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Abstract: Photorespiration results in a large amount of leaf photosynthesis consumption. However,
there are few studies on the response of photorespiration to multi-factors. In this study, a machine
learning model for the photorespiration rate of cucumber leaves’ response to multi-factors was
established. It provides a theoretical basis for studies related to photorespiration. Machine learning
models of different methods were designed and compared. The photorespiration rate was expressed
as the difference between the photosynthetic rate at 2% O2 and 21% O2 concentrations. The results
show that the XGBoost models had the best fit performance with an explained variance score of
0.970 for both photosynthetic rate datasets measured using air and 2% O2, with mean absolute
errors of 0.327 and 0.181, root mean square errors of 1.607 and 1.469, respectively, and coefficients of
determination of 0.970 for both. In addition, this study indicates the importance of the features of tem-
perature, humidity and the physiological status of the leaves for predicted results of photorespiration.
The model established in this study performed well, with high accuracy and generalization ability.
As a preferable exploration of the research on photorespiration rate simulation, it has theoretical
significance and application prospects.

Keywords: photorespiration; environment; model; machine learning

1. Introduction

Photosynthesis is a crucial factor in crop yield formation. Besides the extrinsic factors
such as microclimate around the crop, including light intensity [1,2], CO2 concentration [3],
temperature [4], and humidity [5], there are many intrinsic factors affecting the rate of
photosynthesis, such as photorespiration, leaf age, chlorophyll content, and genes. In partic-
ular, photorespiration is a process closely related to photosynthesis, which physiologically
reduces the efficiency of photosynthesis. The enzyme ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (RuBisCO) catalyzes the addition of CO2 to ribulose-1,5-bisphosphate
(RuBP), forming two 3-phosphoglycerate (3-PGA), which is called the carboxylation
reaction. However, in C3 plants, a part of the enzyme RuBisCO oxidizes RuBP to 2-
phosphoglycolate (2-PG) that is harmful to the plant and needs to be metabolized, thus
causing waste and reducing the efficiency of photosynthesis [6]. In recent decades, many
researchers have suggested the possibility of manipulating photorespiration in terms of
modern biotechnology [7–11], while it remains a major challenge in applying biotechno-
logical approaches in crop production. Instead of genetic editing and breeding, physical
methods to reduce photorespiration can produce results instantly, and only require an
understanding of how it changes with the environment.

Photorespiration is influenced by the surrounding environment, similar to photosyn-
thesis. Most obviously, the ambient CO2 concentration is closely related to the rate of
photorespiration because O2 acts as a competitive inhibitor for RuBisCO, i.e., the higher the
ambient CO2 concentration, the less photosynthesis efficiency reduced by photorespiration.
Like most other enzymes, the kinetic properties of Rubisco highly depend on temperature,
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and the correlation varies among different plants [12,13]. This results in generally higher
rates of oxygenation and higher losses of carbon from photorespiration at higher leaf
temperatures [14]. Studies have shown that the rate of photorespiration is increased with
high light intensities [15–17]. In addition, humidity also influences the rate of photorespira-
tion. Then, it becomes possible to control the environment to reduce the consumption of
photosynthesis by photorespiration. For example, in greenhouse production or a closed
system, slow release of dry ice can be applied to increase the concentration of CO2 in the air.

Photosynthesis models were greatly interesting to many researchers over a period
of decades, since most of the dry matter of fruits originates from carbohydrate molecules
produced by photosynthesis. In contrast, photorespiration models have received little
attention from researchers. It has been extensively discussed in literatures that the re-
sponse of photosynthesis to a specific environmental factor varies with plant species. For
photosynthesis–irradiance curves, non-rectangular hyperbolic or rectangular hyperbolic
models have been commonly used. Ye [18] and Ye et al. [19] developed an alternative model
with additional restriction terms to improve the fit. Lanoue et al. [20] studied the transloca-
tion of Solanum lycopersicum cv. assimilates with differing spectral quality. The Farquhar–
von Caemmerer–Berry (FvCB) model has been proposed for over 40 years [21], and the
worldwide studies and improvements on the model had made significant progress [22–24].
Considerable results were accumulated using the model for fitting net assimilation rate–
intercellular space CO2 concentration (A–Ci) curve and the estimation of photosynthetic
biochemical parameters [25–28]. In field, irradiance changes all the time, which makes the
static assimilation model no longer accurate, and the dynamic model developed to solve
the problem [29,30]. For photosynthetic response models with multiple environmental
factors, summarizing mechanistic models is more difficult when the dimensionality of the
dependent variable is higher, whereas empirical models are easier to implement and have
been widely studied. Li et al. [31] described the daily variation of photosynthesis with
temperature and photosynthetically active radiation (PAR) in greenhouse cucumber. Peri
et al. [32] studied the photosynthetic response of Berberidaceae to light intensity, water
status, and leaf age. Zhang and Wang [33] simulated a model of canopy photosynthesis
in greenhouse tomato based on simple leaf photosynthesis. While empirical models are
mostly built with the help of traditional statistical methods, a new type of approach, de-
signed to make the most accurate predictions possible—machine learning—is gradually
gaining attention. Goltsev et al. [34] developed a neural network (NN) model to show
the relationship between chlorophyll fluorescence and the effect of water stress on leaf
photosynthetic processes. Heckmann et al. [35] evaluated the potential of leaf reflectance
spectroscopy to predict parameters of photosynthetic capacity in Brassica oleracea and Zea
mays using a two-layer NN. Jian et al. [36] established tomato population photosynthetic
rate prediction models based on support vector regression (SVR), and the correlation coeffi-
cient reached a maximum of 0.9883. Zhang et al. [37] compared the effectiveness of several
machine learning approaches in predicting photosynthetic rates from leaf phenotypes,
with the extreme gradient boosting (XGBoost) performing the best. Although these studies
have contributed to the application of machine learning models of photosynthesis, barely
anyone has studied models of the effects of photorespiration on photosynthesis.

Photorespiration is so important, but it is often ignored and undiscussed by those who
study photosynthesis models. Although the response of photorespiration to a single envi-
ronmental factor has been studied in depth [38–41], its response to multiple environmental
factors has been little studied. Currently, there is no effective and convenient method
and evaluation index to assess the negative effects of photorespiration. Additionally, the
determination of the photorespiration rate is mostly based on complex physiological ex-
periments [42], which require a lot of time and resources and cannot be used quickly and
directly in production practice. Consequently, there is an urgent need for available methods
to rapidly assess the amount of photorespiration and its effect on photosynthesis rates.

Therefore, taking greenhouse cucumbers (Cucumis sativus L.) as an example and
based on the previous machine learning model of photosynthesis, this study focused on
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photorespiration, and established a model of the response of photorespiration to multiple
environmental factors, thus achieving an accurate estimation of the negative effects of
photorespiration. In the meantime, the effects of environmental factors on photorespiration
were analyzed, hence the impact factors that need particular attention were found. Machine
learning methods such as polynomial regression, k-nearest neighbors (KNN), Gaussian
process (GP), SVR, adaptive boosting (Adaboost), gradient boosting decision tree (GBDT),
XGBoost, and NN were used to fit the relationship between environmental factors and
photorespiration. The modeling effects of different approaches are compared. This study
investigated using machine learning methods with different environmental conditions to
predict photorespiration rate at different leaf positions in two growth stages (seedling and
flowering-fruit stages) of cucumber. It will provide a theoretical basis for studies related to
photorespiration.

2. Materials and Methods
2.1. Data Access

Cucumber, an annual creeping vine plant in the Cucurbitaceae gourd family, is an im-
portant cash crop widely cultivated in temperate and tropical regions around the world [43].
In this study, cucumber was used as the subject of the photorespiration model. The cultivar
of cucumber for experiment was ‘Jingyou 409’, a northern Chinese variety. The experiment
was conducted in a plastic greenhouse of Baima Teaching and Research Base, Nanjing
Agricultural University, Nanjing, China (31◦36′ N, 119◦10′ E). The mono-cropping system
of cucumber was cropped twice in spring (April to July) and fall (September to November)
of the year 2020, with a density of 4.5 plants/m2 (Figure 1a). During the experimental
period, fertigation, pest control and environmental control measures are taken accord-
ing to cucumber production routines. Plants of much the same progress and conditions
were selected for measurement by simple random sampling at seedling stages and the
flowering-fruit stage.

Photosynthetic parameters in cucumber leaves were measured using LI-6400XT
Portable Photosynthesis System, manufactured by LI-COR, USA (Figure 1b). To avoid
the influence of midday depression on data collection, the experiment was conducted
from 8:00–11:00 and 14:00–17:00 daily. The CO2 injector and LED leaf chamber modules
of LI-6400XT created the CO2 concentration and photosynthetically active radiation (PAR,
substituted by photosynthetic photon flux density, PPFD) in the microclimate, respectively.
CO2 concentration gradients of 200–800 ppm and PAR gradients of 0–2000 µmolm−2s−1

are set using the AutoPrograms. Then, humidity and temperature were measured by the
greenhouse environmental parameters at the same time. To reduce measurement error, the
leaves of three adjacent cucumber plants were randomly selected for measurement in each
group of environmental conditions. Leaf positions 1, 3, 5, 7 and 9 of each cucumber plant
were selected (counting from the first fully expanded individual leaf from growing point)
for measurement. The location of each tested plant in the greenhouse was also recorded.

One realizable approach to quantifying photorespiration in field is to suppress it
by supplying the leaf with only 2% O2 (instead of the normal 21% O2) and measure the
increased rates of photosynthesis [42]. An air tank with only 2% O2 was connected to the
air inlet of the LI-6400XT, where it was vented to the atmosphere through a T-fitting on
the pipe, to prevent the internal pump from fighting against the external tank pressure
(Figure 1c).

A total of 4550 sets of data were obtained from these measurements, which were used
to form the initial dataset. A total of seven independent variables, features (PAR, CO2
concentration, temperature, humidity, growth stage, leaf position, plant location), and
one dependent variable, label (photosynthetic rate with the effect of photorespiration and
photosynthetic rate without the effect of photorespiration), were included.
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Figure 1. Scenes and a sketch of the experiment field and instruments. (a) Seedling stages of the
plants. (b) Instrument arrangement for measuring photosynthesis. (c) Instrument arrangement for
measuring photorespiration. (d) A sketch of the defined Cartesian coordinate greenhouse floor plane.

2.2. Data Preprocessing

Despite the stability definition being implemented, the logged data from the Auto-
Program may occasionally be incorrect. This is because the machine judgment is not truly
representative of the adaptation of the leaves to the environment, while the net photo-
synthetic rate stabilizes quite rapidly. These erroneous data are not valid for building
the model, but rather reduce the accuracy of the model. After cleaning, 4318 sets of data
remained. Figure 2 shows a box plot of these data.
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Figure 2. Cont.
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Figure 2. Distribution plots of the dataset. Temperature (a), CO2 concentration (b), relative humidity
(c), PAR (d) values for measurements with air and temperature (e), CO2 concentration (f), relative
humidity (g), PAR (h) values for measurements with 2% O2 showing lower (25th percentile − 1.5 ×
(75th quantile − 25th quantile)) and upper (75th percentile + 1.5 × (75th quantile − 25th quantile))
limits, 25th − 75th percentile (box) and median (horizontal line).

For those data with large PPFD and low net photosynthesis rate and low PPFD and
high net photosynthesis rate, the PPFD was treated as missing values to reduce the noise
in the dataset. The missing values were then filled using a random forest (RF) regression
algorithm [44]. Any regression is a process of learning from the feature matrix Xi (where i
denotes a row of data) and then solving for the continuous label y. This process is possible
because the regression algorithm assumes that between Xi and y there is some relationship:

y = f (Xi), (1)

In fact, features and labels can be converted to each other. In this case, unmissed
values of PPFD were taken as new labels, and corresponding other features and original
labels—net photosynthesis rate—were taken as additional features to predict the missing
value of PPFD and fill in.
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RF, first introduced in an article by Breiman [45], is an ensemble learning method
that uses bootstrap aggregating, which operates by constructing numerous decision trees
(CART) at training time and outputting the mean prediction of the individual trees. In
random forest regression, each tree is built using a deterministic algorithm by selecting a
random set of variables and a random sample from the dataset.

A total of 186 sets of data with missing values were filled by RF. Because the branch
nodes of the decision tree select some features (not all features), for high-dimensional data,
the filled data have randomness and uncertainty, which better reflects the real distribution
of the missing data, and have good accuracy. Although this will make the correlation
between the features stronger, it will not affect the training of the final model in this
experiment.

Plants at the seedling and flowering-fruit stages were measured. In order for the
computer to compute and calculate more easily, codes must be specified for the categorical
features of the fitted regression model. The seedling stage was labeled with value 0 and the
flowering and fruiting stage with value 1 for the label ‘growth cycle’ in the dataset oriented
to the general machine learning approach; the seedling stage was labeled with value 1 and
the flowering and fruiting stage with value 2 in the dataset oriented to the neural network
approach. As shown in Figure 1d, a two-dimensional Cartesian coordinate system was
established on the earth plane of the greenhouse. The southwest corner of the greenhouse
was taken as the coordinate origin. Positive coordinates were to the span direction (east,
x-axis) and the length direction (north, y-axis). Thus, the greenhouse was divided into a
total of nine sections, with the location labels of each section being (1, 1), (1, 2), (1, 3), (2, 1),
(2, 2), (2, 3), (3, 1), (3, 2), and (3, 3).

The range of values for each continuous feature in the dataset varies widely and in
different units. It is a significant obstacle as a few algorithms are highly sensitive to these
features. Therefore, scaling these features is imperative. In gradient and matrix-based
algorithms, such as SVR and NN, nondimensionalization can speed up the solution, while
in distance-based models, such as KNN, it can improve the accuracy of the model and avoid
the impact of a feature with a particularly large range of values on the distance calculation.
A frequently used dimensionless method is standardization, which is insensitive to outliers.
The standard score of a sample x is calculated as:

xstand =
x − µ

σ
(2)

where µ is the mean of the samples, and σ is the standard deviation of the mean.

2.3. Approach to Building the Model

In this article, several machine learning methods are selected to build regression
models, including polynomial regression, KNN, GP, SVR, Adaboost, GBDT, XGBoost,
and NN [46]. The models were built using Python 3.8, Scikit-learn 0.24, XGBoost 1.5,
and PyTorch 1.8. The models, program code, and datasets are available on GitHub at
https://github.com/LoiginCheng/20210520/ (accessed on 18 July 2021).

2.3.1. Polynomial Regression

The traditional approach to solving multivariate nonlinear regression models is to
treat them by converting them into linear forms of multiple regression models. For a set of
eight features vector [x1, x2, x3, · · · , x8], the equation of the fitted linear model is:

ŷ = w0x0 + w1x1 + w2x2 + · · ·+ w8x8 (x0 = 1) (3)

where w0x0 is the bias, [w1, w2, w3, · · · , w8] are the weights, and ŷ is the predicted value.
If the features are transformed into a two-dimensional form, as follows:

[x1, x2, x3, · · · , x8] →
[

x2
1, x1x2, x1x3, · · · , x1x8, x2

2, x2x3, x2x4, · · · , x2x8, · · · , x2
8

]

https://github.com/LoiginCheng/20210520/
https://github.com/LoiginCheng/20210520/
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And the linear model becomes the following equation:

ŷ = w0x0 + w(1,1)x2
1 + w(1,2)x1x2 + w(1,3)x1x3 + · · ·+ w(1,8)x1x8 + w(2,2)x2

2
+w(2,3)x2x3 + w(2,4)x2x4 + · · ·+ w(2,8)x2x8 + · · ·
+w(8,8)x2

8 (x0 = 1)
(4)

In fact, this is still a linear model. With the re-labeling of the features, the equation can
be written:

ŷ = w0z0 + w1z1 + w2z2 + · · ·+ w36z36 (z0 = 1) (5)

where w0z0 is the bias, and [z1, z2, z3, · · · , z36] are the substitute features.
Polynomial regression can fit a nonlinear dataset better, is not prone to overfitting,

and has a certain degree of interpretability [47]. However, the complexity of the model
increases dramatically with dimensions of the feature conversion.

2.3.2. K-Nearest Neighbors

The KNN is a nonparametric regression method, one of the simplest machine learning
algorithms. It makes predictions by searching the historical database for data that are
similar to the current observations. Unlike the general regression method, instead of finding
an exact correlation between labels and features, it uses a pattern-matching algorithm to
find a set of data that are similar to the input features and assigns the weighted average of
the labels of these neighbors to the sample.

2.3.3. Gaussian Process Regression

GP regression is a nonparametric, Bayesian approach to regression that works well on
small datasets. The prediction interpolates the observations. The prediction is probabilistic
(Gaussian) so that one can compute empirical confidence intervals and decide based on
those if one should refit (adaptive fitting) the prediction in some region of interest.

2.3.4. Support Vector Regression

Support vector machine (SVM) is a machine learning algorithm based on Vapnik
Chervonenkis (VC) dimension and Structural Risk Minimization (SRM) Inductive Principle.
Its main idea is to map linearly indistinguishable data in low-dimensional space to high-
dimensional space by kernel functions in order to find linearly distinguishable classification
surfaces [48]. By adopting an ε-insensitive loss function, SVM was applied in regression
fitting and developed into SVR.

2.3.5. Adaptive Boosting

AdaBoost algorithm is a meta-estimator that begins by fitting a regressor on the origi-
nal dataset and then fits additional copies of the regressor on the same dataset but where
the weights of instances are adjusted according to the error of the current prediction [49].
As such, subsequent regressors focus more on difficult cases.

2.3.6. Gradient Boosting Decision Tree

The GBDT algorithm is an iterative decision tree algorithm based on the idea of
boosting, an ensemble learning technique. The GBDT algorithm works out the residuals
based on each sample by training multiple weak learners (regression trees), then trains
regression trees based on all residuals and updates the weights to combine single strong
learners, i.e., the conclusions of all regression trees are accumulated to obtain the final
prediction results.

2.3.7. Extreme Gradient Boosting

XGBoost is an optimized distributed gradient boosting system designed to be highly
efficient, flexible and portable [50]. The core of XGBoost itself is an integrated algorithm
implemented by a gradient boosting tree. Unlike GBDT, the predictions of XGBoost are
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obtained by directly summing the weights of the leaf nodes on all weak learners, with
a second-order Taylor polynomial of the loss function and the inclusion of a regulariza-
tion term.

2.3.8. Neural Network

An NN is an algorithm inspired by the neural structure of the human brain. A
“neuron” in the NN is a mathematical function, i.e., a single layer perceptron:

z = f
(

WTX + b
)

(6)

where X is the input signal, W is the weights, b is the bias, f is the activation function, and
z is the output signal.

A multilayer perceptron is an NN consisting of fully connected layers with at least one
hidden layer, and the output signal of each hidden layer is transformed by an activation
function. An NN can be trained by using backpropagation (BP) and stochastic gradient
descent (SGD). SGD is an optimization method used to minimize a loss function. BP is an
efficient technique to compute gradient of the model that SGD uses.

2.4. Optimization Technologies

After the model is selected, the hyperparameters of the model are also very important,
and different hyperparameters have different effects on the generalization ability of the
model. The best hyperparameters should be chosen to maximize the accuracy of the model.
Grid search technology is a method to optimize the model performance by traversing a
given combination of parameters. For NN models, grid search is used to iterate through
different numbers of hidden layers, neurons per layer, activation functions, etc.

The genetic algorithm (GA) is a randomized search technology that draws on the
mechanisms of genetics and selection in biology and follows the principles of ‘survival
of the fittest’. The genetic algorithm simulates the evolution of an artificial population
(given a combination of parameters after coding), and through the mechanisms of selection,
crossover and mutation, a set of candidate individuals is retained in each iteration and
the process is repeated. After several generations of evolution, the population ideally
reaches a state of near-optimal fitness, i.e., the optimal solution is obtained. GA is used for
hyperparameter optimization of machine learning models except NN models.

2.5. Performance Evaluation

Generalization error, an inherent property of a learning method, is the predictive
power of a model for unknown data. Generalization error itself can certainly guide model
improvement, but it is more costly and less efficient. So, an alternative approach is to use
existing data to calculate it. Despite the data preprocessing as described above, noise in
the dataset cannot be avoided, i.e., the fit of the training model is not as representative of
the generalization error as it could be, so the dataset needs to be partitioned. The entire
dataset is divided into three parts, using a portion of the data to train the model, called
the training set, a portion of the data to tune the hyperparameters of the model, called the
validation set, and a portion of the data to test the model where the test results approximate
the generalization error, called the test set.

The accuracy of the regression model is assessed by calculating the difference between
the true label and the predicted value. There are two different perspectives to assess the
effectiveness of regression. One is whether the model predicts the correct values, the other
is whether it fits enough information.

The root mean squared error (RMSE) is a commonly used measure of the difference
between predicted and actual values. It indicates the absolute fit of the model to the data—
how close the observed data points are to the model’s predicted values. The mean squared
error (MSE) represents the sample standard deviation (SSD) of the difference between the
predicted and actual values. However, RMSE is more widely used than MSE to evaluate
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the performance of the regression model with other random models, as it has the same
units as the predicted variable. The formula for RMSE is as follows:

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(7)

where n is the number of actual values, [y1, y2, · · · , yn] are actual values, and [ŷ1, ŷ2, · · · , ŷn]
are predicted values.

For regression algorithms, it is not enough to explore the accuracy of the data predic-
tion. In addition to the numerical size of the data itself, the model is expected to capture
patterns in the data, such as distribution, monotonicity, information that cannot be evalu-
ated using RMSE. To measure how well the model captures the amount of information on
the data, the coefficient of determination (R2) is defined. The R2 represents the proportion
of the variance in the dependent variable. It is a scale-free score, i.e., irrespective of the
values being small or large, the value of R2 will be less than one. The formula for R2 is as
follows:

R2 = 1 − ∑n
i=1(yi − ŷ)2

∑n
i=1(yi − y)2 (8)

where ŷ is the predicted value and y is the mean value.

3. Results and Discussion
3.1. Performance of the Models

This article divided the dataset using five-fold cross-validation and used genetic algo-
rithm (GA) and grid search technologies to optimize the hyperparameters of polynomial
regression, KNN, GP, SVR, RF, Adaboost, GBDT, XGBoost, and NN models, and then
found the upper limits of the fitting effect of each model for two photosynthesis datasets
measured using air and 2% O2, respectively. Table 1 shows the optimal hyperparameters
for these models and the effectiveness of the four evaluation metrics (explained variance
score, EV, mean absolute percentage error, MAPE, root mean square error, RMSE, coef-
ficient of determination, R2) when using the holdout cross-validation divided datasets
(60% for the training set, 20% for the validation set, and 20% for the test set). As can be
seen from Table 1, for both datasets, the XGBoost models have the best performance in
terms of prediction. The R2 of all these models is above 0.85, which indicates that all these
models have good fit and a substantial extent of explanation of the dependent variable by
the independent variables, with RF, GBDT, XGBoost and NN (air based) models reaching
above 0.95 and XGBoost being the best. It can be observed from this table that the values of
EV and R2 scores for each model are approximately the same, that is because their aver-
age error is almost zero. For the evaluation metric MAPE, the SVR model also performs
better besides the three methods RF, GBDT, and XGBoost, while the other models have
the value > 1, which means that these models have poor prediction performance when
the photosynthesis value is low. The XGBoost model has the smallest RMSE value, and
it suggests that the model has a small maximum error of prediction, but with a limited
difference from GBDT and RF. Among these models, polynomial regression has the fastest
modeling and solving speed of 25 ms. Although it has the worst results among all the
models that were established, it still has a certain prediction accuracy. GP, SVR and NN
were modeled slower, where the number of epochs was set to 1000 in order to improve the
accuracy of the NN model, and the number of epochs can usually be reduced to decrease
the time-consuming model training. Except for the three slower models, the training and
prediction elapsed time of all the models is within 1000 ms. Therefore, the XGBoost model
is the optimal model in terms of both prediction accuracy and time efficiency.
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Table 1. Fitting performance of different machine learning models.

Method Model Hyper-Parameters 1 Value Dataset EV MAPE RMSE R2 Time-Consuming

Polynomial
regression

Air based
degree 2 Validation set 0.905 1.093 2.974 0.905

25 ms

interaction_only FALSE
include_bias TRUE Test set 0.899 1.010 2.947 0.899

2% O2 based
degree 3 Validation set 0.937 0.443 2.236 0.937interaction_only FALSE

include_bias TRUE Test set 0.938 0.363 2.125 0.937

k-nearest
neighbors

(KNN)

Air based

n_neighbors 2
Validation set 0.919 0.714 2.815 0.915

356 ms

weights ‘distance’
algorithm ‘brute’
leaf_size 40 Test set 0.912 0.698 2.770 0.910p 2

2% O2 based

n_neighbors 2
Validation set 0.861 1.533 3.328 0.86weights ‘distance’

algorithm ‘ball_tree’
leaf_size 70 Test set 0.881 0.486 2.945 0.879p 2

Gaussian process
(GP)

Air based
kernel Rational

Quadratic Validation set 0.851 2.179 3.750 0.848

24.5 s
length_scale 1.2

alpha 1 Test set 0.859 2.317 3.477 0.859

2% O2 based
kernel Rationa

lQuadratic Validation set 0.906 1.302 2.729 0.906
length_scale 1

alpha 1.3 Test set 0.923 0.369 2.378 0.921
Support vector

regression
(SVR)

Air based C 385.49 Validation set 0.954 0.525 2.083 0.953

17.2 skernel rbf Test set 0.947 0.550 2.139 0.947

2% O2 based C 598.15 Validation set 0.924 0.746 2.454 0.924
kernel rbf Test set 0.936 0.355 2.147 0.936

Random Forest
(RF)

Air based

n_estimators 280
Validation set 0.962 0.366 1.894 0.961

945 ms

criterion ‘mse’
max_depth 24

min_samples_split 6
Test set 0.961 0.370 1.835 0.961min_samples_leaf 3

max_features ‘log2’

2% O2 based

n_estimators 190
Validation set 0.955 0.480 1.894 0.955criterion ‘mse’

max_depth 15
min_samples_split 6

Test set 0.963 0.153 1.634 0.963min_samples_leaf 3
max_features ‘auto’



Horticulturae 2021, 7, 207 12 of 21

Table 1. Cont.

Method Model Hyper-Parameters 1 Value Dataset EV MAPE RMSE R2 Time-Consuming

Adaboost
Air based

loss ‘linear’ Validation set 0.869 1.391 3.485 0.869

295 ms

n_estimators 154
learning_rate 3.675 Test set 0.864 1.125 3.421 0.863

2% O2 based
loss ‘linear’ Validation set 0.908 1.136 2.718 0.907n_estimators 88

learning_rate 3.04 Test set 0.911 0.257 2.537 0.910

Gradient Boosting
Decision Tree

(GBDT)

Air based

loss ‘huber’
Validation set 0.959 0.400 1.949 0.959

705 ms

learning_rate 0.24
n_estimators 169
subsample 0.84 Test set 0.960 0.409 1.843 0.960criterion ‘friedman_mse’

2% O2 based

loss ‘ls’
Validation set 0.959 0.589 1.810 0.959learning_rate 0.38

n_estimators 177
subsample 0.66 Test set 0.959 0.260 1.732 0.958criterion ‘friedman_mse’

XGBoost

Air based

num_round 400

Validation set 0.970 0.334 1.667 0.970

779 ms

obj ‘reg:linear’
max_depth 5

eta 0.08
gamma 4

Test set 0.970 0.327 1.607 0.970alpha 4
colsample_bytree 0.85

2% O2 based

num_round 400

Validation set 0.971 0.271 1.523 0.971obj ‘reg:linear’
max_depth 4

eta 0.07
gamma 0

Test set 0.970 0.181 1.469 0.970alpha 4
colsample_bytree 0.9

Neural network
(NN)

Air based

layers 4

Validation set 0.958 1.465 1.992 0.957

85.3 s

each_layer_nodes [20, 22, 19, 1]
activation_function ‘sigmoid’

optimizer ‘SGD’
learning_rate 0.1

Test set 0.959 1.501 1.893 0.958momentum 0.8
epochs 1000

2% O2 based

layers 3

Validation set 0.924 0.862 2.450 0.924each_layer_nodes [23, 8, 1]
activation_function ‘sigmoid’

optimizer ‘SGD’
learning_rate 0.1

Test set 0.933 0.435 2.183 0.933momentum 0.8
epochs 1000

1 If the hyper-parameters of the model involve the selection of random seeds, they are all set to 0, and the other hyper-parameters use the default values if they are not listed.
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In particular, analyzing the XGBoost model in more detail (Figure 3), it is found that
in most cases the predicted values are very close to the desired values. The accuracy of the
photosynthesis model with the adverse effect of photorespiration decreases when measured
values are higher, especially and most significantly in the validation set. Contrastingly,
for the model of photosynthesis without the effect of photorespiration, there is no such
problem.

Figure 3. Measured and predicted rate in the XGBoost model. (a) Scatter plot in training set with the effect of photores-
piration. (b) Scatter plot in validation set with the effect of photorespiration. (c) Scatter plot in test set with the effect of
photorespiration. (d) Scatter plot in training set without the effect of photorespiration. (e) Scatter plot in validation set
without the effect of photorespiration. (f) Scatter plot in test set without the effect of photorespiration.

NN are increasingly used, and the interpretability of the models built by NN is given
more importance [51]. However, the interpretability of NN models is relatively poor.
In many studies, it was shown that neural networks seem to have stronger predictive
capability [52]. However, for the light respiration model discussed in this study, not only
did it require a lot of computing power and time to build the light respiration model using
the NN approach, but it also required more time cost to make predictions (108.5 times
more than the model built using XGBoost), and above all the model performed poorly (R2

of 0.958 and 0.933 for the test set, which lower than 0.970 and 0.970 in XGBoost model).
From these three aspects, the XGBoost algorithm developed based on decision trees is more
advantageous. The XGBoost algorithm has been used to some extent in many fields [53,54],
and there are also an increasing number of algorithms that use this idea. Many weak
learner instances of the algorithm are being pooled (via boosting, bagging, etc.) together to
create a strong ensemble learner, with some success [55,56]. Thus, researchers need to pay
more attention to integration learning.
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3.2. Potential for Model Performance Enhancing

Data and features determine the upper limit of machine learning, so both are crucial.
Although the data provided for the building of this model is large enough (about 4000+
datasets), for the dataset obtained from the experimental measurements, there must be a
range of features that it failed to cover, i.e., these samples were not fully representative of
the overall population. It required a high generalization ability of the model. Especially, this
study integrated the two machine learning models in an arithmetic operation rather than
starting from the mechanics of the model. Thus, the generalization error of the model was
also presented in the prediction results of photorespiration in the same way as arithmetic
operations, making some predictions out of the theoretical range. This can only be solved
by providing more data to the model.

The number of features is not always the more the better. In this study, the filtering
method was used to select features for the datasets. The features were first filtered by the
variances of themselves. If the variance of a feature is small, it means that the sample has
less variation in this feature, which means that the feature is less useful for differentiating
the sample. After calculating the variance of each feature, it was found that the variance
of cucumber growth stage was the smallest at 0.21, followed by plant location (X, Y)
in the greenhouse at 0.61 and 0.65, respectively, and the variance of all other features
was larger (value > 5). Therefore, the growth stage can be excluded. If it is excluded
and the XGBoost model is reconstructed, the model performance is shown in Table 2.
The comparison between Tables 1 and 2 shows that the new has limited improvement
for the dataset measured using air and is rather worse for the dataset measured using
2% O2. It means that the exclusion of this feature has little effect on the model. Next,
the correlation between features was checked. If two variables are highly correlated
among themselves, they provide redundant information about the target. Essentially, an
accurate prediction of the target can be made using only one of the redundant variables.
In addition, removing redundant variables can help reduce dimensionality and damp out
noise. Figure 4 represents the absence of a strong association between any two features
(correlation coefficient < −0.5 or >0.5).

Table 2. Fitting performance of alternative models.

Method Model Hyper-Parameters 1 Value Dataset EV MAPE RMSE R2 Time-
Consuming

XGBoost

air based

num_round 1000

Validation set 0.975 0.254 1.527 0.975

1.62 s

obj ‘reg:linear’
max_depth 6

eta 0.15
lambda 3

Test set 0.976 0.365 1.439 0.976alpha 0
colsample_bylevel 0.4
colsample_bynode 1

2% O2 based

num_round 275

Validation set 0.968 0.255 1.584 0.968obj ‘reg:linear’
max_depth 4

eta 0.07
lambda 0.9

Test set 0.970 0.199 1.483 0.969alpha 4
colsample_bylevel 1
colsample_bynode 0.5

1 If the hyper-parameters of the model involve the selection of random seeds, they are all set to 0. The other hyper-parameters use the
default values if they are not listed.
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Figure 4. Spearman correlation heat map with correlation coefficient based on the photosynthesis
datasets measured using air.

3.3. Interpretability of the Model and the Main Factors Affecting the Photorespiration

The XGBoost method is based on the gradient boosting tree and has shown high
accuracy in this study, but the interpretability is not clear enough and is often referred to
as a “black box” model. Therefore, the importance ranking of feature values (Figure 5)
can only give a general overview of each feature’s importance and cannot determine the
relationship between the features and the final prediction results.

Figure 5. Feature importance of the models. (a) The model with the negative effect of photorespira-
tion; (b) the model without the effect.
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Some researchers have used the SHapley Additive explanation (SHAP), which orig-
inates from cooperative game theory, to explore the influence of each feature of the
model [57,58]. Figure 6 shows the SHAP values that order features based on their im-
portance to photosynthesis rate (a) with an adverse effect of photorespiration and (b)
without the effect. The strength order of influence of the two groups of features is almost
the same, except for their position in the greenhouse. PAR is a very important feature and
is positively correlated with photosynthesis rate most of the time. However, when the
relationship is negative, the influence is significantly stronger. Additionally, PAR is less
influential in regular photosynthesis. In contrast, it is more influential when photorespira-
tion is excluded. It is implied that PAR is less important for the predicted photorespiration
values obtained by subtracting the two predictions. Humidity is mostly negatively corre-
lated in Figure 6a, while the importance is relatively small, but when it shows a positive
correlation, the importance became large, reaching almost half of PAR at the highest. The
leaf position, on the other hand, behaves as just the opposite of humidity. In the prediction
of photosynthetic rate without the effect of photorespiration (Figure 6b), the influence of
humidity is lower overall, and the positive and negative correlations are more even; leaf
position followed the same trend as the results in Figure 6a. Growth stage is the least
important of the two models.

Figure 6. SHAP summary plot. (a) is the model with the negative effect of photorespiration; (b) is
the model without the effect of photorespiration.

Two data with approximately the same feature values from each of the two mod-
els’ training sets are selected for visual analysis of the feature importance, as shown in
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Figure 7a–d. The features positively correlated with the prediction results are shown in red,
and the negatively correlated features are shown in blue, and the effects of these features
are plotted against each other to obtain the prediction results. In all plots, PAR has the
largest positive effect. The difference between Figure 7a,b is that CO2 concentration and
Location Y, which have a positive effect in (a), are negative effects in (b). The difference
between Figure 7c,d is that Temperature, which has a weaker positive effect in (c), plays a
stronger negative effect in (d), and Relative Humidity, which has a larger negative effect in
(c), has a smaller effect in (d). In conclusion, it indicates that the importance of each feature
in the photorespiration model differs significantly from that in the photosynthesis model.

Figure 7. SHAP force plot. The feature values of (a,b) are approximately the same, with the feature value of (a) coming from
the photosynthesis model with the effect of photorespiration and the feature value of (b) coming from the photosynthesis
model without the effect of photorespiration; the feature values of (c,d) are approximately the same, with the feature value
of (c) coming from the photosynthesis model with the effect of photorespiration and the feature value of (d) coming from
the photosynthesis model without the effect of photorespiration.

Although the above showed partial trends of individual features, the SHAP analysis
based solely on themselves was still not clear enough since the photorespiration model is
obtained by subtracting two original XGBoost models. Therefore, models constructed by
the polynomial regression approach, as a most interpretable model, were necessary to be
analyzed.

Although the polynomial regression performed weakly in these models, the R2 of the
models still achieved about 0.9 (Table 1). According to the operational logic of Equation (5),
the two models built using polynomial regression can be written with expressions in
analytic form. The maximum term in the polynomial is a three-degree term. Thus, pho-
torespiration model can be easily expressed in equations. The meaning and coefficients of
each term of the photosynthesis model and photorespiration model are shown in Table 3.
For the photosynthesis model, PAR, CO2 concentration, Location Y in greenhouse (which
mainly affects the microclimate), leaf position, and relative humidity (absolute value of
coefficient > 1.5) were the most important features. The coefficients of light and light2 had
the largest absolute values, 8.221 and −3.704, respectively. The second was the CO2 con-
centration. These results are consistent with the general understanding of photosynthesis.
In contrast, for the predictive model of photorespiration, it found that leaf position, growth
stage, location in greenhouse, temperature, relative humidity, and their mutual products
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(absolute value of coefficient >9) were important features, while the absolute coefficient of
PAR was not as high. This suggests that when studying photorespiration, more attention
needs to be paid to the growth stage, leaf position, temperature, and relative humidity,
rather than PAR.

Table 3. Meaning and coefficients of terms of the photosynthesis model and photorespiration model.

Photosynthesis Model Photorespiration Model

Term 1 Coefficient Term 2 Coefficient

PAR 8.221 Leaf position × Location Y 18.015
CO2 concentration 3.122 Temperature 13.639

Location Y 2.089 Temperature × Growth stage 2 13.418
Leaf position 1.503 Location X 12.691

Relative humidity 1.500 Leaf position × Location X × Location Y 12.439
Temperature × Growth stage 1.314 Growth stage 2 × Location X 12.349

CO2 concentration × PAR 1.280 Temperature × Location X × Location Y 10.540
Temperature × PAR 1.190 Relative humidity × Location X × Location Y 9.122

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
CO2 concentration × Growth stage −0.485 Temperature × Location X −11.009

Temperature 2 −0.505 Leaf position × Location X −11.591
PAR × Location X −0.737 Growth stage × Leaf position × Location X −11.620

Growth stage × Location Y −0.892 Location X × Location Y 2 −14.085
Growth stage × Location X −1.089 Leaf position −15.735

Relative humidity × Growth stage −1.094 Location X 2 × Plant Location Y −15.925
Location Y 2 −1.266 Growth stage 2 × Plant Location Y −18.780

PAR 2 −3.704 Location Y −20.869
1 There are 45 items in the photosynthesis model, and the 16 items with the highest absolute values of each coefficient are selected in the
table; 2 There are 169 items in the photorespiration model, and the 16 items with the highest absolute values of each coefficient are selected
in the table.

3.4. Soft Sensors and Ability to Promote

Some studies have claimed that these predictive models can be applied as soft sensors
in greenhouses [59,60]. This significantly reduces the cost required to configure the sensors.
However, this sensor-like process requires a model that is sufficiently accurate and has
a very high generalization ability. The model establishment for the photorespiration of
cucumber makes it happen that the leaf photorespiration rate can be predicted through
the basic meteorological parameters around the leaf with high simulation accuracy and
obtainable parameters. Therefore, the model developed in this study can be applied as a
soft sensor. It can be a useful exploration of research on photorespiration rate simulation.
Machine-learning-simulated photorespiration involves statistical models based on datasets.
In this study, measurements from two production seasons of cucumber were used in order
to be more accurate. In fact, using the method provided in this study, only measurements
from one production season of a certain crop are needed to model crop photorespiration
with high accuracy. It means that the model can be easily extended, promoted and applied
to other plants.

4. Conclusions

This study compared the performance of several machine learning models to predict
photorespiration rate in cucumber leaves. The photorespiration rate was expressed as
the difference between the photosynthetic rate at 2% O2 and 21% O2 concentrations. For
this purpose, air temperature, relative humidity, CO2 concentration, PAR measurements
near the leaves, crop growth period, leaf position, and plant location in the greenhouse
were used as input variables to the models, and photosynthetic rates measured using air
and 2% O2, respectively, were used as output variables. Additionally, the advantages
and disadvantages of the two models built using different machine learning methods
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were tested. It was observed that the XGBoost models had the best generalization ability
and took less time, where the R2 of the test set for both models with air and 2% oxygen
measurements was 0.970. The importance of features was also discussed. It was found
that PAR and CO2 concentration have a greater effect on the photosynthetic rate itself, but
temperature and relative humidity are more significant for photorespiration. The model
established in this study performed well, with high accuracy and generalization ability. In
addition, the model can be used as a soft sensor. Additionally, it has a certain ability to
promote to other plants.
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