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Abstract: (1) Background: Currently, some ampelographic methods are developing in order to
identify grapevine varieties. For this purpose, morpho-colorimetric parameters in leaves have been
analyzed by digital imagen analysis, but some environmental conditions may affect their determi-
nations. (2) Methods: A research study was conducted to characterize leaf morpho-colorimetric
parameters in five grapevine varieties growing under different plant water status and to discriminate
them under these conditions. Leaves were collected in vines, and twelve leaf morpho-colorimetric
and fractal dimension variables were assessed. (3) Results: Merlot presented the highest values
of perimeter and area to perimeter ratio in leaves and higher leaf area than Chardonnay in both
plant water conditions. Most of the leaf morpho-colorimetric variables allowed discriminating the
grapevine varieties under the contrasted hydric conditions. Under non-water stress, Carmenère was
not related to any measured parameters. Merlot was positively related to most of the leaf morphome-
tric parameters, whereas Chardonnay presented the opposite behavior. RGB color system variables
allowed discriminating the grapevine varieties under water stress conditions, and Sauvignon Blanc
was not related to any measured parameter. Chardonnay and Pinot Noir were positively related to
green color and negatively related to most of the leaf morphometric parameters, whereas Merlot
showed the opposite behavior. (4) Conclusions: Leaf morpho-colorimetric and fractal dimension
parameters were affected by plant water stress and more variables should be incorporated into the
new ampelographic methods in order to characterize leaf morpho-colorimetric parameters of the
different grapevine varieties more clearly.

Keywords: ampelography; eccentricity; fractal dimension; morphometric characteristics; RGB color
system; water stress

1. Introduction

Ampelography is the field of botany concerning the identification and classifica-
tion of grapevine varieties that includes several parameters or descriptors that are mea-
sured on leaves, shoots, clusters and berries [1,2]. The main descriptors involved in
ampelographic characterization comprises types of hair, color, shape and size, textures
and appearance [3]. Based on this, ampelography provides relevant morphological and
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agronomical information for varietal characterization studies, breeding programs and
conservation purposes [4,5].

Ampelography remains a problem of concern since the wide number of grapevine
varieties and the variability within them cause difficulty in their identification and recogni-
tion [6]. More than 6000 varieties have been identified based on ampelographic descriptors,
but only a small number of varieties are used for the vineyard establishment [7]. Cur-
rently, there is great interest within the wine industry to explore the potential of minority
grapevine varieties as adaptation strategies to face global warming [8]. Based on this, there
is a need to ensure trueness of plant and to avoid planting wrong material, which may
result in significant financial losses to viticulturists.

A more objective classification of grapevine varieties has been developed in the last
decades by chemical, spectroradiometry and genetic fingerprinting techniques, including
recently digital photography methods [2,6,7]. Based on empirical knowledge, leaf shape
and shoot-tip pubescence are the best ampelographic descriptors for variety identifica-
tion [1,9]. Therefore, leaf morphology provides distinctive traits for reaching this goal [1,9].
In recent years, some authors reported that plant water stress may affect leaf morphological
characteristics, affecting varietal identification [2,10]. By digital photography and image
analysis algorithms, it is possible to obtain a range of leaf morphological parameters that
may solve the above-mentioned problems [11]. In a preliminary study, Fuentes et al. [6]
reported that the automatic extraction of morpho-colorimetric data, NIR chemical finger-
printing and machine learning modelling rendered rapid, accurate and non-destructive
methods for variety classification. However, it is possible that leaf morpho-colorimetric
characteristics of the vines could be affected by plant water status. Therefore, the aim
of this work was to characterize morpho-colorimetric and fractal dimension parameters
from scanned mature leaves of vines managed under different soil water status by image
analysis and to discriminate them under these contrasting conditions.

2. Materials and Methods
2.1. Site of Study and Plant Material

An experimental vineyard (cv. Sauvignon Blanc, Chardonnay, Carmenère, Merlot
and Pinot Noir) was used for this field trial during the 2011–2012 growing season. The
experimental vineyard is in Panguilemo, Talca, Chile (Maule Valley) (Talca, WGS84 datum,
35◦22.2′ S; 71◦35.39′ W, at 121 m.a.s.l.). The vineyard was established in 2006, and the vines
were trained to a vertical shoot position trellis system and pruned into two bilateral spur
cordons. The vine density was about 5000 vines ha−1, spaced at 2.00 m × 1.00 m between
rows and within the row, respectively, with an east–west orientation. The vineyard was drip
irrigated using two lines of 2 L h−1 with self-compensating emitters spaced every 0.5 m.

2.2. Soil and Climate Conditions

The vineyard soil presents a clay loam texture with a depth root of 1.50 m. Soil bulk
density, field capacity, wilting point and available water were 1.36 g cm−3, 0.31 m3 m−3,
0.13 m3 m−3 and 0.18 m3 m−3, respectively. The reports published by Pañitrur-De la
Fuente et al. [12] and Gutierrez-Gamboa et al. [13] present more information concerning
soil data and viticultural management performed in the vineyard.

An automatic weather station (Adcon Telemetry, A730, Klosterneuburg, Austria)
located close to the experimental vineyard (around 50 m from the field trial) was used
to obtain climatic data [13]. Briefly, average, maximum and minimum temperature in
the growth season were 16.9, 34.6 ◦C and 0.0 ◦C, respectively, whereas precipitations
registered for the same period was 31.8 mm, which was concentrated in the spring months.
In the winter, 1438 chilling hours were accumulated. In the growth season, degree days
accumulation was 1375 ◦C, vapor-pressure deficit reached 1.05 kPa and the reference
evapotranspiration was 1037 mm. The climatic characteristics mentioned are characteristic
of the Maule valley [14].
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2.3. Experimental Design

The experimental design was a randomized complete block divided into two treat-
ments (blocks) in which five grapevine varieties, such as Sauvignon Blanc, Chardonnay,
Carmenère, Merlot and Pinot Noir, were arranged. One of the two blocks was man-
aged under no water stress (without irrigation restriction), while the other was managed
following a progressive water restriction until reaching severe water stress (leaf water po-
tential <−1.4 MPa), according to the stress classification stated by van Leeuwen et al. [15].
A total of ten treatments (variety × water condition) were arranged in the vineyard, con-
sidering five plants per treatment in which eight mature leaves per plant were collected
to determine leaf morpho-colorimetric variables. The selected vines evidenced good phy-
tosanitary conditions and were homogeneous in vegetative growth, productivity and
climatic conditions.

2.4. Leaf Collection Process and Leaf Morpho-Colorimetric and Fractal Dimension Analysis

Leaf collection protocol was carried out following the methodology stated by
Fuentes et al. [6]. Briefly, eight mature leaf samples by plant were collected from the
vineyard, stored in plastic bags and then transported in a cooler with ice blocks to avoid leaf
dehydration. Healthy, fully expanded and mature leaves (including petiole) were collected
from the fifth position of each vine shoot with the aim of attaining uniform physiological
maturity of leaves for modelling purposes.

The collected leaves were scanned using a Hewlett Packard Scanjet G3010 (Hewlett-
Packard Software Company, Palo Alto, CA, USA) scanner (Figure 1).
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The obtained images were analyzed by using a customized code written in Matlab®

ver. R2010a (Mathworks Inc., Natick, MA, USA). The blue band of the image was then
post-processed to identify the leaf morpho-colorimetric and fractal dimension variables
(Figure 1). As described by Fuentes et al. [6], an initial calibration for the scanner was made
using black squares as references of known dimensions to relate pixel count in the x and y
coordinates to dimensions and area using metric units (cm and cm2). Scanner calibration
allowed automatic analysis of leaf images, extracting morphometric and color parameters
and the fractal dimensions of each leaf sample [6]. These variables were analyzed according
to the protocols stated by Fuentes et al. [6]. The parameters obtained from this process are
presented in Table 1.

Table 1. Description of the leaf morpho-colorimetric features for variety characterization and discrimination.

Parameter Unit Description

Area (A) cm2 Area of the leaf surface
Perimeter (L) cm Perimeter of the leaf surface

Maximum length (LMax) cm Maximum length of the leaf
Minimum length (LMin) cm Minimum length of the leaf

Maximum length of petiole (LMax P) cm Length of leaf vine petiole
Area to perimeter ratio (P2/A) Unitless Area to perimeter ratio of leaf

Eccentricity (Ex) Unitless Length: width ratio in which zero is given to a straight line and
one represents a circle

RGB color scale Unitless RGB scale used to measure color: R = red, G = green, B = blue colors and
RG = red and green index

Fractal dimension (FR) Unitless Fractal dimension measured using the box-counting method

2.5. Plant Water Status and Gas Exchange Measurements

The leaf water potential (Ψleaf) was measured to define the treatments. This pa-
rameter was determined by using a pressure chamber (PMS Instrument Co., model 600,
Corvallis, OR, USA), according to the methods stated by Acevedo-Opazo et al. [16] and by
Jara-Rojas et al. [17].

An infrared gas analyzer model LI 6400 (Li-cor, Lincoln, NV, USA) was used to
determine stomatal conductance (gs), transpiration (E) and net CO2 assimilation (AN) in
Sauvignon Blanc, Chardonnay, Merlot and Pinot Noir and not for Carmenère. Based on
some of these variables, the intrinsic water use efficiency (AN gs

−1) was calculated as
the ratio between AN and gs according to the report published by Medrano et al. [18].
The gas exchange measurements were performed according to the steps reported by
Gutiérrez-Gamboa et al. [13]. Three determinations were made between 12:00 and 14:00 h
in the north side of the canopy at the middle zone (sixth leaf from the tip on fruit-bearing
shoots) on 20 December 2011, 27 December 2011 and 21 January 2012. Measurements were
performed in five different vines per treatment on fully sunny days without changing
the original position of the selected leaves in the canopy and maintaining the same light
regime, ensuring that the leaves were exposed to full sunlight (PAR > 800 µmol m−2 s−1).

2.6. Statistical Analysis

The measured variables were analyzed by principal component analysis (PCA) to
classify the leaves by variety using The Unscrambler® X ver. 10.1 (CAMO Software, Oslo,
Norway). PCA was performed to identify the main relationships among the measured
variables and to relate them to the quality of characterization (prediction) of the different
grapevine varieties. Following this assumption, the proposed method considers that the
first and second principal components of the PCA (PC 1 and PC 2) should represent the leaf
morpho-colorimetric characterization at each observation (variety) if a significant amount
of variance is explained by PC1 and PC2. If so, the score of both components can be used
to rank all the observations according to the leaf morpho-colorimetric parameter values
observed at these sites. In addition, the significant differences for the measured parameters
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were assessed using analysis of variance (ANOVA), and the Tukey test (p ≤ 0.05) was used
for mean separation using the Statgraphics Centurion XVI.I statistical package (Warrento,
VA, USA). Finally, the contribution of each variable to each principal component was added
as Supplementary Materials.

3. Results
3.1. Leaf Morpho-Colorimetric Variables Analyzed in Grapevine Varieties Cultivated under No
Water Stress Conditions

Leaf morpho-colorimetric parameters such as eccentricity, blue color, red and green
index and fractal dimension were statistically similar among the varieties (Table 2). Merlot
presented the highest values of leaf perimeter, maximum length of leaf and area to perimeter
ratio (Table 2). In contrast, Pinot Noir exhibited the lowest value of this last parameter
(Table 2). Merlot showed higher leaf area than Chardonnay and Sauvignon Blanc and
higher red and green index than Carmenère and Chardonnay (Table 2). Maximum length
of petiole was higher in Carmenère, Merlot and Sauvignon Blanc than in Chardonnay
(Table 2). Regarding color parameters, Carmenère and Sauvignon Blanc presented higher
red and green color than Merlot and Pinot Noir (Table 2).

Table 2. Mean values for the leaf morpho-colorimetric features obtained by scanning leaves from five different grapevine
varieties under stress and no stress treatments.

Parameter Treatment
Variety

Carmenère Chardonnay Merlot Pinot Noir Sauvignon Blanc

Area (cm2)
No Stress 161.37 ± 18.55 ab 137.08 ± 6.58 a 196.05 ± 14.85 b 160.87 ± 5.71 ab 152.22 ± 15.67 a

Stress 143.92 ± 10.14 a 129.74 ± 2.38 a 180.87 ± 18.62 b 121.15 ± 18.29 a 147.21 ± 0.68 ab
Perimeter (cm) No Stress 83.01 ± 6.10 a 75.77 ± 2.30 a 98.17 ± 4.23 b 74.57 ± 1.78 a 77.28 ± 3.70 a

Stress 80.29 ± 3.11 a 74.67 ± 1.09 a 97.80 ± 9.54 b 67.12 ± 5.55 a 79.65 ± 3.22 a
Maximum
length (cm)

No Stress 13.10 ± 0.74 a 12.36 ± 0.24 a 14.62 ± 0.46 b 13.20 ± 0.28 a 12.73 ± 0.71 a
Stress 12.43 ± 0.44 a 12.09 ± 0.06 a 14.09 ± 0.71 b 11.53 ± 0.91 a 12.64 ± 0.42 ab

Minimum
length (cm)

No Stress 12.30 ± 0.76 a 11.31 ± 0.32 a 13.76 ± 0.60 b 12.24 ± 0.24 a 11.86 ± 0.57 a
Stress 11.62 ± 0.38 a 11.01 ± 0.13 a 13.08 ± 0.68 b 10.55 ± 0.79 a 11.64 ± 0.37 a

Maximum length of
petiole (cm)

No Stress 11.78 ± 1.01 b 9.00 ± 0.29 a 11.80 ± 0.85 b 10.12 ± 0.66 ab 11.40 ± 1.25 b
Stress 10.76 ± 0.43 b 9.01 ± 0.23 ab 11.05 ± 0.64 b 7.93 ± 1.18 a 10.45 ± 0.94 b

Area to
perimeter ratio

No Stress 42.76 ± 1.40 b 41.89 ± 0.67 b 49.23 ± 2.44 c 34.57 ± 0.66 a 39.32 ± 0.50 b
Stress 44.88 ± 2.59 a 42.98 ± 0.54 a 52.90 ± 4.98 b 37.33 ± 0.51 a 43.19 ± 3.07 a

Eccentricity No Stress 0.35 ± 0.01 a 0.41 ± 0.00 a 0.35 ± 0.04 a 0.39 ± 0.03 a 0.37 ± 0.03 a
Stress 0.35 ± 0.01 a 0.42 ± 0.02 b 0.38 ± 0.02 ab 0.41 ± 0.03 b 0.40 ± 0.00 ab

Red color No Stress 69.48 ± 2.28 c 68.96 ± 0.63 bc 63.58 ± 2.35 a 64.37 ± 0.95 ab 71.83 ± 1.80 c
Stress 74.93 ± 2.50 b 81.24 ± 2.49 b 68.16 ± 1.09 a 75.92 ± 3.47 b 75.94 ± 2.44 b

Green color No Stress 75.06 ± 3.05 c 74.35 ± 1.73 bc 65.39 ± 3.39 a 67.72 ± 1.82 ab 75.74 ± 1.96 c
Stress 81.48 ± 2.74 bc 85.36 ± 2.55 c 70.91 ± 0.71 a 78.97 ± 3.58 bc 77.77 ± 1.72 b

Blue color No Stress 46.54 ± 0.76 a 46.86 ± 1.69 a 48.53 ± 0.62 a 47.53 ± 1.52 a 49.06 ± 0.49 a
Stress 45.78 ± 0.63 a 50.34 ± 0.83 b 47.81 ± 1.52 ab 48.04 ± 1.40 ab 49.49 ± 1.10 b

Fractal dimension No Stress 1.65 ± 0.02 a 1.52 ± 0.02 a 1.64 ± 0.04 a 1.65 ± 0.02 a 1.60 ± 0.03 a
Stress 1.67 ± 0.02 a 1.67 ± 0.01 a 1.63 ± 0.03 a 1.49 ± 0.03 a 1.64 ± 0.01 a

Red and green
index

No Stress −0.039 ± 0.005 a −0.037 ± 0.007 a −0.014 ± 0.009 b −0.025 ± 0.009 ab −0.027 ± 0.005 ab
Stress −0.042 ± 0.010 a −0.025 ± 0.004 ab −0.020 ± 0.010 b −0.020 ± 0.006 b −0.012 ± 0.005 b

For each variable and treatment, different letters in the same row show statistically significant differences assessed using the Tukey test
(α = 0.05).

3.2. Leaf Morpho-Colorimetric Variables Analyzed in Grapevine Varieties Cultivated under Water
Stress Conditions

Fractal dimensions did not vary among the varieties cultivated under water stress and
no water stress conditions (Table 2). Merlot presented the highest leaf perimeter, minimum
length of leaf and area to perimeter ratio and the lowest red color (Table 2). Merlot showed
higher leaf area and maximum length of leaf than Carmenère, Chardonnay and Pinot
Noir (Table 2). Carmenère presented lower eccentricity than Chardonnay and Pinot Noir,
while this last one showed lower maximum length of petiole than Carmenère, Merlot and
Sauvignon Blanc (Table 2). Regarding color parameters, Chardonnay presented higher
green color than Merlot and Sauvignon Blanc (Table 2). Carmenère showed lower blue
color than Chardonnay and Pinot Noir and lower red and green index than Merlot, Pinot
Noir and Sauvignon Blanc (Table 2).



Horticulturae 2021, 7, 315 6 of 11

3.3. Leaf Gas Exchange Parameters and Intrinsic Water Use Efficiency in Grapevine Varieties
Managed under Different Water Supply

Leaf gas exchange parameters were not affected in grapevine varieties managed
under stress water conditions (Table 3). Only the grapevine varieties cultivated under
no water stress conditions presented statistical differences on transpiration (E), stomatal
conductance (gs) and intrinsic water-use efficiency (AN gs

−1) (Table 3). Based on this, Pinot
Noir presented lower transpiration than Merlot and Sauvignon Blanc (Table 3). Sauvignon
Blanc showed higher stomatal conductance and lower intrinsic water-use efficiency than
Merlot and Pinot Noir (Table 3).

Table 3. Gas exchange variables and intrinsic water-use efficiency obtained in leaves from five different grapevine varieties
under stress and no stress treatments.

Parameter Treatment
Variety

Chardonnay Merlot Pinot Noir Sauvignon Blanc

Net CO2 assimilation (AN) No stress 16.74 a 16.36 a 16.39 a 17.39 a
Stress 10.90 a 11.04 a 10.33 a 13.30 a
Both 13.82 a 13.70 a 13.36 a 15.35 a

Transpiration (E) No stress 11.01 ab 11.81 b 9.47 a 12.23 b
Stress 7.49 a 7.37 a 6.45 a 7.79 a
Both 9.25 a 9.59 a 7.97 a 10.00 a

Stomatal conductance (gs) No stress 0.42 ab 0.40 a 0.38 a 0.54 b
Stress 0.25 a 0.22 a 0.20 a 0.30 a
Both 0.33 a 0.31 a 0.34 a 0.42 a

Intrinsic water-use efficiency (AN gs
−1) No stress 40.30 ab 41.24 b 48.06 b 32.40 a

Stress 68.02 a 70.95 a 65.69 a 67.89 a
Both 50.14 a 56.09 a 56.87 a 50.14 a

For each variable and treatment, different letters in the same row show statistically significant differences assessed using the Tukey test
(α = 0.05). Data correspond to the average of the three data of measurements.

3.4. Multivariate Analysis to Discriminate the Different Grapevine Varieties

In order to discriminate the different varieties and assess the effects of treatments on
leaf a morpho-colorimetric characteristics, PCA was performed (Figure 2), including all
available data. Principal component 1 (PC 1) explained 61.8% of the variance and principal
component 2 (PC 2) explained 21.6%, representing an 83.4% of all the variance. PC 1
was strongly correlated with leaf area (A), leaf perimeter (P), perimeter to area ratio of
leaf (P2/A), maximum length of leaf (LMax), minimum length of leaf (LMin), maximum
length of petiole (LMax P) and red color, while PC 2 was strongly correlated only with red
and green index (RG). Both components allowed discriminating the different grapevine
varieties except Sauvignon Blanc, which was not related to any ampelographic parameter.
Pinot Noir was positively related to eccentricity (Ex) and negatively related to LMax P.
Carmenère was positively related to fractal dimension (FR) and negatively related to blue
color. Merlot was positively related to most of the leaf morphometric parameters, such
as A, LMax and LMin, whereas Chardonnay showed the opposite behavior, and it was
negatively correlated to leaf morphometric characteristics.

In order to discriminate the different varieties and assess the effects of water stress
conditions (leaf water potential <−1.4 MPa) on leaf a morpho-colorimetric characteristics,
PCA was performed (Figure 3a). PC 1 (PC 1) explained 64.1% of the variance and principal
component 2 (PC 2) explained 20.2%, representing 84.4% of all the variance. PC 1 was
strongly correlated to A, P, P2/A, LMax, LMin, LMax P and red color, while PC 2 was
only strongly correlated with RG. Both components allowed discriminating the different
grapevine varieties except for Sauvignon Blanc, which was not related to any morpho-
colorimetric parameter. Under water stress conditions, Chardonnay and Pinot Noir were
positively related to green color and negatively related to most of the leaf morphometric
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parameters such as A, LMax, LMin and P2/A, whereas Merlot showed the opposite
behavior. Carmenère was negatively related to Ex and blue color.
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parameters obtained from five different grapevine varieties managed under stress water conditions (left, a) and no water
restriction (right, b).

In order to discriminate the different varieties and assess the effects of no water stress
(without irrigation restriction) on leaf morpho-colorimetric characteristics, PCA was per-
formed (Figure 3b). Principal component 1 (PC 1) explained 60.0% of the variance, and
principal component 2 (PC 2) explained 23.0%, representing 83.0% of all the variance.
PC 1 was strongly correlated to A, P, LMax, LMin and red and green index, while PC 2
was only strongly correlated with FR. Both components allowed discriminating different
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grapevine varieties except Carmenère, which was not related to any ampelographic pa-
rameter. Pinot Noir was positively related to Ex and negatively related to FR, whereas
Sauvignon Blanc was negatively related to RG. Merlot was positively related to some leaf
morphometric parameters such as A, LMax and LMin, whereas Chardonnay presented the
opposite behavior.

4. Discussion

Since the beginning of the century, there is a new tendency within the wine industry
to introduce varieties of different origins for wine diversification [19]. A correct ampel-
ographic classification of grapevine varieties allows ensuring varietal authenticity and
avoids planting material the wrong at a vineyard establishment. In the past, there have
been varietal identification mistakes or confusion with grapevine material, both interna-
tionally and in the national wine industry. The Carmenère variety was improperly known
as Merlot in Chile, and it was not until two decades ago that it was correctly identified
by ampelography description [20]. Currently, Carmenère (7.87%) is the fifth most planted
variety behind Cabernet Sauvignon (29.50%), Sauvignon Blanc (11.17%), Merlot (8.63%)
and Chardonnay (8.16%) in Chile. Based on this, mistakes in grapevine identification
potentially can result in significant financial costs associated with replants and in other
aspects of the wine production chain.

Based on this, it is interesting that our results showed clear discrimination between
Merlot and Carmenère using digital images and multivariate analysis (Figures 2 and 3).
Merlot was strongly related to high values of leaf morphometric parameters, while Car-
menère was inversely related to blue color and positively related to fractal dimension.
In spring, the young leaves of Carmenère variety present a characteristic orange color,
while the leaves take on an anthocyanin pigmentation that gives them a characteristic blue-
reddish color when close to harvest [21]. The fractal dimension shows a strong correlation
with human perception of surface roughness [22], which could discriminate Carmenère
from the rest of the studied grapevine varieties after its analysis under both plant water
status (Figure 2). On the other hand, Pinot Noir was positively related to eccentricity
(Figure 2). The eccentricity is the ratio of the distance between the foci of the ellipse and
its major axis length, and its value ranges between 0 and 1 [23]. If the grapevine varieties
leaves are viewed from the eccentricity point of view, a high value of this parameter results
in an elongated shape of the leaf. Pinot Noir leaf is of medium size, orbicular, dark green,
thick, funnel-shaped, generally entirely trilobed or weakly trilobed [9]. These results are
very interesting since some techniques do not readily discriminate varieties with morpho-
logical differences due to mutations, as in the case among Pinot Noir, Pinot Blanc and
Pinot Gris [24].

Severe water stress (leaf water potential <−1.4 MPa) affected grapevine variety dis-
crimination (Figure 3). Chardonnay and Pinot Noir were strongly positively related to
red color and negatively related to leaf morphometric parameters, which is opposite to
Merlot (Figure 3). This grapevine variety reached non-significant high values of net CO2
assimilation compared to Chardonnay and Pinot Noir (Table 3). The red light is absorbed
more strongly by photosynthetic pigments and is predominantly absorbed by the top few
cell layers; consequently, red photons used less efficiency in terms of being dissipated [25].
Merlot presented non-significant higher intrinsic water-use efficiency (WUE) than the rest
of the studied grapevine varieties. WUE reflects the balance between vine production (kg
of biomass produced or moles of CO2 assimilated) and water costs (m3 of water used or
moles of water transpired) [18,26]. Several reports showed that Merlot presents higher
WUE compared to several grapevine varieties [13,26–28]. Therefore, the hydric behavior
and gas exchange of Merlot vines grown under severe water stress could not affect their
ability to develop a canopy with a high leaf area and, thus, is positively related to leaf
morphometric parameters.

Non-water stress (without irrigation restriction) affected the discrimination of Sauvi-
gnon Blanc and Carmenère (Table 3). Sauvignon Blanc reached higher values of stomatal
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conductance and transpiration and lower values of WUE compared to some of the rest of
the studied varieties (Table 3). In Carmenère, transpiration could be sustained, despite
presenting a large leaf area through less sensitive stomata [17]. In this case, the hydraulic
system needs high-water transport capacity in the soil-plant-atmosphere continuum, and
this variety can be less sensitive to xylem embolisms [29].

To solve the problems of discrimination of grapevine varieties by digital images, the
selected leaf morpho-colorimetric parameters must not be affected by the environmental
factors and viticultural practices. The color of upper size of blade, area of leaf anthocyanin
coloration, goffering of blade, shape of teeth, size of teeth in relation to blade, length of
teeth compared with their width, degree of opening and overlapping of petiole sinus and
shape of base of petiole sinus, among other descriptors, could be interesting parameters for
ampelographic classification of the grapevine varieties using digital images.

5. Conclusions

Leaf morpho-colorimetric variables studied in this trial allowed discriminating grapevine
varieties, except Sauvignon Blanc, after their analysis under contrasting hydric conditions.
Merlot, Carmenère, Chardonnay and Pinot Noir were separated by using digital images
and multivariate analysis. Merlot was strongly related to high values of leaf morphometric
parameters contrary to Chardonnay, while Carmenère was inversely related to blue color
and positively related to fractal dimension. On the other hand, Carmenère and Pinot Noir
were related to fractal dimension and eccentricity, respectively. RGB color system variables
allowed discriminating the grapevine varieties managed under water stress conditions.
Chardonnay and Pinot Noir were positively related to red color and negatively related
to leaf morphometric parameters, which is opposite to Merlot. Full irrigation affected
the discrimination of Sauvignon Blanc and Carmenère. Thus, leaf morpho-colorimetric
characteristics of the vines were modified by plant water status. Lastly, the digital image is
an interesting method to classify grapevine varieties, but it is important to validate it in
future studies, proposing new leaf morpho-colorimetric variables to more clearly separate
the varieties that cannot be discriminated, such as Sauvignon Blanc in this study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/horticulturae7090315/s1, Table S1. Variable’s contribution in the PCA combined (Figure 2).
Table S2. Variable’s contribution in the PCA grapevine varieties managed under stress water condi-
tions (Figure 3a). Table S3. Variable’s contribution in the PCA grapevine varieties managed under no
water stress (Figure 3b).
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