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Abstract: European fodder turnips (Brassica rapa ssp. rapifera) were identified as sources of clubroot
resistance (CR) and have been widely used in Brassica resistance breeding. An F2 population derived
from a cross between a resistant turnip and a susceptible Chinese cabbage was used to determine
the inheritance and locating the resistance Quantitative Trait Loci (QTLs). The parents showed to be
very resistant/susceptible to the field isolates (pathotype 4) of clubroot from Henan in China. After
inoculation, 27 very resistant or susceptible individuals were selected to construct bulks, respectively.
Next-generation-sequencing-based Bulk Segregant Analysis Sequencing (BSA-Seq) was used and
located resistance QTL on chromosome A03 (3.3–7.5 Mb) and A08 (0.01–6.5 Mb), named Bcr1 and
Bcr2, respectively. Furthermore, an F3 population including 180 families derived from F2 individuals
was phenotyped and used to verify and narrow candidate regions. Ten and seven Kompetitive Allele-
Specific PCR (KASP) markers narrowed the target regions to 4.3–4.78 Mb (A03) and 0.02–0.79 Mb
(A08), respectively. The phenotypic variation explained (PVE) of the two QTLs were 33.3% and
13.3% respectively. The two candidate regions contained 99 and 109 genes. In the A03 candidate
region, there were three candidate R genes, namely Bra006630, Bra006631 and Bra006632. In the A08
candidate region, there were two candidate R genes, namely Bra030815 and Bra030846.

Keywords: Plasmodiophora brassicae; Brassica rapa; QTL; resistant genes; BSA-Seq; fine-mapping

1. Introduction

Clubroot caused by Plasmodiophora brassicae Woronin has become one of most serious
diseases of cruciferous crops worldwide [1]. The pathogen causes the formation of galls on the
roots of susceptible plants and leads to stunted growth, wilting and premature chlorosis of the
aboveground plant organs, leading to yield and quality losses. The life cycle of P. brassicae is
thought to be a two-phase process: a primary phase occurring in the root hairs and a secondary
phase occurring in the stele and cortex of the hypocotyl and roots [2,3]. In China, clubroot was
identified as an important quarantine target in the first National Plant Quarantine Conference
in 1953. It is distributed across most regions of the country at present [4]. P. brassicae is known
to consist of numerous races. The differential system of Williams [5] is most commonly used
to determine the races into 16, such as pathotypes 1 to 16.

BSA or QTL based on next-generation sequencing was widely used in gene mapping.
Wen et al. [6] mapped heat-tolerance QTL in the tomato. Zhang et al. [7] found two QTLs in
cucumber by using BSA-Seq. In Brassicae, Wang et al. [8] reported the Brassica rapa genome
sequence. After that, a number of clubroot resistance genes/loci have been reported on
seven chromosomes, A01, A02, A03, A05, A06, A07 and A08. Clubroot resistance (CR)
QTL Crr2 resistant to pathotype 2 (Pb2) was located in chromosome A01 [9]. CR QTL CRc
resistant to Pb2 was located in A02 [10]; CR QTL Rcr8 resistant to pathotypes 5×was located
in A02 [11]. The CR loci found in chromosome A03 were totally located in three regions
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of the physical map. Region I was 1.9–6.6 Mb, and CR QTL PbBa3.1 resistant to Pb2 was
mapped in this region [12]. Region II was 13.5–16.4 Mb, with CR gene CRd resistant to Pb4,
CR QTL Crr3 and CRk (QTL) resistant to Pb2 located in this region [10,13,14]. Region III
was 23.59–27.23 Mb, with CR gene CRa resistant to Pb2; CR gene CRb resistant to Pb2, Pb3,
Pb4 and Pb8; CR gene Rcr4 resistant to Pb2, Pb3, Pb5, Pb6 and Pb8; and Rcr5 resistant to
Pb3 located in this region [11,15–17]. CR gene CrrA5 was mapped on chromosome A05 [18].
CR QTL Crr4 was mapped on A06 [19]. CR QTL qBrCR38-1 resistant to pathotype7 was
mapped on chromosome A07 [20]. The CR loci on chromosome A08 were totally located in
two regions of physical map. Region I was 11.3–12.6 Mb; CR QTL CRs resistant to Pb4 [21],
CR gene Rcr3 resistant to Pb3 [22], CR gene Rcr9 resistant to Pb5x [11] and Crr1 resistant
to Pb2 [23] were mapped in this region. Region II was 20.2–21.7 Mb; CR QTL qBrCR38-2
resistant to Pb7 was located in this region [20]. Among the mapped genes/loci mentioned
above, CRa and CRb on A03 and Crr1 on A08 were cloned, and they are all R genes. Makers
linked to these genes were designed and used in breeding.

In this study, an F2 population derived from a cross between a resistant turnip and
a susceptible Chinese cabbage was used to identify resistance QTL. Next-generation
sequencing-based BSA-Seq was used to locate resistance QTL. SNP-index and ∆(SNP-index)
graphs were identified base on bioinformatics information of the Brassica rapa genome. Two
regions on chromosome A03 and A08 showed significant differences, respectively.

2. Materials and Methods
2.1. Plant Materials and Pathogen Isolates

An F2 population (n = 206) of B. rapa was developed by crossing ‘877’ and ‘255’. The
parental genotype ‘877’ is a European fodder turnip (Brassica rapa ssp. Rapifera) inbred line,
and its highly resistance to clubroot disease originated from ECD04 (B. rapa rapifera) [24].
The parental genotype ‘255’, which is highly susceptible to clubroot, is a Chinese cabbage
inbred line. One hundred and eighty F3 families from F2 individuals were used to confirm
candidate areas. P. brassicae field isolates were collected from Henan province (Pbh) in
China, and stored at −20 ◦C until required.

2.2. Inoculation

Seeds of the parents, F1, F2 and F3 were surface-disinfected in 1% sodium hypochlorite
for one min, washed with distilled water and germinated in 12 cm–diameter Petri dishes on
moistened filter paper for five days at room temperature. Preparation of P. brassicae resting
spores was modified from Feng et al. [25]. Briefly, the frozen galls were thawed at room
temperature and ground in a blender with distilled water. The resulting homogenates were
passed through eight layers of cheesecloth, and the filtrate was centrifuged at 2000× g for
five min. The pellet containing the P. brassicae resting spores was suspended in distilled
water. The concentration of resting spores was measured with a haemocytometer and
adjusted to 1 × 108 resting spores per mL with sterile distilled water.

2.3. Evaluation of Clubroot Resistance

Two parents (30 plants), F1 (30 plants), F2 (206 plants) and F3 (180 families) popula-
tions were phenotyped against Pbh. For testing of F2:3 families, the trial was conducted
in randomized blocks design with 3 repetitions and 10 plants in each repetition. The
seedlings were inoculated with the resting spores by immersing the roots into the inoculum
suspension for one minute. The plants were then immediately transplanted into autoclaved
potting medium in 6 cm × 6 cm × 6 cm plastic pots, at a density of one seedling per
pot. The pots were kept in water-filled trays for 14 d (to ensure sufficient moisture for
infection by P. brassicae), after which they were transferred to a bench, where they were
watered from above. The plants were evaluated for clubroot disease severity six weeks
after inoculation [26]. The roots were rated on a 0–9 scale (0 = no infection; 9 = heavily
infested) (Figure 1) [27]. A disease index (DI) was calculated according to the formula
DI = [(0n0 + 1n1 + . . . + 9n9) × 100]/(9 × NT).
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Figure 1. Disease rating scale ranges of clubroot symptoms on plant roots in F2 population. Scale is
from 0 to 9, where 0 = no infection (no symptoms) and 9 = heavily infected (severe galling).

2.4. DNA Sequencing

Genomic DNA was extracted from fresh leaves, using the CTAB (cetyltrimethyl-
ammonium-bromide) [28] method. Each one of the twenty-seven very resistant (R)/susceptible
(S) individuals was selected to construct R/S bulks, respectively. A total amount of 1.5 µg
DNA per sample was used as input material for DNA sample preparations. The DNA
sample was fragmented by sonication to a size of 350 bp; then DNA fragments were end-
polished, A-tailed and ligated with the full-length adapter for Illumina sequencing with
further PCR amplification. At last, PCR products were purified (AMPure XP system), and
libraries were analyzed for size distribution by Agilent2100 Bioanalyzer and quantified
by using real-time PCR. Parents and bulks genomic DNA were sequenced by Illumina
HiSeq4000 platform, and 150 bp paired-end reads were generated with insert size around
350 bp.

2.5. Data Analysis

To make sure that reads were reliable and without artificial bias (low-quality paired
reads, which mainly resulted from base-calling duplicates and adapter contamination) in
the following analyses, raw data (raw reads) of fast format were firstly processed through
a series of quality control (QC) procedures in-house C scripts. BWA (Burrows–Wheeler
Aligner) [29] was used to align the clean reads of each sample against the reference genome.
Alignment files were converted to BAM files by using SAMtools software [30]. In addition,
potential PCR duplications were removed by using SAMtools command “rmdup”. If
multiple read pairs have identical external coordinates, only retain the pair with the highest
mapping quality. Variants calling was performed for all samples by using the Unified
Genotyper function in GATK software. Single-Nucleotide Polymorphisms (SNPs) were
used as Variant Filtration parameter in GATK [31] (settings: –filterExpression “QD < 4.0 ||
FS > 60.0 || MQ < 40.0”, -G_filter “GQ < 20”, –clusterWindowSize 4). Insertion–deletion
(InDel) was filtered by using the Variant Filtration parameter (settings: –filter Expression
“QD < 4.0 || FS > 200.0 ||Read PosRankSum < −20.0 || Inbreeding Coeff < −0.8”).
ANNOVAR [32], an efficient software tool, was used to annotate SNP based on the GFF3
files for the reference genome.

2.6. SNP/InDel Index

The homozygous SNPs/InDels between two parents were extracted from the vcf files
for SNP/InDel. The reads depth information for homozygous SNPs/InDels above in the
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offspring pools was gained to calculate the SNP/InDel index [33]. We used the genotype of
one parent as the reference and the statistic reads number for this parent’s genotype or the
others in offspring pool. Then we calculated the ratio of the number of different reads in
total number, which is the SNP/InDel index of the base sites. We filtered out those points
for which the SNP/InDel index in both pools are less than 0.3. Sliding-window methods
was used to present the SNP/InDel index of whole genome. The average of all SNP/InDel
index in each window was as the SNP/InDel index for this window. Usually, we used
a window size of 0.5 Mb and step size of 5 Kb as default settings. The difference of the
SNP/InDel index of two pools was calculated as the delta SNP/InDel index.

2.7. Development of KASP Markers and QTL Mapping

To validate the BSA-Seq results, KASP (Kompetitive Allele Specific PCR) markers
were designed, using Primer 6.0 software (http://www.premierbiosoft.com/, accessed on
18 October 2020), by the Laboratory of the Government Chemist base on the Brassica rapa
genome v1.5 (http://brassicadb.cn/#/, accessed on 23 October 2020). All the primers were
synthesized by Sangon Biological and Engineering Co. (Shanghai, China). The genotype
consistent with parent ‘877’ is marked as ‘A’, the genotype consistent with parent ‘255’
is marked as ‘B’, the heterozygous genotype is marked as ‘H’ and the missing genotype
is marked as ‘-’. Linkage analysis was performed by JoinMap v4.0 [34] to the Kosambi
function, and the maximum-likelihood method was used to calculate the genetic distance.
Map QTL v4.0 was used to detect the QTL, using the Interval Mapping (IM) and Multiple
QTL Mapping (MQM) pattern under a threshold of LOD = 2.0.

3. Results
3.1. Test of Clubroot Resistance

The resistance of parents and F1 were tested against Pbh. The resistant parent ‘877’
was highly resistant (DI = 0) to the isolate, and the susceptible parent ‘255’ was highly
susceptible to Pbh (DI > 95); F1 plants showed an intermediate DI value between two
parental lines (DI = 38.1). Two hundred and six F2 individuals were tested by Pbh, and
199 individuals were evaluated. In the F2 population, more than half of the individuals
were scaled as ‘0’ or ‘9’ grades (70 individuals’ grades were ‘0’, and 56 individuals’ grades
were ‘9’), and 73 individuals were scaled as ‘1’ to ‘8’ (Table 1). Thus, it was suggested that
the clubroot resistance was controlled by major QTL with complementary effect. The F3
population, including 180 families derived from another F2 population, was inoculated
by Pbh. The DI of each F2:3 family was calculated. One hundred and sixty-four families
received the DI values (Supplementary Materials Table S1); the resistance of F2 individuals
was obtained from their F2:3 family (Figure 2).
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Table 1. Distribution of F2 disease levels (disease index) after testing with Pbh of P. brassicae.

Scale for Rating Clubroot Symptoms

0 1 2 3 4 5 6 7 8 9

Numbers of F2 Individuals 70 22 7 10 5 5 7 12 5 56

3.2. Sequencing Data Analysis

Next-generation-sequencing-based BSA-Seq was used to locate resistance genes. Each
of the twenty-seven very resistant (scale = 0)/susceptible (scale = 9) F2 individuals was
selected to construct R/S bulks, respectively. Sequencing data were generated with Illu-
mina HiSeq 4000, with an average insert size of around 350 bp. A total of 6,402,752,700,
6,158,942,400, 14,984,101,500 and 15,440,598,600 raw data were obtained from parent ‘877’,
parent ‘255’, R bulk and S bulk, respectively. Clean data were obtained after removing
adapter-polluted and low-quality reads and unknown bases (N > 5%). Genome coverage
ranged around 90%, and average depths were 12.17×, 18.64×, 28.67× and 30.08× for ‘877’,
‘255’, and R bulk and S bulk, respectively (Table 2). The genotype of ‘255’ was used as
the reference and to statistic reads number for this parent’s genotype or the others in R/S
bulks. After filtered, 979,164 SNP indexes were obtained. The average number of sequence
variations on 10 chromosomes was 108,138, with chromosome A09 having the highest
and A10 having the lowest number of variations. Chromosome A03 had a high density of
variations in a specific region (Figure 3).
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Table 2. Depth and coverage of re-sequencing data.

Sample Mapped Reads Total Reads Mapping Rate
(%)

Average
Depth(×)

Coverage at
Least 1× (%)

Coverage at
Least 4× (%)

PS 32,638,843 40,655,484 80.28 12.17 91.83 75.90
PR 38,402,704 42,580,738 90.19 18.64 88.66 83.76

S-bulk 71,462,576 102,510,534 69.71 28.67 95.50 92.63
R-bulk 82,274,316 99,471,594 82.71 30.08 94.89 88.61
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3.3. Association Analysis

The sliding-window methods was used to present the SNP index between R bulk ‘877’
and S bulk ‘255’, respectively. The difference of the SNP index of two bulks was calculated
as the ∆SNP index (Figure 4). The window size was described above. Two regions on
chromosome A03 and A08 showed significant differences, respectively. One region was
on chromosome 3, named Bcr1 (Brassica rapa clubroot resistance 1), at 3.3–7.5 Mb, and the
other region was on chromosome A08, named Bcr2 (Brassica rapa clubroot resistance 2),
at 0.01–6.5 Mb. The absolute values of the SNP-index of Bcr1 and Bcr2 were greater than
the threshold and were close to 0.5 at a confidence level of 95%. Observations of SNP
haplotypes among the highly resistant plants in the R pool were the same as those in the
parent ‘877’, while highly susceptible plants in the S pool contained alleles from the parent
‘255’, thus indicating that there have been major QTLs controlling swollen roots in these
regions.
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3.4. Fine-Mapping of Two QTL

Based on the whole-genome sequencing data of the parents, SNP sites were selected
every 20~200 kb at target regions for primer design. Competitive allele-specific PCR
(KASP: Kompetitive Allele Specific PCR) was conducted in parents, and F1 was used to
detect the selected SNP markers. Seventy-eight and 39 pairs of KASP makers with better
typing effects were selected from candidate regions, respectively (Supplementary Materials
Table S2). At the same time, twelve individuals from R bulk and 12 individuals from S
bulk were verified with selected KASP markers. Most polymorphic markers showed ‘A’
genotype (‘877’ genotype) and ‘H’ genotype (heterozygous genotype) in the R bulk, and
most polymorphic markers showed ‘B’ genotype (‘255’ genotype) and ‘H’ genotype in the
S bulk, thus proving that the selected markers have a certain linkage relationship with
phenotype; they were used for subsequent test analysis. The Bcr1 and Bcr2 regions were
verified and fine-mapped. One hundred and sixty-four individuals from the F2:3 population
were genotyped. JoinMap 4.0 (OOIJEN and VAN, 2006) was used for linkage analysis.
Seventy-eight and 39 pairs of KASP makers were used for constructing genetic maps on
A03 and A08 target regions, respectively. Interval Mapping (IM) combined with Multiple
QTL Mapping (MQM) method of Map QTL (OOIJEN et al., 2009) software was used for
detecting QTLs related to disease-resistance traits. Among the mapping markers, ten and
seven KASP markers were used for mapping.
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Bcr1 was narrowed to 3.3–7.5 Mb and 4.3–4.78 Mb in the A03 chromosome between
markers A03-1-192 and A03-1-024; the likelihood of odd (LOD) value of A03-1-115 was
the highest, at 14.4. Bcr1 explained 33.3% of the phenotypic variation of resistant to
clubroot (Figure 5). There were 99 genes in the B. rapa genome (http://brassicadb.cn/#/,
accessed on 23 October 2020), covering 480 kb on chromosome A03, which is homologous
to chromosome 5 in Arabidopsis. Three genes (Bra006630, Bra006631 and Bra006632) were
identified in tandem array, which encodes TIR–NBS–LRR protein in the candidate region.
(Table 3).
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Table 3. Candidate R genes in candidate regions.

Gene ID Chromosome
Position

Start Position of
the Gene

End Position of
the Gene

Orthologous
Genes Gene Annotations

Bra006630 A03 4,355,675 4,357,301 AT5G22670

FBD; leucine-rich repeat 2;
FBD-like; cyclin-like F-box;

phosphoglycer-
ate/bisphosphoglycerate

mutase, active site

Bra006631 A03 4,365,925 4,367,585 AT5G22670 FBD; leucine-rich repeat 2;
FBD-like; cyclin-like F-box

Bra006632 A03 4,370,728 4,372,332 AT5G22730 FBD; leucine-rich repeat 2;
cyclin-like F-box

Bra030815 A08 57,170 62,428 AT1G56130

Serine-threonine/tyrosine-
protein kinase, catalytic domain;

leucine-rich repeat; malectin
domain

Bra030846 A08 219,222 222,719 AT1G55610

Protein kinase domain;
leucine-rich repeat; leucine-rich
repeat-containing N-terminal,

plant-type

Bcr2 was narrowed from the range of 0.01–6.5 Mb to the range of 0.02–0.79 Mb in
A08 chromosome between markers A08-1-06 and A08-1-705; the likelihood of odd (LOD)
value of A08-1-348 was the highest, at 4.92. Bcr2 explained 13.3% of the phenotypic
variation of resistant to clubroot (Figure 6). There were 109 genes in the B. rapa genome
(http://brassicadb.cn/#/, accessed on 23 October 2020), covering 770 kb on chromosome
A08, which is homologous to chromosome 1 in Arabidopsis. Two genes (Bra030815 and

http://brassicadb.cn/#/
http://brassicadb.cn/#/
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Bra030846) were identified which encode TIR–NBS–LRR protein the in candidate region
(Table 3).
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4. Discussion

The European fodder turnip was thought to carry broad-spectrum resistance [35,36].
In this study, the European fodder turnip ‘877’ originating from ECD04 was used as the
resistant parent. The turnip ‘877’ was resistant to all isolates that were collected from
Yunnan (Pb4, pathotypes 4), Henan (Pb4), Beijing (Pb4 and Pb5), Hubei (Pb2 and Pb4) and
Sichuan (Pb4) provinces in China and single-spore isolates Pb3, Pb5 and Pb6 in previous
studies (test by Williams’s differential set) [5], which indicated that ‘877’ had resistant genes
for different pathotypes and isolates. The isolate from Henan (Pbh) used in this study had
the highest virulence in all P4 isolates. F2 and F2:3 families were used for mapping and
fine-mapping, and two QTL were obtained. In the F2 mapping population, more than
half of the individuals were scaled as ‘0’ or ‘9’, so the resistant loci were also analyzed
by using the quality trait method. Individuals graded ‘0’ to ‘3’ (Table 1) were regarded
as ‘resistant’, because the galls were small and all on lateral roots. Individuals graded
‘4’ to ‘9’ (Table 1) were regarded as ‘susceptible’, because galls were found on the main
root. One hundred ninety-nine individuals, including 109 resistant plants (scale 0–3) and
90 susceptible plants (scale 4–9), were consistent with the ratio of 9:7 segregation (χ2 =
0.12 < χ2

0.05 = 3.84), thus indicating that resistance was controlled by two genes. In the F2:3
population, F2 individuals were regarded as ‘resistant’ when their F3 family’s DI < 50, the
rest of the F2 individuals were regarded as ‘susceptible’ to Pbh (Figure 2). Eighty-six F2:3
families were resistant to Pbh, and 78 F2:3 families were susceptible to Pbh. The segregating
ratio of resistance and susceptibility was also consistent to 9:7 (χ2 = 0.05 < χ2

0.05 = 3.84).
The segregating ratio of these two populations was 9:7, which indicated that there may be
two major genes controlling the resistance. This result was similar with the result in QTL
mapping.

In this study, the genomes of ‘877’ and ‘255’ were also re-sequenced, and 979,164
and 102,222 SNPs and InDels with polymorphisms between the parents were obtained.
According to the analysis results of QTL-Seq, we developed a large number of SNP markers
in the candidate interval to detect the accuracy of Bcr1 and Bcr2 sites and to further fine-map
them. Among them, the SNP marker can detect the difference of a single nucleotide, and its
distribution on the genome is more extensive; and the SNP marker can be typed by KASP
technology, which is one of the SNP typing platforms that has now developed into a global
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SNP score. This type of benchmark technology has the advantages of high throughput, low
cost, flexibility and speed.

According to the BSA-Seq, the resistant QTLs were found in this study on chromosome
A03 and A08. There were eleven genes/loci mapped on chromosome A03 and five on
A08 [37]. The CR loci in A03 were totally located in three regions. Region I was 1.9–6.6 Mb,
Region II was 13.5–16.4 Mb and Region III was 23.59–27.23 Mb. The clubroot resistance
(CR) gene CRa resistant to Pb2 originated from the European fodder turnip ECD02 [38];
the CR gene CRb resistant to Pb2, Pb3, Pb4 and Pb8 originated from the European fodder
turnip ECD01 [39]; the CR locus CRk resistant to Pb2 from Region II originated from the
European fodder turnip Debra; the CR locus Crr3 resistant to Pb2 originated from European
fodder turnip Milan White; and CR QTL PbBa3.1 resistant to Pb2 from Region I originated
from European fodder turnip ECD04. Bcr1 in this study also originated from ECD04 and is
located in Region I, but it is resistant to Pb4, in contrast to PbBa3.1 resistant to Pb2. The CR
loci in A08 were totally located in two regions. Region I was 11.3–12.6 Mb, and Region II
was 20.2–21.7 Mb. Crr1 resistant to Pb2 from Region I originated from ‘siloga’ [19]; Rcr3
resistant to Pb3 [22] and Rcr9 resistant to Pb5x [11] originated from ‘Waaslander’; qBrCR38-2
resistant to Pb7 [20] and mapped in Region II originated from ‘Maikno’ (pakchoi). Bcr2 in
this study was mapped on 0.02–0.79 Mb in chromosome A08, which is a new locus in A08.

According to the results of fine-mapping, there were three and two R genes (encoding
Nucleotide-Binding domain and Leucine-Rich Repeats, NBS–LRR, proteins) in candidate
regions. The previously cloned resistant genes CRa, CRb and Crr1 all encode TIR–NBS–LRR
protein [17,40]. Bra006630, Bra006631 and Bra006632 in A03 were arranged in a tandem
array. These five R gene in two regions will be the prior target for the next study for
confirming candidate genes.

5. Conclusions

In this study, an F2 population derived from a cross between a resistant turnip and
a susceptible Chinese cabbage was used to determine the inheritance and location of the
resistance QTL. The parents were determined to be very resistant/susceptible to the field
isolates (pathotype 4) of clubroot from Henan in China. BSA-Seq was used and located
resistance QTLs on chromosome A03 (3.3 Mb–7.5 Mb) and A08 (0.01 Mb–6.5 Mb), named
Bcr1 and Bcr2, respectively. Furthermore, an F3 population derived from F2 individuals was
phenotyped and used to verify and narrow candidate regions. Ten and seven KASP markers
narrowed the target regions to 4.3–4.78 Mb (A03) and 0.02–0.79 Mb (A08), respectively. The
phenotypic variation explained (PVE) of the two QTLs were 33.3% and 13.3%, respectively.
The two QTLs contained 99 and 109 genes, covering 480 kb on chromosome A03 and 770 kb
on A08. Based on the genes annotation, there were three and two candidate R genes in
the candidate regions. These R genes were not reported to be associated with clubroot
resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae8010066/s1. Table S1: The results of clubroot resistance
identification of 164 F2:3 families. Table S2: The information of KASP primer sequences in candidate
regions.
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