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Abstract: Allelopathy is an ecological phenomenon in which organisms interfere with each other. As a
management strategy in agricultural systems, allelopathy can be mainly used to control weeds, resist
pests, and disease and improve the interaction of soil nutrition and microorganisms. Volatile organic
compounds (VOCs) are allelochemicals volatilized from plants and have been widely demonstrated
to have different ecological functions. This review provides the recent advance in the allelopathic
effects of VOCs on plants, such as growth, competition, dormancy, resistance of diseases and insect
pests, content of reactive oxygen species (ROS), enzyme activity, respiration, and photosynthesis.
VOCs also participate in plant-to-plant communication as a signaling substance. The main methods
of collection and identification of VOCs are briefly summarized in this article. It also points out the
disadvantages of VOCs and suggests potential directions to enhance research and solve mysteries
in this emerging area. It is necessary to study the allelopathic mechanisms of plant VOCs so as to
provide a theoretical basis for VOC applications. In conclusion, allelopathy of VOCs released by
plants is a more economical, environmentally friendly, and effective measure to develop substantial
agricultural industry by using the allelopathic effects of plant natural products.

Keywords: allelochemicals; VOCs properties; VOCs action; VOCs detection; green agriculture

1. Introduction

The concept of “allelopathy” was first proposed by Austrian scientist Hans Molisch
in 1937 and mainly referred to the chemical relationship of plant interaction. Allelopathy
is an ecological phenomenon and plays an important role in the ecological adaptation
of plants [1,2]. The allelopathic effects have both positive and negative effects. Various
studies have reported the advantages of allelopathic effects in agricultural systems, such
as weed control [3–6], inhibition of pests [7–10], disease [11,12], improvement of soil
nutrition [13,14], and microbial interactions [15,16]. Ultimately, allelopathy of most plants
has effect on plant growth [10,17,18]. Plants can synthesize various secondary metabolites
during growth and development. Plant VOCs vary by species, and they are related to the
abundance of neighboring plant species and plant species composition [19,20]. These sec-
ondary metabolites can be beneficial or harmful to other organisms when stored or released
into the environment, such as secondary metabolites stored in plants that can prevent ani-
mal feeding and microbial infestation, while volatiles released into the air can attract insect
pollinators [21]. Plants communicate with organisms in the environment through VOCs,
thereby achieving a wide range of ecological functions, such as affecting their growth,
development, defense, reproduction, and life cycle [22]. In 1984, allelopathy was defined as
“any direct or indirect harmful effect by one plant (including microorganisms) on another
through production of chemical compounds released into the environment” by Rice [23].
These products of secondary metabolism, called allelochemicals, can be found in any organ
of the plant (leaves, stems, flowers, seeds, fruits, and/or roots) and can be released from
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the producing plant by different routes: volatilization, foliar leaching, root exudations, and
decomposition of plant residue (Figure 1).
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VOCs are secondary metabolites volatilized by plants and ubiquitous allelochemicals
of plants [24]. Shikimate/phenylalanine, the mevalonic acid (MVA), the methylerythritol
phosphate (MEP), and lipoxygenase (LOX) pathways are the four main synthesis pathways
of VOCs, and plants can synthesize and release various VOCs including terpenoids, phenyl-
propanoids/benzenoids, and fatty acid derivatives [25]. The VOCs released by these plants
often have different ecological functions, such as chemical communication, kin recognition,
attracting or repelling insects, and many other effects [21,26–29]. Although the researches
of plants VOCs are mainly aboveground some chemical signal, more and more studies
show that VOCs also play an integral part in belowground plant–plant interactions [30].
In fact, the phenomenon that plants release allelochemicals through the volatile pathway
has been noticed for a long time. One of the first empirical studies of allelopathy involving
VOCs was researched by Molisch, who found that VOCs released by apples and pears
could inhibit potato germination [31]. VOCs have been widely demonstrated to defend
primarily against herbivorous insects [32,33], microbes, and pathogens [34–36], thereby
reducing extreme environmental stress [37,38] and promoting nutritional acquisition [11].
Muller et al. [39] researched the volatiles of annual grassland species in Salvia leucophylla
Greene and Artemisia californica communities, and this revealed that volatile allelochem-
icals had the interspecific allelopathic effects on the woody herbaceous plants, which
would negatively affected the recipient plant species [40,41] and changed soil microor-
ganisms [42,43]. Besides, in addition to VOCs released from plant shoots, root volatiles
may also have allelopathic effects on neighboring plants; for example, VOCs from big
sagebrush (Artemisia tidentata Nutt.) root inhibited seed germination of wild tobacco (Nico-
tiana attenuata) [44]. Most allelochemicals produced by plant roots are considered as “root
exudates” [45], but the few allelochemicals released by volatilization of roots are called
VOCs, which play an important ecological role in the soil ecosystem and have not been
studied thoroughly [46,47].

Allelopathy has received high attention and become one of the central scientific
problems in ecology [48]. Allelopathy is forming an independent scientific system, and we
are conducting in-depth and extensive research from both theoretical and practical aspects.
VOCs released by plants are one of the main ways to achieve allelopathic effects. It is a more
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economical, environmentally friendly, and effective measure to use the allelopathic effect of
plant natural products to develop the agricultural production [49]. Several excellent reviews
have summarized the relevant research on potential applications of VOCs [20,22,49], but
the studies on allelopathy of plants VOCs have not been systematically reviewed and
reported. VOCs are a kind of natural and environmentally friendly chemical substances
that volatilize from plants and are used as natural herbicides and fungicides to protect
neighboring plants from stress and increase crop yields [49]. We think VOCs have a much
broader range of the potential applications. So, in this context, study on the allelopathy
of VOCs is particularly important to the future development of green agriculture. The
review mainly focuses on the recent studies of allelopathy of plants VOCs, regarding
resisting diseases and preventing pests of plant, impacting on competition (inhibiting weed
hazards), breaking dormancy, regulating plant growth, affecting reactive oxygen species
(ROS) content and enzyme activity, modulating plant respiration and photosynthesis, and
their role as a signal conducting substance. We present the evidence from the references to
illustrate these roles to deepen the understanding of allelopathy of plants VOCs.

2. Allelopathy of VOCs of Plants

With the increasing attention of experts on the allelopathy of volatile, the potential
role of VOCs in agriculture has been gradually discovered. The allelopathy of VOCs on
plants are summarized based on existing research, which involved the main allelopathy of
plant VOCs. (Figure 2).
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2.1. VOCs and Plants Growth

Numerous results showed that VOCs have an effect on plant cell growth and differen-
tiation [50–53], such as diallyl disulfide (DADS) of garlic VOCs, which can affect mitotic
activity and cell length of tomato roots by impacting on cell division, endogenous plant
hormone levels, expansin gene expression, and sulfate assimilation and glutathione (GSH)
metabolism [53,54].
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Similarly, many studies confirm that plant volatiles can inhibit seed germination and
the growth of root and seedling [50,55–60]. β-terpineol, linalool, eugenol, and tetradecanoic
acid are the VOCs released from tomato (Solanum lycopersicon Mill.) foliage, and they could
inhibit seed germination of the tropical plant Amaranthus mangostanus L. [55]. The brassica
species exude allelochemicals, which are glucosinolates [61] that could break down into
several biological action compounds, such as isothiocyanates, which have biologically
active and inhibit germination and growth of exposed plant species [57,62]. VOCs released
from pine needles and the roots of Pinus halepensis L. mainly inhibited the seed germination
and root growth of two herbaceous target species Lactuca sativa L. and Linum strictum
L. [63]. VOCs affect plant growth, mainly to change plant morphology and reduce plant
biomass. Therefore, seed germination, seedling root length, and seedling height are often
used as intuitive indicators to evaluate allelopathy. Low concentrations of DADS promoted
the growth of cucumber roots and induce elongation of the main roots by up-regulating
the expression of CsCDKA and CsCDKB genes and regulating the hormone balance of
the roots [64]. The VOCs released by Atriplex cana Ledeb. (Amaranthaceae) significantly
inhibited seedling growth of Amaranthus retroflexus L. and Poa annua L., and 5 µg/mL
essential oil completely inhibited the seed germination of A. retroflexus, Medicago sativa
L., P. annua, and Echinochloa crusgalli L. [65]. Besides, Effah et al. found that plant VOCs
mediate multiple ecological networks, and they may mediate the allelopathic effects of
the germination or growth of competitors seeds [66]. Monoterpenoids are considered as
effective inhibitors of seed germination and seedling growth [67,68].

VOCs affect plant growth, mainly to inhibit plant growth, but some studies have
found that VOCs have dual effects on germination and plant growth, both promoting and
inhibiting; for example, Arroyo et al. found that volatile chemicals from Artemisia herba-alba
Asso. inhibited the germination of Pinus halepensis Mill. seeds, promoted the growth of P.
halepensis seedlings, and reduced the root biomass of Salsola vermiculata L. seedlings [69].
VOCs also have an effect on plants growth direction. Runyon et al. found that Cuscuta
pentagona seedlings were favored by not only the growth of host tomato plants, but also
the direction of tomato VOCs [70]. The extracted VOCs of tomato and wheat were placed
on both sides of C. pentagona seedlings, and the C. pentagona seedlings continued to grow
in the direction of tomato VOCs. It was also found that β-phellandrene and β-myrcene of
tomato VOCs could significantly attract the growth of C. pentagona seedlings.

2.2. VOCs and Weed Control

Allelopathy gain extensive attention in biological weed control [3–6,71]. Boydston
et al. [3] found that mustard seed meal has the potential for weed control in organic
production systems. The release of volatile organic compounds from the leaves can cause
allelopathic effects and damage the growth of other competitive plants [72]. The allelopathy
of the volatile allelochemicals may perform a vital part in inhibiting the competitive ability
of weed species, be one of the alternatives to control weed infestation, and it has excited
the greatest interest [67,73–75]. Therefore, the best way to control weeds is to use the
crops’ own competition and allelopathy. Wei et al. reported that the volatile oil released by
Atriplex cana Ledeb. significantly inhibited the growth of seedlings of four weed species,
including Amaranthus retroflexus L. and Poa annua L., and it had a high value for further use
as a biological herbicide [65].

Brassicas produce the allelochemicals glucosinolates throughout their plant parts and
released them into the environment by volatilization [76]. In the natural environment,
glucosinolates are broken down into several compounds, and the most important com-
pound of them is isothiocyanate [77], which can inhibit the growth and development of
plant or weed [78]. Digitaria sanguinalis is a common non-irrigated weed that severely
affects crop yields. Pardo-Muras et al. showed that the oxygenated monoterpenes in
VOCs produced and released by both Ulex europaeus and Cytisus scoparius inhibited the
germination and early growth of two weeds, A. retroflexus and D. sanguinalis [79]. Many
studies have reported that in addition to independent effects of VOCs, VOCs also have
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synergistic or antagonistic effects. These synergistic and antagonistic effects lead to the
final allelopathy [80,81].

Besides, VOCs from invasive species can also reduce interspecific performance and
improve the performance of invasive species [82]. VOCs might also be perceived by
neighboring plants to adjust their defensive phenotype according to the present risk of
attack. Allelochemicals as natural herbicide have an attractive prospect, and some plants
may be expected to develop into a new generation of herbicides or fungicides.

2.3. VOCs and Plants Dormancy

Dormancy is a physiological state in which plants respond to stress [83]. DADS is
considered as main allelochemical of VOCs in garlic [53]. Hosoki et al. reported that
the sulfur-containing compounds from garlic VOCs could break the bud dormancy in
some corms, tubers, and ornamental trees [84,85]. Kubota et al. found that exposure to
volatile diallyl disulfides and trisulfides was the most effective treatment to promote the
bud break of single-bud cuttings of “Kyoho” (Vitis vinifera × labruscana Bailey) [86]. So,
the allelochemicals in garlic that break the dormancy of vine buds are sulfur compounds,
particularly DADS. In addition to DADS, more and more studies can prove that VOCs
can affect plant dormancy. In a recent study, Shukla et al. studied the breaking dormancy
of potato tubers effects on 20 essential oils from medicinal and aromatic plants [87]. The
essential oils could induce or inhibit the sprouting process of potato tubers by altering the
accumulation of reducing sugars, ethylene production, and expression of genes, thereby
affecting the dormancy of plants [87]. Besides, eugenol from clove essential oil and carvone
from caraway and dill essential oils have been reported to inhibit potato tubers sprout-
ing [88–90]. The results showed that the essential oils of lemon grass and clove were the
most effective VOCs for breaking dormancy and inducing germination of potato tubers.
The oils of palmarosa and ajwain inhibited the sprout of potato tubers [87]. Owolabi
et al. found the essential oils of Lippia multiflora, Cymbopogon citratus, and Zingiber officinale
could control potato tubers dormancy [91]. They are suitable for application as sprout
suppressants. At present, there are few studies on the effects of VOCs on plant dormancy,
and the specific mechanism of action needs to be studied in the future.

2.4. VOCs and the Inhibition of Plants Diseases and Insect Pests
2.4.1. Inhibition of Plants Disease

VOCs not only have an inhibitory effect on plants, but also on pathogenic bacteria. A
number of experimental trials showed that leaves’ VOCs inhibited germination and the
growth of plant pathogens and had stronger activity than commercial fungicides [92–94].
The essential oil of oregano triggers the expression of hundreds of genes involved in the
grapevine immune system, so it can prevent Plasmopara viticola infection in grapevine
(Vitis Vinifera) and primes plant immunity mechanisms [95]. The inhibition rate of volatile
allelochemicals from leaves of Ocimum adscendens to 29 different kinds of mycelium was
over 98%, and the inhibition rate of mycelium growth of Aspergillus reached 100%; es-
pecially, the activity of A. lavus was 10~100 times higher than another five commercial
fungicides [96]. Chaturvedi et al. found that volatiles released by Adenocalymma allicea
could effectively control leaf spot in rice and kill the pathogenic fungus Drechslera oryzae.
When volatile oil obtained from A.alicea plants compared with the activity of the synthetic
fungicides blitox-50 and m-45, the activity of volatile oil to D. oryzae was up to four times
higher than those synthetic fungicides [97]. In particular, this volatile oil had no harmful
effect on the growth and development of rice seedlings. The volatile oil released from
the leaves of the same genus Ocimum basilicum also inhibited the growth of other fungal
mycelia by more than 85%, and the dosage was only 1/4 of the commercial fungicide [98].
Therefore, using VOCs to replace commercial fungicide is no longer a dream. Phenols
are a kind of allelochemicals that have been concerned and studied. Eugenol is an impor-
tant class of phenolic allelochemicals. Cloves have a long history of use, and the main
volatile component eugenol has a strong inhibitory effect on fungi and bacteria [99,100].
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In a recent study, Quintana-Rodriguez et al. performed a screening on the efficacy of
22 VOCs, which were known to be volatilized from infected plants leaves, against the fun-
gal pathogens Colletotrichum lindemuthianum, Fusarium oxysporum, and Botrytis cinerea. The
work results showed that nonanal, (+)-carvone, citral, trans-2-decenal, L-linalool, nerolidol,
and eugenol significantly inhibited the growth of the three fungal species, and eugenol had
the most active among them. Therefore, the VOCs of plants have the disease resistance
function [101].

In addition to eugenol, there are many VOCs that can also inhibit pathogens. DADS
is a volatile organosulfur compound derived from garlic (Allium sativum L.) bulbs, and
it is known as an allelochemical because of the potential allelopathy of garlic. A large
number of study results show that it has a strong inhibitory effect on a variety of pathogenic
bacteria [102]. In a recent study, Yang et al. demonstrated that the VOCs (DADS) from green
garlic (Allium sativum L.) increased the accumulation of H2O2 and the disease resistance
of cucumber [103]. Sekine et al. reported that other VOCs such as cuminaldehyde and
p-cymene also have been demonstrated to possession antifungal activity against B. cinerea,
F. oxysporum, Verticillium dahliae, and Alternaria mali [104]. According to the work of Mandal
and Mandal, linalool, a substance with antifungal and antioxidant potential, was found in
the volatile oil of coriander (Coriandrum sativum L.) [105].

2.4.2. Inhibition of Plants Insect Pests

Numerous studies showed that plants not only produce toxins and hormones directly
in response to insect feeding, but also release VOCs to attract predators [106,107]. A class
of VOCs produced as a response to herbivore attacking are mainly terpenoids, predomi-
nantly monoterpenoids, and sesquiterpenoids [107], and they benefited the host plant by
interacting with herbivores. For example, when the larva of Spodoptera exigua Hübner. were
feeding on corn, the corn released volatile terpenoids to attract the parasitic wasp, which
was the natural enemy of S. exigua. If it was not mechanically damaged, the corn did not
release VOCs to attract the natural enemy. Further studies found that the oral saliva of the
beet moth contained volicitin, when the beet moth bit corn, its messenger jasmonic acid
derivatives were activated by volicitin to release terpenoids to lure Cotesia marginiventris
Cresson [108]. Kessler and Baldwin found that wild tobacco could release VOCs to attract
mealoptera, the natural predators of caterpillars, when caterpillars ate them. Additionally,
the VOCs released by wild tobacco also could prevent caterpillars from laying eggs on the
leaves [21].

Under natural conditions, plants can also achieve effective control of related pests by
releasing volatile substances to attract natural enemies. It is confirmed that the indirect
chemical defense of plants by releasing VOCs to attract natural enemies is a chemical
relationship in nature. Ageratum conyzoides L. released volatile terpenoid into the air
by stalks, leaves, and flowers to attract predatory mites (Amblyseius SPP.) and maintain
their population density [26]. Predatory mites are the most effective natural enemies of
red mites (Panonychus citri). So, the population density of red mites was reduced [26].
Degenhardt et al. found that VOCs from corn root (E)-b-caryophyllene attracted insect-
killing nematodes to control a major pest [109]. Therefore, the sustainable control of pests
and diseases can be achieved through the natural chemical mechanisms that exist in the field
to regulate plant–organism interactions. As a natural fungicide, VOCs have no harmful
effect on plant growth and development, and using VOCs is a more environmentally
friendly and economical way to kill bacteria.

2.5. VOCs and Plants Respiration and Photosynthesis

Previous studies showed that allelochemical can affect plant respiration by interfering
in various stages of respiration, including the generation of carbon dioxide (CO2) by
electron transport, oxidative phosphorylation, and the activity of ATPase, and it has the
potential to inhibit plant growth and development [41,110,111]. VOCs released from the
leaves of A. tridentata Nutt. var. vaseyana and Sasa cernua Makino. inhibited the respiration
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of germinating seeds [110,112]. In fact, studies of allelopathy processes in shrubs in the
1960s found that volatile terpenes could reduce respiration in the young leaves of some
plants and increase respiration in mature leaves [113]. Similarly, terpenes in eucalyptus
volatile oil could affect target plants by inhibiting cellular respiration [114]. The influence
mechanism of these allelochemicals on plant respiration deserves more in-depth study.

In addition, photosynthesis plays an important role in realizing the energy conversion
in nature and maintains the carbon–oxygen balance in the atmosphere. The high concentra-
tion of allelochemicals involved in multiple metabolic steps may lead to the inhibition of
plant photosynthesis, or even block the mechanism of photosynthesis by inhibiting electron
receptors, energy coupling, or destroying photosynthetic pigments and enzymes [115].
Isoprene volatilized from the foliage of many woody species was thought to increase
the rate of photosynthesis by stabilizing thylakoid membranes, so that adjacent plants
could tolerate high temperatures [116]. Kaur et al. found the volatile oils α-Pinene and
1,8-cineole from Eucalyptus tereticornis Sm. could significantly reduce the respiration and
photosynthetic pigment content of Amaranthus viridis Linn. Seedlings; thereby, the negative
effects of the oil on photosynthetic machinery was explained [117]. These studies can
confirm that olefin compounds can affect the photosynthesis of plants. In addition, Tsubo
et al. found that exposure to low concentrations of the volatile chemicals released by A.
adamsii Besser stimulated the photosynthetic rates of Stipa krilovii Roshev [118]. The volatile
oil of Artemisia ordosica Krasch. inhibited the growth and photosynthesis of Palmellococcus
miniatus through oxidative damage [119]. Zhao et al. studied the effects of eucalyptol and
limonene, the main terpenoids in cyanobacteria VOCs on the photosynthetic capacity of
Chlorella vulgaris [120]. The results showed that the compounds could induce the degra-
dation of photosynthetic pigments and reduce the photosynthetic abilities of other algae.
These studies can confirm that VOCs have the ability to affect plant photosynthesis.

2.6. VOCs and Plants ROS Content and Enzymatic Activity

Reactive oxygen species (ROS) play a vital role in the plant defense against stresses.
The balance between ROS generation and scavenging is considered as paramount in cellular
homeostasis. In recent years, more and more attention has been paid to the effectiveness and
feasibility of monomer organic sulfide extracted from garlic as an anti-tumor drug, and the
research and development of monomer organic sulfide has become an important research
topic [121]. Similarly, DADS had an effect on the ROS content of plants. Yang et al. used
cucumber and garlic as test materials to study the allelopathy of VOCs from green garlic on
the scavenging of cucumber ROS [103]. The results showed that DADS, a volatile substance
in garlic, reduced superoxide anions and increased hydrogen peroxide accumulation in
cucumber seedlings. The effects of VOCs on antioxidant enzymatic activities were species
dependent. They can regulate the activity of antioxidant enzymes (SOD, CAT, and POD)
of cucumber seedlings in response to oxidative stress. VOCs released from Acacia dealbata
Link. leaves increased the activity of superoxide dismutase (SOD) and peroxidase (POD)
in L. multiflorum flowers, but decreased SOD activity in T. subterraneum [60]. The volatile
allelochemical myrcene rapidly induced ROS production and significantly increased the
activity of lipoxygenase (LOX) in rice roots [122]. In other cases, Mutlu et al. reported
that the aerial parts of Nepeta meyeri Benth. contained two volatile oils, Germacrene-d and
Caryophyllene oxide, and they could reduce the SOD activity of six weed species [123]. Jin
et al. reported that the essential oil such as carvacrol, cinnamaldehyde, perillaldehyde, and
linalool enhanced the SOD and POD activities of Chinese bayberries, and carvacrol had
the best effect [124].

2.7. VOCs and Plants Signal Transduction
2.7.1. Chemical Communications

Plants, similar to animals, do not exist in isolation. Plant individuals and populations
maintain population relationships and resist external stress through chemical communi-
cation. VOCs volatilized from some plants are involved in plant–plant communication.
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Through more than 20 years of research, it has been found that when plants were stressed
by insect feeding, microbial infection, and mechanical damage, they could use volatile
organic substances to carry out inter-chemical and intra-chemical chemical communica-
tion [125,126]. Plants sent VOCs signals under attack or stress, then neighboring plants
received these VOCs signals directly or indirectly to turn on the chemical defense mech-
anisms and produce phenolic alkaloids chemical defense compounds including directly
terpenoids and other defense substances. Indirect chemical defense the use of VOCs to
attract the natural enemies of pests, through the methods of predation and parasitism
to eliminate pests. For example, the VOCs signals released by injured A. tidentata could
induce direct chemical defense by protease inhibitors in Nicotiana attenuate, and the VOC
signals released by maize leaves when insects fed could induce plants to rapidly release
monoterpenoids that attracted insect predators for indirect defense [127,128]. Wild lima
bean quickly synthesized and secreted excess nectar to attract natural enemies after receiv-
ing VOC signals from plants that have been harmed by foraging [129]. In recent years,
more and more research has gone deep into the mechanism of action of these chemical com-
munication signaling molecules. Baldwin et al. [125] found when in response to the attack,
infested leaves released (E)-β-ocimene (typical signaling chemicals of volatile terpenoids)
to increase the resistance of un-infested leaves and induce the expression of defense-related
genes in neighboring un-infected leaves [130]. In future research, based on the clarification
of the biochemical and metabolic processes of the phytochemical signal substances that
have been discovered, the response mechanism of the recipient plants to these signal
substances should be further explored. Therefore, although the research of phytochemical
communication faces huge challenges, the clarification of phytochemical identification and
communication relationships will broaden the horizons of the interspecific and intraspecific
relationships of plants.

2.7.2. Plant Kin Recognition

Kin recognition is simply the ability of an individual to distinguish the relationship
between genetically close related kin and non-kin. The kin recognition of plants has very
important ecological and evolutionary significance. Increasing evidence shows that plants’
recognition of neighboring allogenous and heterogeneous plants is mostly mediated by
chemicals [131,132]. When plants are attacked by herbivores, they will emit volatile signals
to surrounding plants. Some plants, such as A. tidentata, suffered less damage than other
plants that receive volatile signals from non-self-wounds [133,134]. This shows that VOCs
play a role in plant self- and non-self-recognition. Because VOCs are the simplest and fastest
chemical signal that can send to neighboring plants, plant recognition of volatiles helps
plants to establish corresponding response strategies in the early stages of competition.
This can avoid wasting resources in the competition between self and relatives as much as
possible [130]. After a series of studies recently, although the kin recognition of plants is
ubiquitous, most studies show that some plants do not have kin recognition behaviors in
order to avoid meaningless competition [27,135–137]. Plants’ kin recognition has always
been a hot topic in the study of behavioral ecology and evolution. From the perspective of
genetic recognition, it is of great theoretical and practical significance to re-examine the
ecological interaction of individual crops and groups and the environment.

3. Method of VOCs Collection and Identification

The allelopathy of VOCs has attracted widespread attention in recent years and a
lot of research work has been done. With the advancement of organic separation and
identification technology and the participation of more and more experts, the collection
and identification technology of plants VOCs is no longer a difficult issue in research.

3.1. Collection of Plants VOCs

The volatiles mostly are organic compounds with a molecular weight between 100
and 200, such as hydrocarbons, alcohols, ketones, organic acids, nitrogen compounds, and
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organic sulfur [138]. Most of them have high chemical activity. Different collection methods
may directly affect the type and proportion of VOCs, so it is particularly important to
choose the appropriate method.

Traditional distillation collection techniques include steam distillation (SD), simul-
taneous distillation and solvent extraction (SDE), microwave-assisted hydrodistillation
extraction (MWHD), ultrasound-assisted extraction (USE), and solid-phase trapping sol-
vent extraction (SPTE). They have certain disadvantages in the isolation and purification
of chemical constituents from plants tissues, such as long extraction time, high volumes
solvent, and low efficiency [139]. In addition, many natural products are thermally unstable
and may degrade during thermal extraction or distillation.

The most mainstream approach is headspace solid-phase microextraction (HS-SPME).
It has some advantages over SD, SDE, and SPTE, such as rapid solvent-free extraction,
no apparent thermal degradation, less laborious manipulation and sample requirement,
and so on [140]. Moreover, due to the relatively low temperature and short headspace
solid-phase extraction time, the risk of thermal artifacts is extremely low compared to other
techniques [141]. Additionally, it is easy to standardize and fully integrate into the analysis
system [142]. Thus, HS-SPME is an ideal technology of plants’ VOC collection.

3.2. Identification of Plants VOCs

Identification of allelochemicals involves both quantitative and qualitative measure-
ment. Qualitative identification is the identification of the type and structure of the allelo-
chemicals. Qualitative identification involves methods such as gas chromatography (GC),
mass spectrometry (MS), nuclear magnetic resonance (NMR), Fourier transform infrared
(FT-IR) spectroscopy, and many other methods [143–145]. These are the analysis methods
of VOCs, but the analytical difficulties and required instruments are completely different.
Quantitative identification means the determination of the concentration of allelochemicals
on the premise of clarifying the type of them. The method of chromatography is used
to detect the concentration of known substances. Different methods should be selected
for qualitative and quantitative identification, and the selection criteria are determined
according to the characteristics of VOCs.

The existing identification techniques include gas chromatography mass spectrometry
(GC-MS), high-performance liquid chromatography (HPLC), proton-transfer-reaction mass
spectrometry (PTR-MS), and so on. PTR-MS has the potential to sample VOCs on-line
and make quantitative analysis fast without any sample preparation [146,147]. The most
widely used of these identification techniques is GC-MS [148]. Although PTR-MS can better
achieve quantitative identification, most of the volatiles identified are preliminary [149].
GC-MS has a higher selectivity and sensitivity in the identification of VOCs and efficient
separation and identification of the analytes.

4. Conclusions

This review summarizes the allelopathy of VOCs of plants including growth, competi-
tion, dormancy, resistance of pests and diseases, respiration, photosynthesis, ROS content,
enzyme activity, and signaling. It also summarizes the main methods of collection and
identification of VOCs. The study of allelopathy is quite a complicated work, because it
involves a variety of disciplines such as chemistry, ecology, biology, microbiology, and
so on. Scientists in these fields need to work together to conduct research. The study of
allelopathy on plants VOCs is still a new field. Most of the researches still focus on the
expression of the allelopathic phenomenon, but the depth and breadth of them are far from
enough, such as the lack of research on allelopathy mechanisms of plants, the relationship
between chemical recognition and communication mechanisms and allelopathy mecha-
nisms, and so on. In recent years, we have seen more and more reports on VOCs. VOC
transmission, emission, and accumulation are also hot topics in research, which deserve
more research attention. There are still many issues that need to be further explored. Plant
VOCs deserve more research attention.
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5. Prospective

VOCs may have a wide range of potential allelopathic effects in agriculture. VOCs
can not only manage weeds and pests as natural substance, but also regulate plant growth,
competition, dormancy, respiration and photosynthesis, ROS content, enzyme activity, and
diseases resistance. The most important thing is that they come from plants and meet
our requirements for developing green agriculture. It has more economic value and is
a more environmentally friendly and effective measure to use the allelopathic effects of
plant natural products to develop agricultural industry. At the same time, there are some
limitations in using allelopathy of VOCs of plants; for example, in field trials, VOCs are
not easy to control. The volatilization of VOCs of plants is specific to species, cultivars,
genotypes, and organs, as well as environments. In fact, the release of VOCs by plants are
not single VOCs, but a complex mixture [150]. In agricultural production, the release of
plant VOCs is affected by environmental and meteorological conditions, such as wind speed
and direction, humidity and rain, and temperature, among others. These factors make the
release of VOCs difficult to control. Moreover, the concentration of VOCs in open field
experiments is often lower than in laboratory experiments. Therefore, the allelopathy of
plant VOCs in agricultural production is more suitable for an easily controlled greenhouse.

With the development of allelochemicals identification technology and the participa-
tion of more and more chemists, the identification of allelochemicals is no longer a difficult
problem in the study of allelopathy. However, the molecular mechanism of VOCs has
not been studied, and it is not yet clear how VOCs are perceived by plants, and little is
known about the dynamics of the active release pathway of VOCs of plants. Therefore, the
focus of future research is to explore the nature and regularity of plant VOCs allelopathy
and dynamic process of VOCs release, mainly to decipher the perception mechanism of
VOCs within plant tissues. Over the past ten years, a large number of studies have proved
that VOCs are involved in signal transduction among plants, and many allelochemicals
involved in chemical communication have been identified. Now the problem we are facing
is how the mechanism of chemical recognition and communication and the mechanism
of allelopathy interacts. The general and specific chemical identification and the research
on the identification and transfer mode of the communicating substance are urgent issues
to be solved. Because the VOCs of plants are not easy to control, identifying the natural
concentration of VOCs is also a major problem we face with.

At present, with increasing demands for environmental protection and sustainable
development, VOCs have a dominant position in agricultural development and will be-
come more competitive in the future, especially in the greenhouse. The theoretical research
and practical application of allelopathy of plants VOCs have profound significance for
sustainable development of agricultural production, for maintenance and improvement
of natural resources, and for the rational arrangement of rotation and intercropping, the
construction of efficient planting systems, and the improvement of natural resources’
utilization efficiency, for the construction of efficient planting systems and rational arrange-
ment of rotation and intercropping or controlling pests and weeds. Not only that, the
use of allelopathy of plant volatiles can also affect plant life activity by regulating plant
growth, dormancy, respiration and photosynthesis, ROS content, and enzyme activity, or
by the chemical communication between plants. In summary, the allelopathy of VOCs of
plants has inestimable potential in agricultural development. Based on this, it is of great
significance to develop and practice the application potential of allelopathy of plant VOCs.
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