sequence) [370]. On average, PAM sequences
arise every 42 nucleotides, allowing for a large number of possible targets [371], which
increases the utility of CRISPR systems relative to other GE approaches.

In horticultural and other crops, GE technology is just one tool of many in the breeder’s
toolbox. It is useful only in cases where a specific genomic location is linked to a trait of
value, and the effect of modifying that location is understood. Important traits are either
farmer-driven (crop quality characteristics such as yield, herbicide tolerance and resistance
to abiotic and biotic stress-factors) [372] or consumer-driven (physical characteristics such
as color, firmness, acidity, peel thickness or shelf life) [373]. Traits are usually governed
from several genomic locations (loci). Only a small proportion of loci overall are fully
characterized. However, when the GE technology is effectively applied to that subset of
loci, it complements traditional breeding methods and accelerates the product development
cycle [374].

The application of GE to horticultural crops became a reality in 2013 with the pub-
lication of a study that used the older TALEN technology to target a flowering gene in
cabbage [375]. With horticultural crops representing almost 50% of all commercial crop
production, it is no surprise that investment in this technology increased exponentially,
with over 133 studies released over the next 5 years alone [376]. Of these, 92% utilized the
CRISPR technology specifically, which is an indication of its value and accessibility.

It has taken less than 10 years since the first published report for a GE horticultural
product to reach the market. A tomato engineered to produce high levels of γ-Aminobutyric
acid (GABA) was released in Japan in 2021 [377]. This was accomplished by editing two of
five genes involved in the glutamate decarboxylase (GAD) pathway [378]. Several other GE-
based fruits and vegetable releases are at various stages in the research or regulatory process,
including nutrient-dense lettuce [379], seedless blackberries [380], black raspberries [381]
and pitless cherries [382]. CRISPR technology is simple, effective and cheaply accessible to
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scientists around the world. It will continue to drive exciting new products and essential
basic research in horticultural crops for years to come.

7. Conclusions

Horticulture is a big and important industry, with a great impact on the life of many
small and large farmers and especially on world poverty. Advancements in horticulture is
important to maximize protection, productivity and food quality and safety especially un-
der changing environmental conditions. In this review, many affordable, fast, eco-friendly
and effective approaches that can make a successful horticultural crop production were
discussed. Particularly, the exogenous use of beneficial strains of endophytic microbes,
nanoparticles and strigolactones has a huge potential to replace some agrochemicals and to
be used as a natural, safe component of biofertilizers and plant protection formulations for
increasing plant resilience, crop productivity and quality. Along with this, the controlled
environment using artificial lights and CRISPR-based genetic edition are vastly develop-
ing all around the world for the production of horticultural crops, which seems to be a
proper solution to the challenges related to the sustainable production of healthy products
with optimized resource use efficiency. Improved research methods and new methods
of studying specific members of the community as well as an entire network will help to
increase productivity, quality and stress tolerance in horticultural crops. In the long run, the
application of these approaches will reduce the need for mineral fertilizers in horticultural
practices and the adverse effects of those fertilizers on the fertility of soil and biodiversity
as well as human health.
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