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Abstract: To investigate the effects of supplementary UV-A intensity on growth and antioxidant
compounds in Chinese kale (Brassica alboglabra Bailey) baby-leaves, three different UV-A intensity
treatments (5, 10, 15 W·m−2, respectively) were applied 10 days before harvest in artificial light plant
factory. In Chinese kale baby-leaves, supplemental 5 and 10 W·m−2 UV-A (UVA-5 and UVA-10)
were beneficial for inter-node length, stem diameter, canopy diameter, fresh weight and dry weight,
particularly in UVA-10 treatment, while these above-mentioned growth parameters all significantly
decreased in UVA-15 treatment. The soluble sugar content decreased under UVA-5, but there was
no significant difference under UVA-10 and UVA-15. Soluble protein contents decreased under
UVA-5 and UVA-10, but significantly increased under UVA-15. UVA-10 played a predominant role in
increasing FRAP and contents of total phenolics and total flavonoids compared to other treatments.
Contents of total glucosinolates (GLs), aliphatic GLs and indolic GLs in Chinese kale baby-leaves
significantly increased with UV-A intensity increasing, and the highest contents were found under
UVA-15. The percentage of total aliphatic GLs (about 80%) was significantly higher than those of
total indolic GLs. Glucobrassicanapin and sinigrin were two major individual GLs in Chinese kale
baby-leaves, variation trends of which were consistent with the contents of total GLs and aliphatic
GLs. From the heatmap analysis, and taking economic benefits into account, UVA-10 might be
optimal for the production of high-quality Chinese kale baby-leaves in an artificial light plant factory.
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1. Introduction

Chinese kale (Brassica alboglabra Bailey) has been popularly consumed in South China
and Southeast Asia owing to its important phytochemicals, including carotenoids, ascorbic
acid, anthocyanin, polyphenols and glucosinolates [1]. Glucosinolates are the vital groups
of health-promoting secondary metabolites in Brassicaceae vegetables. The hydrolysis of
glucosinolates through myrosinase activity yields sulforaphane, which plays a beneficial
role in the prevention and treatment of several diseases [2]. Many epidemiological studies
indicated that diets rich in Brassica vegetables helped with reducing the risk of cancers and
regulated immune and inflammatory responses [3,4]. Chinese kale baby-leaves are one of
the forms in which Brassicaceae vegetables can be eaten. They are considered a “functional
food” or “super-food” due to their higher contents of vitamins, minerals, and antioxidants
compared to their mature counterparts. Thus, ready-to-eat baby-leaf vegetables have
attracted great attentions in consumers and the food industry [5].

Light plays a vital role in driving photosynthetic activity and modifying the composi-
tion of plants. Different wavelengths and intensities of light have significant impacts on
plant processes, such as photomorphogenesis and photoperiodism. Various photorecep-
tors of plants are sensitive to different light spectra, and then they activate downstream
signaling transduction elements including some transcription factors which regulate many
downstream genes, leading to physiological and biochemical changes in plants [6]. Rapid
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advances in the development of LEDs provide a promising way to control the entire light
spectrum and well-defined intensity under controlled conditions [7,8]. Moreover, the
application of supplemental light has become a more economic and energetically efficient
method in controlled environments, which is beneficial for the yield and quality of leafy
vegetables [9].

Ultraviolet light (200–400 nm) takes up a small proportion of the solar spectrum, but
plays a vital role in plant growth and development, which comprises up to 7% of the
total sunlight-reaching terrestrial plants on the Earth’s surface [10]. UV light is catego-
rized into UV-C (200–280 nm), UV-B (280–320 nm), and UV-A (320–400 nm) spectra [11].
An enormous number of studies have highlighted the important role of UV-B as regula-
tors of plant growth with the in-depth researches of UV-B photoreceptor UV RESISTANT
LOCUS8 (UVR8) [12,13]. UV-A radiation is the major component of the UV radiation
on Earth as it penetrates almost unaltered through the stratospheric ozone layer and the
atmosphere, accounting for 95% of UV radiation at sea level [14]. Up to now, there has been
a lack of comprehensive understanding of the impacts of UV-A on plant physiology and
biochemistry. Previous studies have indicated that UVA plays a pivotal role in maximizing
phytochemical accumulation and improving health-protective properties in vegetables
under artificial light plant factories [15–17]. Light intensity had a significant impact on
growth and biochemical characteristics; however, there is relatively little information about
the effect of UV-A with different intensities on the primary and secondary metabolism
in plants.

In the present work, we aim to explore the effects of supplementary UV-A LED
(380 ±10 nm) treatment 10 days before harvest on Chinese kale baby-leaves, in order to
evaluate the effects of supplementary UV-A intensity on the growth and health-promoting
compounds production in Chinese kale baby-leaves in an artificial light plant factory.

2. Materials and Methods
2.1. Plant Materials and Experimental Designs

The experiment was conducted in an artificial light plant factory at the College of Hor-
ticulture, South China Agricultural University (23.16◦ N, 113.36◦ E). The seeds of Chinese
kale (Brassica alboglabra Bailey) were sowed in a sponge block with a modified quarter-
strength Hoagland solution (the full-strength nutrient solution was made up of the fol-
lowing elements: 944 mg·L−1 Ca(NO3)2·4H2O; 404 mg·L−1 KNO3; 160 mg·L−1 NH4NO3;
200 mg·L−1 KH2PO4; 348 mg·L−1 K2SO4; 492 mg·L−1 MgSO4·7H2O, EC≈1.2 mS·cm−1

and pH ≈ 6.4). The photosynthetic photon flux density (PPFD) was 300 µmol·m–2·s–1

white LED, 10/14 h (light/dark). The environmental temperature (24 ± 2 ◦C), relative
humidity (65–75%), and CO2 concentration (500 ± 100 µmol·mol−1) in the plant factory
were measured by a series of corresponding sensors during the entire growth stage (Kebai
Hongye Technology Co., Ltd., Beijing, China).

Six-layer cultivation shelves, in which each layer was equally divided into four indi-
vidual cultivation units, were placed in the plant factory equipped with adjustable red-
white-blue-UVA-far red LEDs (380 ± 10 nm, Chenghui Equipment Co., Ltd., Guangzhou,
China) as light sources. Moreover, each cultivation unit consisted of 3 transplanting boards
(95 × 60 × 3 cm). After 14 days, uniform seedlings with three expanded true leaf were
transplanted into a deep flow technique system with half-strength Hoagland nutrient solu-
tion, for a further 10 days, with 42 plants per transplanting board, which represented one
replicate. For each lighting treatment, three replications were performed. Two days after
transplanting under the basal light (Red: white LEDs = 2:3 at PPFD of 250 µmol·m–2·s–1),
four supplemental UV-A treatments were set up in the same layer with four individual
cultivation units (with one light treatment per unit): CK (basal light, non-UV-A treated),
basal light + 5 W·m–2 UV-A (UVA-5, nearly 10 µmol·m–2·s–1), basal light + 10 W·m−2

UV-A (UVA-10, nearly 20 µmol·m–2·s–1), and basal light + 15 W·m−2 UV-A (UVA-15,
nearly 30 µmol·m–2·s–1), respectively. The photoperiod was set to 12 h (6:00–18:00) in
all treatments by adjusting LED light panels. Except for changes in light environment



Horticulturae 2021, 7, 294 3 of 15

and transplanting density, all growth environments remained the same before and after
transplanting. To prevent plants from being disturbed by different light environments,
each cultivation unit was separated with a shading cloth. Light spectrograms measured by
a spectroradiometer (ALP-01, Asensetek, Taiwan) were shown in Figure 1.
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Figure 1. Spectral composition in the four treatments.

2.2. Agronomy Traits Measurements

Chinese kale baby-leaves plants were harvested from 10 plants per treatment at
10 days after UV-A supplementing (Figure 2). The internode length, stem diameter, and
canopy diameter (the maximum width of plant shoot) of Chinese kale baby-leaves were
measured by a rule. Fresh and dry weight (determined after 48 h at 75 ◦C in a drying oven)
were weighed on an analytical balance. Plants sampled from different treatments were
immediately frozen in liquid nitrogen and kept at −40 ◦C for analysis. Three analytical
replications (6 plants per replication) were used in each biochemical measurement.
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2.3. Phytochemical Determinations

Contents of photosynthetic pigment were extracted from fresh samples (0.5 g) with
25 mL acetone-alcohol mixture (acetone: alcohol = 1:1, v/v) until the leaf tissue turned
white at 26 ◦C for 24 h in darkness [18]. Then, they were measured at 645, 663 and 440 nm
by UV-spectrophotometer (Shimadzu UV-16A, Shimadzu, Corporation, Kyoto, Japan). The
contents of chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll (a + b) (Chl (a + b)) and
carotenoid were quantified as follows:

Chl a (mg·L−1) = 12.7 × OD663 − 2.69 × OD645

Chl b (mg·L−1) = 22.9 × OD645 − 4.86 × OD663

Chl (a + b) (mg·L−1) = 8.02 × OD663 + 20.20 × OD645

Carotenoids (mg·L−1) = 4.7 × OD440 − 0.27 × Chl (a + b)

Photosynthetic pigment (mg·g−1) = Photosynthetic pigment (mg·L−1) × 25 mL × 10−3/0.5 g

Soluble sugar content was determined using the sulfuric acid anthrone method [19].
Fresh sample powder (0.5 g) was added to 8 mL 80% ethanol and then on a water bath
(80 ◦C) for 40 min after adding activated carbon powder (10 mg). The completed extract
had a volume of 25 mL with 80% ethanol. The 0.2 mL supernatant, 0.8 mL distilled water
and 5 mL sulfuric acid anthrone reagent were mixed and boiled for 10 min. Soluble sugar
content was measured at 625 nm using a spectrophotometer.

Soluble protein content was measured according to Coomassie brilliant blue G-250
dye method [20]. Fresh sample powder (0.5 g) was mixed with 8 mL distilled water then
centrifuged at 3000 rpm for 10 min at 4 ◦C. After that, 0.2 mL supernatant was combined
with 0.8 mL distilled water and 5 mL Coomassie brilliant blue G-250 solution (0.1 g·L−1).
After 5 min, absorbance was read at 595 nm by a UV-spectrophotometer.
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Nitrate content was determined as the method described by Cataldo [21]. Fresh
samples (0.5 g) were mixed with 10 mL distilled water then boiled for 30 min. After
filtering, 0.1 mL supernatant was added to 0.4 mL 5% salicylic and sulfuric acid and 9.5 mL
8% NaOH. The absorbance was measured at a wavelength of 410 nm.

The content of vitamin C was eluted from fresh samples (0.5 g) with 25 mL oxalic
acid EDTA solution (200 Mm EDTA and 50 Mm oxalic acid) [22]. Next, 10 mL extracting
solution was added to 900 1 mL 3% HPO3, 2 mL 5% H2SO4 and 4 mL 5% H8MoN2O4.
After 15 min, the absorbance was measured at a wavelength of 705 nm.

The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate was carried out
based on Tadolini [23]. Fresh samples (0.5 g) were mixed with 8 mL ethanol, standing
for 30 min in darkness, then the sample centrifuged at 3000 rpm for 15 min. An amount
of 2 mL supernatant was mixed with 2.0 mL DPPH solution (0.0080 g DPPH in 100 mL
ethanol). Absorbance of mixed solution was read at 517 nm.

The value of ferric-reducing antioxidant power (FRAP) was analyzed according to
Benzie and Strain [24]. 0.4 mL sample solution (The extraction method of FRAP was the
same as that of DPPH) was mixed with 3.6 mL mixed solution (0.3 mol·L−1 acetate flavon;
10 mmol·L−1 TPTZ; 20 mmol·L−1 FeCl3, 10:1:1, v:v:v) and incubated at 37 ◦C in water bath
for 10 min. Absorbance was read at 593 nm.

Polyphenol content was measured based on the Folin–Ciocalteu assay [25]. The 1 mL
supernatant (the extraction method of polyphenol was the same as that of DPPH) was
mixed with 0.5 mL foline-phenol and 11.5 mL 26.7% sodium carbonate, then 7 mL distilled
water was added into the mixed solution. After 2 h, absorbance was read at 510 nm by
UV-spectrophotometer.

Measuring the total flavonoid contents was based on the method of Li [26]. The 1 mL
extract solution (The extraction method of flavonoid was the same as that of DPPH) was
added to 0.7 mL 5% NaNO2. After 5 min, the reaction solution was mixed with 0.7 mL 10%
Al(NO3)3, and then 6 min later, the mixture was added 5 mL 5% NaOH, and 10 min later,
absorbance was read at 760 nm by UV-spectrophotometer.

The determination of glucosinolates was performed as earlier described by Qian [27]
with minor modifications. The freeze-dried samples (approximately 0.2 g) were extracted
for 20 min in a water bath at 75 ◦C with 4 mL 70% methanol. Then, they were homogenized
with 0.4 mol·L−1 barium acetate (2 mL) at 4000 rpm for 10 min. The above extraction
steps were repeated once, the supernatants were combined, then they were loaded onto
a mini column containing 500 mL DEAE-Sephadex A-25 that had been conditioned with
2 mol·L−1 acetic acid and washed with 6 mol·L−1 imidazole formate. After loading, the
column was washed with 0.02 M sodium acetate buffer. Then, 500 mL sulfatase solution
(Sigma-Aldrich, Steinheim, Germany) was added, and the preparation was incubated
overnight. The latter was dissolved in 2 mL distilled water and filtered through a 0.22 µm
membrane filter.

HPLC analyses were conducted on a Waters e2695 liquid chromatograph (Waters
Crop., Milliford, MA, USA) with a reversed-phase C 18 column (5µm, 250 mm × 4.6 mm;
Waters SunFire C18, Waters, Milford, MA 01757, USA). The column was maintained at
30 ◦C and 20 µL injection volume. A binary gradient was used: 0–32 min 0–20% eluent A;
32–38 min 20% A; 39–40 min 20–100% A. The eluents were (A) acetonitrile and (B) distilled
water, with a flow rate of 1 mL·min−1. The detection wavelength was recorded at 229 nm.
Contents of the individual glucosinolate compounds were identified by their retention
times and spectral data as compared by standards.

2.4. Statistical Analysis

All the assays were performed in triplicates. Significant differences among the treat-
ments were determined by a one-way analysis of variance (ANOVA), using SPSS 22.0
software (SPSS Inc., Chicago, IL, USA). Significance at p < 0.05 was performed by Duncan’s
test. Heatmap synthesized analysis using TBtools software [28].
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3. Results
3.1. Effect of Different Supplemental UV-A Intensity on The Morphology and Biomass of Chinese
Kale Baby-Leaves

The morphology and biomass of Chinese kale baby-leaves were obviously affected
by different supplemental UV-A intensities (Figure 3). Compared to CK, the plant fresh
weight and dry weight of shoot were not affected under UVA-5, while they significantly
increased by 42% and 41% under UVA-10, and decreased by 20% and 20% under UVA-15
treatment. The plant fresh weight and dry weight of root showed a similar pattern to shoot
fresh weight and dry weight were in response to different supplemental UV-A intensities.
The internode length of Chinese kale baby-leaves under UVA-5 and UVA-10 increased
by 6% and 30%, respectively, but decreased by 5% under UVA-15. Similarly, the stem
diameter under UVA-5 and UVA-10 increased by 5% and 13%, respectively, but decreased
by 20% under UVA-15. There was no striking difference in canopy diameter of Chinese
kale baby-leaves under UVA-15, compared with CK, while this increased by 9% and 22%
under UVA-5 and UVA-10, respectively.
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Figure 3. Agronomy traits of Chinese kale baby-leaves under different supplemental UV-A intensities.
(a) Shoot fresh weight, (b) Shoot dry weight, (c) Root fresh weight, (d) Root dry weight, (e) Internode
length, (f) Stem diameter, (g) Canopy diameter of Chinese kale baby-leaves. All data are presented as
mean ± standard error (n = 10). Different letters (a–d) marked upon the bar plots indicated significant
differences between treatments by Duncan’s multiple (p < 0.05).

3.2. Effect of Different Supplemental UV-A Intensity on the Photosynthetic Pigment Contents of
Chinese Kale Baby-Leaves

Different influences of supplemental UV-A intensities on the photosynthetic pig-
ment contents of Chinese kale baby-leaves are presented in Table 1. In UVA-5 treatment,
the contents of Chl a and Chl (a + b) increased by 3% and 8%, respectively, while the ratio of
Chl a/Chl b decreased by 4%, and chlorophyll/carotenoids ratio was not affected. Expect
for the fact that Chl a/Chl b ratio decreased by 4%, there were no significant differences
between the contents of chlorophyll and carotenoids under UVA-10. The contents of Chl a,
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Chl (a + b) and chlorophyll/carotenoids ratio in UVA-15 decreased by 12%, 9% and 10%,
respectively.

Table 1. Photosynthesis pigments of Chinese kale baby-leaves under different supplemental UV-A intensity.

Treatments
Chlorophyll Content

(mg/g)
Carotenoid

(mg/g) Chl a/Chl b Chlorophyll
/Carotenoid

Chl a Chl b Chl (a + b)

CK 1.16 ± 0.04 ab 0.54 ± 0.08 a 1.49 ± 0.07 ab 0.21 ± 0.01 a 1.86 ± 0.02 a 7.64 ± 0.35 ab
UVA-5 1.19 ± 0.06 a 0.67 ± 0.04 a 1.61 ± 0.09 a 0.20 ± 0.00 a 1.78 ± 0.02 b 8.38 ± 0.56 a
UVA-10 1.11 ± 0.04 ab 0.61 ± 0.03 a 1.49 ± 0.06 ab 0.20 ± 0.00 a 1.79 ± 0.02 b 7.54 ± 0.32 ab
UVA-15 1.02 ± 0.02 b 0.54 ± 0.02 a 1.36 ± 0.03 b 0.21 ± 0.00 a 1.87 ± 0.01 a 6.84 ± 0.11 b

UVA-5, UVA-10 and UVA-15 indicated UV-A intensity of 5, 10, 15 W·m–2, respectively. The results presented were means ± standard error
(n = 3). Different letters marked in tables indicate significant differences between treatments by Duncan’s multiple (p < 0.05).

3.3. Effect of Different Supplemental UV-A Intensity on Nutritional Compounds of Chinese Kale
Baby-Leaves

The contents of nutritional compounds in Chinese kale baby-leaves were significantly
affected by supplemental UV-A intensities (Figure 4). Contents of soluble sugars decreased
by 4% under UVA-5, but they were not affected under UVA-10 and UVA-15, compared with
CK (Figure 4a). The content of soluble protein under UVA-5 and UVA-10 decreased by 4%
and 7%, respectively, while a significant increase was found in UVA-15 (Figure 4b). The Vc
contents decreased under UVA-5 compared with CK, but no significant differences were
found under UVA-10 and UVA-15 (Figure 4c). The nitrate contents increased by 23% under
UVA-5, while there were no striking changes under UVA-10 and UVA-15 (Figure 4d).
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Figure 4. Nutritional compounds of Chinese kale baby-leaves under different supplemental UV-A
intensity. (a) SS = soluble sugars, (b) SP = soluble protein, (c) Vc = vitamin C, (d) nitrate. The results
presented were means± standard error (n = 3). Different letters (a–d) on the bar plots indicate signifi-
cant difference at p < 0.05 using one-way analysis of variance with Duncan’s multiple-range test.

3.4. Effect of Different Supplemental UV-A Intensity on Antioxidant Content and Capacity of
Chinese Kale Baby-Leaves

Antioxidant content and capacity in Chinese kale baby-leaves were significantly
relevant to supplemental UV-A intensity (Figure 5). No obvious difference was observed in
the DPPH of Chinese kale baby-leaves between UV-A and CK (Figure 5a). FRAP in Chinese
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kale baby-leaves markedly increased under UVA-10 (Figure 5b), while there were no
significant differences among CK, UVA-5 and UVA-15. The highest total polyphenol
content was found in UVA-10, which was 19% higher than CK, and in UVA-5 and UVA-15,
total polyphenol contents were 10% and 4% higher than CK, respectively (Figure 5d). Total
flavonoid contents significantly increased under supplemental UV-A; those under UVA-10
and UVA-15 were significantly higher than CK by 64 and 23%, respectively, though no
significant increase was found in UVA-5 (Figure 5c).
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Figure 5. Antioxidant content and capacity of Chinese kale baby-leaves under different supple-
mental UV-A intensity. (a) DPPH = 2,2-diphenyl-1-picrylhydrazyl, (b) FRAP = ferric-reducing
antioxidant power, (c) TF = total flavonoid, (d) TPC = total phenolics. The results presented were
means ± standard error (n = 3). Different letters (a–d) upon the bar plots indicate significant differ-
ence at p < 0.05 using one-way analysis of variance with Duncan’s multiple-range test.

3.5. Effect of Different Supplemental UV-A Intensity on Glucosinolate Composition and Content of
Chinese Kale Baby-Leaves

In this study, eight different glucosinolates (GLs) were identified in Chinese kale baby-
leaves by HPLC based on their retention times (Figure 6a), which included four aliphatic
GLs (progoitrin(PRO), sinigrin(SIN), glucoraphanin(GRA), and glucobrassicanapin (GBN)),
and four indol GLs (4-hydroxy glucobrassicin(4-HGBS), glucobrassicin(GBS), 4-methoxy
glucobrassicin(4-MGBS) and neoglucobrassicin(NGBS)). Aliphatic GLs contents as the most
abundant GLs found in Chinese kale baby-leaves accounted for about 80% of the total GLs,
which significantly increased with an increase in supplemental UV-A intensity (Figure 6).
Compared with CK, the total aliphatic GLs contents under UVA-5, UVA-10 and UVA-15
were significantly higher by 19, 38 and 57%, respectively. Although PRO under UVA-10
did not differ significantly from CK, as well as PRO and GRA under UVA-5, contents
of PRO, SIN and GRA showed an increasing trend with an increase in supplemental
UV-A intensity; those under UVA-15, UVA-10 and UVA-5 were higher than CK by 78–93%,
15–72% and 18–51%, respectively. The total indolic GLs contents under supplemental UV-A
treatments exhibited no striking change, except for a significant increase was detected only
in the 4-HGBS content. Therefore, the increase in total GLs content under supplemental
UV-A was due to UV-A causing a significant increase in PRO, SIN and GRA, which were
the predominant GLs in Chinese kale baby-leaves. Total GLs content in Chinese kale
baby-leaves increased with an increase in supplemental UV-A intensity.



Horticulturae 2021, 7, 294 9 of 15

Horticulturae 2021, 7, x FOR PEER REVIEW 9 of 16 

CK by 78–93%, 15–72% and 18–51%, respectively. The total indolic GLs contents under 
supplemental UV-A treatments exhibited no striking change, except for a significant in-
crease was detected only in the 4-HGBS content. Therefore, the increase in total GLs con-
tent under supplemental UV-A was due to UV-A causing a significant increase in PRO, 
SIN and GRA, which were the predominant GLs in Chinese kale baby-leaves. Total GLs 
content in Chinese kale baby-leaves increased with an increase in supplemental UV-A 
intensity. 

Figure 6. Glucosinolate composition and contents of Chinese kale baby-leaves under different supplemental UV-A inten-
sities. The results presented were means ± standard error (n = 3). Different letters (a–c) upon the bar plots indicate signifi-
cant difference at p < 0.05 using one-way analysis of variance with Duncan’s multiple-range test. 

3.6. Heatmap Analysis of Functional and Nutritional Aspects of Chinese Kale Baby-Leaves under 
Different Supplemental UVA Light Intensity. 

A heatmap synthesized the responses of yield, phytochemicals, and GLs to supple-
mental UV-A, providing an integrated view about agronomy traits, nutritional and func-
tional profile of Chinese kale baby-leaves in response to UV-A intensity (Figure 7). The 
parameters could be grouped into two main clusters by the hierarchical clustering analy-
sis, corresponding to the light treatments, in which UVA-5, UVA-15 and CK clusters were 
the closest to each other in the measured parameter responses. The UVA-10 cluster was 
obviously distinguished from other clusters by its higher biomass (fresh weight, dry 
weight, inter-node length, stem diameter, canopy diameter) and antioxidant compounds 

PRO SIN GNA
4-HGBS

GBN CBS
4-MGBS

NGBS
0.0

2.0

4.0

6.0

8.0
 

baG
lu

co
sin

ol
at

es
(μ

m
ol

·g
−1

 D
W

)

aba

b
ab

a
a

c

b
bc

a

caab a aaa

a aa
a

aaaa aa aa

(b)

Aliphatic GLs Indolic GLs Total GLs
0.0

4.0

8.0

12.0

b
a

c
b

d

a a a a

a
ab

c

G
lu

co
sin

ol
at

es
(μ

m
ol

·g
−1

 D
W

) (c)

 CK   UVA-5   UVA-10   UVA-15

Figure 6. Glucosinolate composition and contents of Chinese kale baby-leaves under different supplemental UV-A intensities.
The results presented were means ± standard error (n = 3). Different letters (a–c) upon the bar plots indicate significant
difference at p < 0.05 using one-way analysis of variance with Duncan’s multiple-range test.

3.6. Heatmap Analysis of Functional and Nutritional Aspects of Chinese Kale Baby-Leaves under
Different Supplemental UVA Light Intensity

A heatmap synthesized the responses of yield, phytochemicals, and GLs to sup-
plemental UV-A, providing an integrated view about agronomy traits, nutritional and
functional profile of Chinese kale baby-leaves in response to UV-A intensity (Figure 7).
The parameters could be grouped into two main clusters by the hierarchical clustering
analysis, corresponding to the light treatments, in which UVA-5, UVA-15 and CK clusters
were the closest to each other in the measured parameter responses. The UVA-10 clus-
ter was obviously distinguished from other clusters by its higher biomass (fresh weight,
dry weight, inter-node length, stem diameter, canopy diameter) and antioxidant com-
pounds and activities (Vitamin C, phenolics, flavonoid, FRAP). The analysis of the heatmap
indicated that UVA-10 played an important role in promoting plant growth and elevating
the accumulation of functional phytochemicals of Chinese kale baby-leaves.
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4. Discussion

Supplementary UV-A intensity notably affected plant growth in this study. The
plant biomass of Chinese kale baby-leaves under UVA-10 was higher than other UV-A
treatments (Figure 3), while they showed a lower biomass under UVA-15 than CK. This
indicates that a lower supplemental UV-A intensity (UVA-10) increased the biomass of
Chinese kale baby-leaves, while a higher UV-A intensity (UVA-15) inhibited biomass
accumulation (Figure 3), and UVA-10 was more favorable for Chinese kale baby-leaves
plant growth in an artificial light plant factory (Figure 3). Studies have shown that UV-A
exerted a stimulatory effect on biomass in radish [29], lettuce [30], and six Mediterranean
plant species [31], while an inhibitory effect was found in others, such as in lettuce [32],
cucumber [33], as well as in some C3 and C4 plants [34]. Different wavebands of UV-A
LEDs (370 nm or 385 nm) with 30 W·m−2 for 5 days induced significant increases in the
biomass of kale, and the fresh and dry weights of shoots and roots, leaf area, and specific
leaf weight were significantly higher than in control plants [15]. Exposing Chinese kale
and pak-choi baby-leaves to 40 W·m−2 UV-A (380 nm) resulted in higher biomass than
CK, with a significant increase in plant height, leaf length, and leaf numbers [35]. UV-
A (365 nm) irradiation at 10, 20, and 30 µmol·m−2·s−1 significantly stimulated biomass
production of indoor cultivated lettuce, yielding 15–29% higher shoot dry weight, and
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the stimulating effect of UV-A on lettuce growth was not a simple linear dose–response
relationship [17]. Lettuce might have a saturation response to UV-A intensity. In this
study, Chinese kale baby-leaves morphological responses were dependent on the received
UV-A dosage (Figure 3). The increase in biomass of Chinese kale baby-leaves exposed to
lower UV-A intensity might be attributed to UV-A as one of the driving forces behind
plant photosynthesis, which helped to elevate stomatal opening and CO2 absorbing [36],
and consequently resulted in the growth of adaxial epidermal cells and an increase in
leaf area. Moreover, UVA photoreceptors (cryptochromes) play an important role in leaf
photosynthetic development since they could regulate the expression of chloroplast genes
which associated with the transcription and expression of photosystem II (PSII) encoding
genes [37,38]. However, excessive UV-A levels might cause damage to the PSII protein
complex and reduce quantum efficiency, which was similar to UV-B [39].

An increase in plant biomass under UV-A irradiation might be closely linked to higher
photosynthetic pigments contents and photosynthetic activity. The chlorophyll contents
increased rapidly in Hippophae rhamnoides [40], and canola (Brassica napus) [41] under UV-A
radiation, but decreased in lettuce [42] and some C3 and C4 plants (cotton, wheat, amaran-
thus, sorghum) [34]. Supplemental UVA (368 nm) of 0.45 W·m−2 for 15 days in “Roma”
tomato seedlings led to a significant stimulation of photosynthetic pigments [43]. Some
studies showed that exposure to UV-A radiation increased the contents of chlorophylls and
carotenoids, thereby promoting plant growth [44,45]. Chl a/Chl b reflects the adaptability
of plants to light intensity. Lower Chl a/Chl b indicated that plants had a stronger ability
to the utilization of weak light [46]. In this study, the contents of chlorophyll increased
under UVA-5 but decreased under UVA-10 and UVA-15 (Table 1). Moreover, a lower
ratio of Chl a/Chl b was found in UVA-10 (Table 1), which indicated that chlorophylls
and carotenoids of Chinese kale baby-leaves might directly absorb UVA light as light
energy for photosynthesis, enhancing photosynthesis and promoting plant growth [47,48].
Moreover, UV-induced violet-blue-green fluorescence could be captured by photosynthetic
pigments to enhance electron transport; hence, the photosynthetic rates were improved
under UV-A supplementation to the non-saturating levels of visible light [49]. Inversely,
energy-rich UV radiation results in the generation of free radicals which are a damaging
factor for the photosynthetic machinery, including chloroplasts and the degradation of
photosynthetic pigments [47]. Moreover, UV-A could cause damage to the photosystem
II protein complex and decrease quantum efficiency [47]. UVA-15 led to the reduction
in Chl a and chlorophyll/carotenoid ratio, which might be an optical photoprotective
mechanism against damage of photosynthesis induced by UV irradiation [48,50]. UV-A
doses used in Chinese kale baby-leaves led to different effects on chlorophyll contents
(Table 1), indicating that the UV-A dose effect should not be ignored. The lower production
of Chinese kale baby-leaves biomass might be the result of a dose–response of UV-A [43].

Soluble sugars, soluble proteins, nitrate and Vc fulfill very important roles in evaluat-
ing the nutritional quality of vegetables. UV-A supplementation could lead to the remark-
able variation in phytochemicals such as sugar and protein by regulating the processes of
carbon and nitrogen metabolism and photosynthesis of vegetables [51]. Supplemental UV-
A resulted in 6.4 times higher nitrate contents in green leaf lettuce and 62% higher nitrate
contents in red leaf lettuce, compared to the blank group [52]. A similar result was found
in our study; that the nitrate contents of Chinese kale baby-leaves slightly increased by
supplemental UV-A radiation (Figure 4d), which might due to UV-A could affect the gene
expression and enzyme activity related to nitrogen metabolism in plants [53]. Moreover,
glutamine contents were significantly 2.8 times higher than control under supplemental
UV-A in green leaf lettuce, but the free amino acid contents in red leaf lettuce decreased [52].
Furthermore, the highest soluble protein content of pak-choi was found in UV-A (380 nm)
treatment, while no obvious changes in free amino acids contents in red-leaf pak-choi were
found between UV-A and CK [54]. Nitrate reductase activities, contents of soluble protein
and Vc in radish plants were promoted by the UV-A (about 305–400 nm) radiation [29].
In this study, contents of total protein, soluble sugar and Vc contents respond to vary-
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ing intensities of UV-A, which showed a significant reduction under UV-5 (Figure 4a–c).
However, the opposite effect was detected in UV-15, with an obvious increase in total
protein contents (Figure 4b). Our results were inconsistent with results showing that
soluble sugar and protein contents in lettuce increased under UV-A supplementation of
10, 20 and 30 µmol·m−2·s−1 [17]. A decrease in soluble sugar and protein content was
found in UV-A treatment, which might indicate the normal consumption of these reserve
carbohydrates; once these baby-leaves increased biomass (leaf area) and the photosynthetic
pigments did not change, the photosynthate might be used as the energy source for plant
growth [43]. Phloem integrity might be disrupted by UV-A radiation, which might exert
an impact on carbohydrate metabolism in plants [55]. The effect of supplemental UV-A on
the phytochemicals of Chinese kale baby-leaves in an artificial light plant factory exhibited
a different response to the UV-A dose.

DPPH free radical scavenging rate and ferric-reducing antioxidant power (FRAP)
are often used to assess the total antioxidant capacity of vegetables. The contents of total
phenols and flavonoids were predominant health-promoting compounds which exert a
crucial impact on the plant defense system and maintain many biological activities in
the human body [56]. UV radiation is considered to be an effective mutagenic agent
which can promote the production of diverse secondary metabolites such as flavonoids,
phenols, alkaloids, and terpenoids in plants [57,58]. Compared with CK, the DPPH and
FRAP of red-leaf and green-leaf pak-choi pronouncedly increased by 35.39% and 33.32%,
respectively, under the UV-A treatment. Additionally, UV-A showed a promoting effect
on the contents of TPC, TF, and TA in two pak-choi cultivars [54]. Additionally, broccoli
sprouts exposed to 3.16, 4.05 W·m−2 UV-A for 120 min were beneficial for the production
of sinapic acid, gallic acid and gallic acid derivatives [58]. The expressions of structural
genes regulating phenols and flavonoids biosynthesis in plants, such as PAL, CHS, DFR
and AN could be tremendously up-regulated by UV-A radiation [59–61]. No significant
difference or slight increase was found in DPPH scavenging activity, FRAP and flavonoids
and polyphenols contents of Chinese kale baby-leaves under UVA-5 and UVA-15 compared
with CK, but UVA-10 could significantly improve the antioxidant activity and antioxidant
content of Chinese kale baby-leaves (Figure 5). Therefore, the stimulating effect of UV-A on
the antioxidant of Chinese kale baby-leaves depended on the dose of UV-A illumination.

Glucosinolates are a class of sulfur-rich secondary metabolites widely found in Brassica
vegetables, which have received considerable attention recently due to the anticarcinogenic
properties of their hydrolysis product, sulforaphane [62]. With increasing supplementary
UV-A intensity, the contents of aliphatic GLs remarkably increased in Chinese kale baby-
leaves (Figure 6b,c). No significant differences were found in the indol GLs contents in
Chinese kale baby-leaves among the treatments, except for 4-HGBS, which significantly
increased under supplementary UV-A (Figure 6b). In broccoli sprouts, UV-A (3.16 W·m−2

for 120 min) radiation showed higher accumulation of both aliphatic and indolic GLs in
sprouts harvested 24 h afterwards, compared to CK [58]. However, all individual GLs
contents did not show any change after UV-A treatment (only GER was significantly de-
creased by 27.6%) in 7-day-old broccoli sprouts under UV-A (9.47 W·m−2) radiation for
120 min [63]. UV-A significantly decreased progoitrin content, while 400 nm UV-A had
a promotion effect in increasing the contents of sinigrin and glucobrassicin in Chinese
kale [35]. Meanwhile, 400 nm UV-A was able to increase the contents of glucoraphanin,
sinigrin, and glucobrassicin in pak-choi [35]. Therefore, the biosynthesis of glucosinolates
responding to UV-A varied according to the duration and dose of exposure. Aliphatic GLs
were the dominant GLs in Chinese kale baby-leaves, constituting approximately 80% of
the total GLs contents (Figure 6). UV-A radiation could stimulate the biosynthesis and
accumulation of GLs in Chinese kale, which might be caused by the activation of tran-
scription factor genes such as HY5, after the UV-A photoreceptor senses the signal. HY5
could regulate the transcription levels of sulfur assimilation genes ATPs, APK and APR,
and then affect the expression of glucosinolates biosynthesis genes, e.g., SOT16, SOT17,
SOT18, MAM-L, CYP79F1 and CYP79B2 [64]. From the results of this study, GLs con-
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tents significantly increased under UV-A might attribute to that UV-A could up-regulate
the gene expressions of the key enzymes related to glucosinolates metabolites [65,66].
It could increase the expression of transcription factors (e.g., DOF1.1, MYB41, MYB28,
MYB34) and cure structure genes of glucosinolates which involve BCATs, MAMs, CYP79s,
CYP83, AOPs and other gene families. UV-A could increase the glucosinolates contents
in Chinese kale baby-leaves, the difference in the underlying mechanism still needs
further research.

5. Conclusions

The response of Chinese kale baby-leaves growth and metabolism highly depended
on UV-A intensity. Our results indicate that UVA-10 was beneficial for Chinese kale baby-
leaves’ plant biomass and morphology, while UVA-15 inhibited the growth of Chinese
kale baby-leaves. A significant increasing trend for antioxidant compounds was found
under the UVA-10 treatment. The glucosinolates contents in Chinese kale baby-leaves
significantly increased with the increase in UV-A intensity, and the highest contents were
found under UVA-15. Taking economic benefits into account, UVA-10 (10 W·m−2 applied
10 days before harvest) might be optimal for the production of high-quality Chinese kale
baby-leaves in artificial light plant factory. Further studies are needed to explore how UV-A
regulates phytochemicals through light signal transduction pathways.
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