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Abstract: The objective of this study was to investigate the growth and light-intercepting character-
istics of tomatoes when movable benches are used in their cultivation. We cultivated tomatoes in
a greenhouse (168 m2) during summer (9 July–9 September 2018) under different furrow distances
(F1.0 = 1.0 m and F1.6 = 1.6 m) and movable benches (M indicates that the furrow distance = 0.4–0.8 m).
Compared to the other treatments, when the movable bench was used to the change furrow distance
depending on the plant growth stage (M treatment), the percentage of canopy light interception
increased to ~90% at the early stage of plant growth (~20 days after transplanting). The percentage
of canopy light interception for different treatments increased in the order of M > F1.0 > F1.6, and
it increased towards the end of cultivation. In addition, the yield per unit area exhibited the same
trend. Therefore, the solar radiation inside a greenhouse can be efficiently intercepted by plants when
movable benches are used. This indicated that it was possible to increase plant yield per unit area
using movable benches in plant cultivation.

Keywords: leaf area index; light environment; light extinction coefficient; plant height; R/FR ratio;
shade avoidance; Solanum lycopersicum

1. Introduction

The tomato is top-ranked among vegetables grown worldwide [1]. In 2019, the total
cultivation area and production of tomatoes globally were approximately 5.0 million ha and
181 million tons, respectively [2]. Since the demand for tomatoes is predicted to increase
because of population growth in the future, technology for efficient tomato production
needs to be developed. Greenhouse cultivation is a flexible solution for the sustainable
year-round cultivation of tomatoes regardless of climatic, land, and resource limitations [3].

In a modern greenhouse, automated movable benches can facilitate cultivation man-
agement and increase plant yield. Studies have been conducted on the cultivation of fruit
vegetables using movable benches for the efficient use of space inside a greenhouse. Mov-
able benches allow for higher plant densities per unit area because pathways between the
vegetables are not needed [4]. To increase strawberry yield, Yoshida et al. (2008) developed
a movable bench that allowed for a density of 125,000 plants per ha [5]. Hayashi et al. (2008)
reported that when a movable bench was used for strawberry cultivation, the plant density
was almost twice that under traditional greenhouse cultivation because the space for access
was reduced [6]. Hayashi et al. (2011) showed that when movable benches were used, the
marketable yields of strawberry cultivars ‘Akihime’ and ‘Moikko’ doubled compared to
the conventional yield [7]. Therefore, the use of movable benches in tomato cultivation
may increase space utilization efficiency and yield. Movable benches allow cultivators to
change the furrow distance depending on the plant growth stage to reduce the use area and
provide a suitable leaf area index (LAI). As a result, the light interception per unit area can
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be maximized and the yield per unit area can be increased. Jiang et al. (2017) reported that
the total winter yield of tomatoes per unit area was higher when movable benches were
used (25–11.1 plants m−2) with the single-truss system (STS) compared to that without
movable benches at 10 and 14.3 plants m−2 [8]. In STS tomato growing, only the first truss
is harvested and the main shoot is cut above the first truss [9]. In general, the use of STS
for cultivation requires high plant densities. Therefore, the light environment inside the
canopy is important for increasing plant yield under these conditions.

Unlike the cultivation of plants with low heights, such as strawberries, it is difficult to
determine the furrow distance when movable benches are used in the cultivation of fruit
vegetables with high plant heights, such as tomatoes. This is because their large canopies
interfere with each other, reducing the light interception.

Mutual shading affects tomato morphology, growth, and yield. Papadopoulos and
Ormrod (1991) observed that the plant height and internode length of tomato increased
as the plant spacing decreased from 60 to 23 cm in both spring and fall [10]. In addition,
the relationship between plant density and tomato yield has been reported in previous
studies [11–13]. Papadopoulos and Ormrod (1990) reported that when tomatoes were
cultivated with different plant spacings (23, 30, 38, 45, 53, and 60 cm), the yield per plant
reduced to a greater extent in the spring than in the fall as the plant spacing decreased [12].
Papadopoulos and Ormrod (1991) described that with a decrease in plant spacing, the fruit
set rate more steeply declined in the spring than in the fall [10].

When movable benches are used to change the furrow distance, the light environment
inside the canopy changes as well, thereby affecting plant growth. Therefore, the objective
of the present study was to investigate the growth and light intercepting characteristics of
tomatoes when movable benches are used in their cultivation.

2. Materials and Methods
2.1. Test Plants and Greenhouse Conditions

Tomatoes (Solanum lycopersicum L.) cv. ‘Reika’ (SAKATA SEED Co., Ltd., Kanagawa,
Japan) were cultivated in the summer (July 9–September 9, 2018) inside a greenhouse
(164 m2, width × length × average height = 8 × 18 × 4 m). The greenhouse was located
in Matsudo, Chiba, Japan and had a single ridge gable roof type. A polyolefin film was
used as the covering material. Three weeks after sowing, the tomato seedlings were
transplanted into rockwool cubes (DELTA6.5G, Rockwool B. V., Roermond, Netherlands)
installed on rockwool slabs (2075 A2W, Rockwool B. V., Roermond, Netherlands). The
distance between the plants was 22 cm, and the plants were arranged in a zigzag pattern.
A one-fold concentration of A recipe (OAT Agrio Co., Ltd., Tokyo, Japan) was used as
the nutrient solution, and the plants were irrigated with the solution using an automatic
irrigation device (JS110-08D, JOP Co., Ltd., Aichi, Japan).

The cultivation benches were arranged as shown in Figure 1. The furrow distance
was set at 1.6 m (treatment F1.6), 0.4–0.8 m (treatment M), and 1.0 m (treatment F1.0)
from the north side in the greenhouse (Figure 1). Using movable benches, the furrow
distance in the M treatment was changed depending on the growth stage of the plants
in order to avoid contact between the plants and leaves of other canopies. We cultivated
sixty-four tomato plants for each treatment. Figure 2 illustrates the changes in furrow
distance during cultivation. Figure 3 and Table 1 show the environmental conditions of the
greenhouse. The air temperature and vapor pressure inside the greenhouse were measured
and controlled using an integrated environmental control system (Profarm controller, Denso
Co., Ltd., Aichi, Japan). Figure 4 shows the tomato plants under different treatments after
transplanting inside the greenhouse.
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Table 1. Environmental conditions in the greenhouse during the experiment. 

Cultivation 
Period 

Time Integrated PPFD 
(mol m−2 d−1) 

Air Temperature 
(°C) 

CO2 Concentration 
(μ mol mol−1) 

Relative Hu-
midity (%) 

Vapor Pressure 
Deficit (kPa) 

Jul. 10–Sep. 9 
2018 

5:00–19:00 23.1 30.6 ± 3.9 370.5 ± 15.4 77.0 ± 10.3 0.78 ± 0.48 
19:00–5:00 0.0 26.1 ± 2.3 376.7 ± 14.6 86.4 ± 6.6 0.34 ± 0.18 

The values of air temperature, CO2 concentration, relative humidity, and vapor pressure deficit are 
expressed as mean ± standard deviation. PPFD, photosynthetic photon flux density. 

 
Figure 1. Experiment layout, including the cultivation benches; the black line represents the location 
of photosynthetic photon flux density (PPFD) sensors in the greenhouse. The plant distance is 22 
cm. F1.6 and F1.0 treatments have furrow distances of 1.6 and 1.0 m, respectively; in the M treat-
ment, furrow distance was changed from 0.4 to 0.8 m during cultivation using movable benches. 
The line PPFD sensors 1–3 were used to calculate the percentage of canopy light interception, 
whereas sensor 4 was used to calculate the light extinction coefficient of the tomato canopy. 
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Figure 1. Experiment layout, including the cultivation benches; the black line represents the location
of photosynthetic photon flux density (PPFD) sensors in the greenhouse. The plant distance is 22 cm.
F1.6 and F1.0 treatments have furrow distances of 1.6 and 1.0 m, respectively; in the M treatment,
furrow distance was changed from 0.4 to 0.8 m during cultivation using movable benches. The line
PPFD sensors 1–3 were used to calculate the percentage of canopy light interception, whereas sensor
4 was used to calculate the light extinction coefficient of the tomato canopy.
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Figure 2. Changes in furrow distances during tomato cultivation. M indicates that the furrow
distance was changed from 0.4 to 0.8 m during cultivation using movable benches; F1.6 and F1.0 are
furrow distances of 1.6 and 1.0 m, respectively. Movable benches (M) were used to change the furrow
distance during the cultivation. DAT, days after transplanting.
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Figure 3. Time courses of hourly air temperature, relative humidity, photosynthetic photon flux
density (PPFD), and CO2 concentration in the greenhouse during the experiment.

Table 1. Environmental conditions in the greenhouse during the experiment.

Cultivation
Period Time Integrated PPFD

(mol m−2 d−1)

Air
Temperature

(◦C)

CO2
Concentration
(µ mol mol−1)

Relative
Humidity (%)

Vapor Pressure
Deficit (kPa)

10 July–9
September 2018

5:00–19:00 23.1 30.6 ± 3.9 370.5 ± 15.4 77.0 ± 10.3 0.78 ± 0.48
19:00–5:00 0.0 26.1 ± 2.3 376.7 ± 14.6 86.4 ± 6.6 0.34 ± 0.18

The values of air temperature, CO2 concentration, relative humidity, and vapor pressure deficit are expressed as
mean ± standard deviation. PPFD, photosynthetic photon flux density.
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Figure 4. The tomato canopies under different treatments in the greenhouse on 12 July 2018. F1.6 and
F1.0 indicate furrow distances of 1.6 and 1.0 m, respectively; M indicates that the furrow distance was
changed from 0.4 to 0.8 m during cultivation using movable benches.

2.2. Light Interception Characteristics

Line photosynthetic photon flux density (PPFD) sensors (SQ-311, Apogee Instruments
Inc., Logan, UT, USA) were installed inside the tomato canopies in the three treatments
(Figure 1), and PPFD was measured every minute during the cultivation period. The
percentage of canopy light interception was calculated using the following formula:
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Percentage o f canopy light interception (%) =

(
1 − PPFD at the bottom o f the canopy

PPFD at the top o f the canopy

)
× 100 (1)

When the percentage of canopy light interception was higher, the solar radiation inside
the greenhouse could be efficiently intercepted by the plants. Higashide (2018) reported
that an increase in the LAI increases the percentage of canopy light interception [14].

When movable benches are used to control plant density, it is important to assess the
LAI during cultivation to avoid excessively high LAIs. Blanco and Folegatti (2003) estimated
the leaf area of tomatoes and cucumbers using leaf length and width [15]. However, this
method requires a long time and is not suitable for commercial cultivation. Thus, in this
study, the light extinction coefficient (K) was used to estimate the LAI [16]. Therefore, we
investigated the relationship between the furrow distance and K.

Equation (2) was converted to Equation (3) to calculate K [17,18]:

I = I0 e−K F (2)

where I indicates the PPFD at the bottom of the canopy, I0 indicates the PPFD over the
canopy, K is the light extinction coefficient, and F is the LAI.

K =
1
F
× ln

I0

I
(3)

To obtain K under various furrow distance conditions, line PPFD sensors were installed
at the bottom and over the canopy in the F1.0 treatment. The PPFD values at the bottom
and over the canopy were measured every minute on sunny days during the period of
36–38 days after transplanting (DAT) and on 48 DAT. The above-described measurements
were conducted for 30 min each at furrow distances of 40, 60, 80, 100, 120, 140, and 160 cm.
The furrow distances were changed using a movable bench. The average PPFD values at
the bottom and over the canopy were used to calculate K values. We used Equation (4) to
estimate the leaf area used to calculate the LAI.

Lea f area
(

cm2
)
= lea f length (cm)× lea f width (cm)× 0.25 (4)

Using linear regression, Flénet et al. (1996) observed a positive correlation between LAI
and K in the canopies of corn, sorghum, soybean, and sunflower [19]. In the present study,
an observation of a linear correlation between the furrow distance and K in the tomato
canopy under different furrow distances was useful for discussing the light conditions and
LAI in the tomato canopy.

2.3. Plant Growth and Yield

The leaf area and dry weight of each plant part (leaf, stem, and fruit) were measured at
30 and 62 DAT. Leaf area was measured using an area meter (LI-3100, LI-COR Inc., Lincoln,
NE, USA). The dry matter ratio was calculated using the leaf dry weight and leaf fresh
weight. The dry matter distribution was calculated using the dry weight data for each
plant part. Specific leaf weights were calculated using the leaf area and leaf dry weight
data. Growth data were statistically evaluated by one-way analysis of variance (ANOVA)
using SPSS Statistics 24.0 (IBM Inc., Armonk, NY, USA). To investigate the significant
differences among treatments, the means of measurement parameters were compared
using the Tukey–Kramer test at a significance level of p < 0.05.

The mature fruits of the first truss were harvested at 54 DAT, and their fresh weights
were measured.

Leaf length, leaf width, and plant height were non-destructively measured once a
week. The change in the LAI of each treatment was recorded using the estimated leaf area
calculated using Equation (4).
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2.4. Fruit Temperature

Tomato plants were cultivated at different furrow distances. Therefore, it was consid-
ered that the furrow distance affected the light environment and fruit temperature inside
the canopy. The fruit temperature was found to affect the translocation of photosynthates in
tomatoes [20]. The central temperature of the fruit (first truss) in the F1.6 and M treatments
was measured from 7 to 9 September 2018, using a copper-constantan thermocouple. We
inserted a copper-constantan thermocouple into three F1.6 and M tomato fruits. The fruit
temperature was recorded every minute using a data logger (GL220, GRAPHTEC Inc.,
Kanagawa, Japan).

3. Results and Discussion
3.1. Light Interception Characteristics

Figure 5 shows the percentage of canopy light interception in the three treatments.
The percentage of canopy light interception descended in the order of M > F1.0 > F1.6, and
it increased towards the end of cultivation. Moreover, the period until the saturation of
canopy light interception percentage (~90%) was shorter in the M treatment (at ~20 DAT)
than that in the other treatments. The maximum percentage of canopy light interception in
the F1.6 treatment was ~80%. Kaneko et al. (2015) indicated that it was important to increase
the percentage of canopy light interception in tomatoes to increase the plant yield per unit
area [21]. Papadopoulos and Pararajasingham (1997) reported that it was possible to obtain
a higher yield of tomatoes under narrow plant spacing than under wider plant spacing
because the former increased the percentage of canopy light interception [13]. Therefore,
we considered that the movable bench was a good solution to increase the percentage of
canopy light interception and yield. Ota et al. (2016) developed an automatic spacing-
controlled movable bench system, which was controlled by motors and a programmable
logic controller, for high-density tomato cultivation [22]. If such a system can utilize canopy
light interception information, it can help develop cultivation methods that reduce labor
and produce high yields.
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Figure 5. Daily changes in the percentage of canopy light interception in the three treatments. F1.6
indicates a furrow distance of 1.6 m, F1.0 indicates a furrow distance of 1.0 m, and M indicates that
the furrow distance was changed from 0.4 to 0.8 m during cultivation using movable benches. DAT,
days after transplanting. In F1.6 and F1.0, data were missing due to PPFD sensor troubles.

Figure 6 shows the relationship between the furrow distance and K, which presented a
linear correlation (R2 = 0.82). Therefore, K can be estimated using the relationship between
furrow distance and K. Leaf length and width were measured once a week to estimate the
LAI. Since the measurement takes a long time in a commercial greenhouse, this relation
will be useful for estimating the LAI and suitable furrow distances in the future.
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Figure 6. Relationship between the furrow distance and the light extinction coefficient (K). Photosyn-
thetic photon flux densities inside and over the canopy were measured in 2018 at 36–38 days after
transplanting (DAT) and on 48 DAT.

3.2. Plant Growth and Yield

Table 2 shows the results of growth measurements. At 30 and 62 DAT, the leaf area
of plants in the M treatment was significantly larger than that of plants in the F1.6 and
F1.0 treatments. At 30 and 62 DAT, the specific leaf weight of plants in the F1.6 treatment
was significantly larger than that of plants in the M and F1.0 treatments. At 30 DAT, the
aboveground dry weight of plants in the M treatment was higher than that of plants in
the F1.6 and F1.0 treatments. However, at 62 DAT, the dry weight of plants in the F1.6
treatment was higher than those of plants in the M and F1.0 treatments. At 30 and 62 DAT,
the dry matter ratio of plants in the F1.6 treatment tended to be higher than those of plants
in the M and F1.0 treatments. The leaf area of plants in the M treatment was larger than
those of plants in the other treatments (Table 2) because of the shade-avoidance reaction
probably induced by a low red/far red (R/FR) ratio. In general, the far-red radiation
transmittance (700–800 nm) of the leaves was higher than their photosynthetically active
radiation transmittance (400–700 nm). Papadopoulos and Ormrod (1988) reported that
the R/FR ratio inside the tomato canopy decreased with decreases in plant spacing [23].
Chitwood et al. (2015) indicated that the shade-avoidance reaction caused an increase in the
leaf area of tomatoes because of increased palisade and pavement cell sizes [24]. Therefore,
the R/FR ratio inside the canopy of plants in the M treatment was probably lower than
those of plants in the other treatments because of the narrower furrow distances (Figure 2)
and larger LAI (Figure 7) in the M treatment, which was the result of the expanded leaf
area. Figure 7 shows the changes in the LAI during the cultivation period. From highest to
lowest, the LAI under different treatments was M > F1.0 > F1.6. The maximum LAI values
of plants in the M, F1.0, and F1.6 treatments were 3.8, 2.3, and 1.5, respectively. We found
that it was possible to increase the LAI using movable benches throughout cultivation.
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Table 2. Effects of furrow distance on the growth of tomatoes.

DAT Treatment Aboveground Dry
Weight (g plant−1)

Dry Matter
Ratio (%)

Leaf Area
(cm2 plant−1)

Specific Leaf
Weight (g m−2)

30
F1.6 37.4 a 12.5 2819.4 b 74.6 a
M 43.7 a 10.6 4351.8 a 62.2 b

F1.0 36.1 a 11.2 3330.8 b 64.9 b

62
F1.6 134.5 a 11.0 5341.4 b 105.3 a
M 119.1 a 10.0 10255.1 a 62.2 b

F1.0 106.3 a 10.4 6784.6 b 78.5 b
Different lowercase letters indicate significant differences among the measurements (n = 3) at p < 0.05 according
to Tukey–Kramer’s test. F1.6 and F1.0 indicate furrow distances of 1.6 and 1.0 m, respectively; M indicates that
the furrow distance was changed from 0.4 to 0.8 m during cultivation using movable benches. DAT, days after
transplanting. Growth measurements were conducted on 8 August and 9 September 2018.
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Figure 7. Changes in the leaf area index (LAI) at different furrow distances (n = 3). F1.6 and F1.0
indicate furrow distances of 1.6 and 1.0 m, respectively; M indicates that the furrow distance was
changed from 0.4 to 0.8 m during cultivation using a movable bench. DAT, days after transplanting.
The leaf area used to calculate the LAI was measured non-destructively.

Figure 8 shows the relationship between the LAI and the percentage of canopy light
interception using the data in Figures 5 and 7. The tendency of relationships differed among
treatments. The results indicated that the light interception characteristics of canopies
changed depending on the furrow distance. If cultivation management is conducted
to maintain the LAI, where the percentage of canopy light interception is high (~90%)
considering the furrow distances, growth and yield will be expected to increase.

Figure 9 shows the changes in plant height during cultivation. Plant heights tended to
be higher among the plants in the M treatment than in the plants under other treatments.
In the M treatment, the shade-avoidance reaction induced by the low R/FR ratio probably
caused stem elongation and leaf expansion. Furrow distance affected plant morphological
traits, including plant leaf area and plant height.
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Figure 8. Relationship between the leaf area index (LAI) and percentage of canopy light interception
from 7 to 55 days after transplanting. The figures were created using the data from Figures 4 and 6.
F1.6 and F1.0 indicate furrow distances of 1.6 and 1.0 m, respectively; M indicates that the furrow
distance was changed from 0.4 to 0.8 m during the cultivation using movable benches.
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Figure 9. Changes in the plant height of tomatoes grown at different furrow distances (n = 3). F1.6 and
F1.0 indicate furrow distances of 1.6 and 1.0 m, respectively; M indicates that the furrow distance was
changed from 0.4 to 0.8 m during cultivation using movable benches. DAT, days after transplanting.
The error bars indicate standard error. Plant height was measured non-destructively.

Figure 10 shows the dry matter distribution calculated from growth measurements. At
30 and 62 DAT, the leaf dry matter distribution of plants in the M treatment was higher than
those in the F1.6 and F1.0 treatments. At 62 DAT, the dry matter was more distributed to the
fruit in the F1.6 treatment than in the M and F1.0 treatments because the fruit temperature
of plants in the F1.6 treatment was higher than that of plants in the M treatment with a
narrower furrow distance (Figure 11). Figure 11 shows the fruit temperatures of plants in
the F1.6 and M treatments. The daytime fruit temperature of plants in the F1.6 treatment
tended to be higher than that of plants in the M treatment. The maximum difference in
fruit temperature between plants in the F1.6 treatment and those in the M treatment was
4.6 ◦C. The increase in fruit temperature in the F1.6 treatment was slower than the increase
in air temperature. However, around noon, the fruit temperature in the F1.6 treatment
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was higher than the air temperature in the greenhouse. Yoshioka et al. (1986) studied
tomato fruit temperatures of 9, 23, and 38 ◦C, and they found that the translocation speed
was faster at higher temperatures [20]. Fruits in the F1.6 treatment, with a wider furrow
distance, received more solar radiation than those in the M and F1.0 treatments, resulting
in higher fruit temperatures. Thus, changes in fruit temperature should be considered an
important factor when cultivating plants using a movable bench system.
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Figure 10. Effect of furrow distance on the dry matter distribution (n = 3). F1.6 and F1.0 indicate
furrow distances of 1.6 and 1.0 m, respectively; M indicates that the furrow distance was changed
from 0.4 to 0.8 m during cultivation using movable benches. DAT, days after transplanting. The
growth measurements were conducted on August 8 and September 9, 2018. The error bars indicate
standard error.
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Figure 11. Changes in fruit temperatures and inside air temperature in the F1.6 and M treatments
(n = 3). Fruit temperature was measured on 60–62 days after transplanting. F1.6 indicates a furrow
distance of 1.6 m; M indicates that the furrow distance was changed from 0.4 to 0.8 m during
cultivation using movable benches.
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Figure 12 shows the fruit yield per unit area. From highest to lowest, the yield per
unit area was M > F1.0 > F1.6. The percentage of canopy light interception (Figure 5) had
almost the same tendency as that of the yield per unit area. Therefore, the canopy of plants
in the M treatment was able to efficiently intercept solar radiation inside the greenhouse. A
linear relationship between light interception and yield was observed (Figure 13). Hence, if
the light interception of canopies increases, it is possible to increase fruit yield per unit area.
A movable bench can easily provide the canopy conditions to increase light interception,
which can result in increased yields.
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Figure 12. The yield per unit area of the first truss of tomatoes grown at different furrow distances.
F1.6 and F1.0 indicate furrow distances of 1.6 and 1.0 m, respectively; M indicates that the furrow
distance was changed from 0.4 to 0.8 m during cultivation using movable benches. The yield was
measured at 54 days after transplanting (DAT).
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Figure 13. Relationship between the light interception of the canopy and yield. Yield survey of the
first truss was conducted at 54 days after transplanting (DAT). Integrated light interception means
integrated photosynthetic photon flux density from 6 to 54 DAT.
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In addition, Higashide et al. (2018) reported that when the LAI of tomatoes increased
from 4 to 5, the light interception of the canopy slightly increased [14]. Heuvelink et al.
(2005) indicated that when the average LAI values of tomatoes were 3.3, 3.6, and 4.1, the
yield of all treatments was 66 kg m−2 [25]. Accordingly, it is likely that LAI values that
can saturate the yield may be in the range of 3–4. In the present study, the maximum
LAI of plants in the M treatment was 3.8 (Figure 7), which was consistent with the results
of previous studies. Therefore, if movable benches were installed to maintain the LAI at
3–4, the solar radiation inside the greenhouse could be efficiently intercepted by plants,
thereby increasing the yield per unit area. However, light interception changes with the
season, area, plant density, and greenhouse structure. Therefore, it is necessary to continue
conducting cultivation tests under various conditions in the future.

4. Conclusions

The use of movable benches (M) in greenhouse tomato cultivation resulted in an
increase in the percentage of canopy light interception until the end of the cultivation
period compared to those under cultivation at furrow distances of 1.6 m (F1.6) and 1.0 m
(F1.0). Therefore, the solar radiation inside the greenhouse could be efficiently intercepted
by plants when a movable bench was used during cultivation. In addition, the leaf area and
height of plants in the M treatment were greater than those of plants in the other treatments.
Furrow distance affected plant morphological traits, including plant leaf area and plant
height. The yield per unit area for different treatments tended to increase in the order of
F1.6 < F1.0 < M. Therefore, we concluded that it was possible to increase the plant yield per
unit area using movable benches in tomato cultivation. Moreover, if movable benches were
installed to maintain the LAI at 3–4, which saturates the yield, the solar radiation inside
the greenhouse could be efficiently intercepted by plants, thereby increasing the yield per
unit area.
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