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Abstract: The effects of four commercial substrates, a peat-based substrate, and three coir types
(coir pith, coir chips, and coir pith + fibers) on yield, phytochemical accumulation, and antioxidant
activity were evaluated in Spinacia oleracea L. cv. ‘Manatee’. Soil-blocked spinach seedlings were
transplanted into Styrofoam planting boxes filled with the substrate. Each planting box was irrigated
daily by drip with a complete nutrient solution, and the irrigation scheduling was optimized to the
peat. Leaf area and fresh yield in coir pith and coir pith + fiber were similar to those obtained in
peat. However, shoot dry weight accumulation and leaf chlorophyll were lower in plants grown
in coir. Substrate type did not affect leaf carotenoids. Total flavonoid content was higher in plants
grown in the different types of coir. Total phenols and antioxidant activity (DPPH) were higher in
plants grown in coir pith. This indicates that the different coir types, mainly coir pith, may provide
an alternative to peat since they allowed a high fresh yield to be reached and the total flavonoids to
be increased. In contrast, the levels of other phytochemicals and antioxidant activity were usual for
spinach. However, further research is necessary to analyze the effects of irrigation scheduling and
the nutrient solution adjusted to each growing medium on yield and phytochemical accumulation.

Keywords: Spinacia oleracea; substrates; soilless culture systems; photosynthetic pigments; phenols;
flavonoids; ascorbic acid; DPPH; FRAP

1. Introduction

Peat alone or mixed with other constituents is the most used material in horticultural
production. However, peat is a nonrenewable resource. Its exploration has negative envi-
ronmental and ecological impacts [1,2], being classified as the growing medium with the
greatest impact on climate change and resources [3]. Coir, also known as coir dust, coir
meal, coir pith, and coir fibers, may provide an alternative to peat since it is a biodegradable
and renewable by-product. Social and ecological questions concerning child labor, inad-
equate wastewater management, and transportation should be additionally considered.
From the perspective of substrate properties, coir pith has high water capacity and easily
available water. It contains more lignin and less cellulose than peat, thus being more
resistant to microbial breakdown. It is also easily rewettable, which improves the water
absorption of substrate mixtures and water distribution in the growing medium [2,4]. All
those properties make coir pith a good peat alternative growing medium. The use of
coir enabled high yields in spinach [5,6]. However, nowadays, in addition to yield, the
nutritional quality of vegetables is essential. A further increase in bioactive compounds is
desirable and an object of diverse research projects worldwide.
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Spinach is one of the healthiest vegetables for the human diet due to its high concen-
tration of nutrients and health-promoting compounds [7]. Among vegetable crops, it has
one of the highest aggregate nutrient density index values [8,9].

According to [10], the nutrient level in plants is strongly affected by nutrient solution
characteristics, such as the nutrient concentration, chemical forms of the elements, the
temperature of the nutrient solution, pH, and irrigation scheduling (dose and frequency).
On the other hand, substrate characteristics and irrigation interaction influence wetting
and salt patterns in the root medium, easily available water content, leaching fraction, and
nutrient and water availability. This affects the water and nutrient uptake by plants, which
may lead to a greater or lesser degree of abiotic stress related to the water deficit, nutrient
deficiency, salinity, and the combination of these factors.

Abiotic stress affects phytochemical accumulation and antioxidant activity. In response
to water deficit, plants typically accumulate phytochemicals of low molecular weight and
enzymes for scavenging the reactive oxygen species (ROS) induced by stress. [11,12].

The synthesis and accumulation of secondary metabolites may be associated with
changes in nutritional status [13,14]. Thus, nitrogen, potassium, and phosphorus deficiency
affect phytochemical accumulation in spinach [15]. Salinity affects the bioactivity of various
fruits and vegetables and could be considered a sustainable and low-cost approach towards
this direction [14]. Cultural practices that involve either low fertilizer levels or slight
and moderate salt stress could reduce the yield but improve the nutritional value of
vegetables [10,16], including spinach [15]. According to Shimomachi et al. [17], salt stress
increased polyphenol contents in spinach. However, [18] reported that moderate levels of
nutrient solution concentration (1.2 and 1.7 dS m−1) did not affect total phenols, ascorbic
acid, chlorophyll a and b, carotenoids, and ascorbate peroxidase content. It could be
concluded that the response of phytochemical accumulation to salinity is not always
linear [19] and clear [20].

The physicochemical properties of coir in the market differ significantly from peat [21].
This is due to different levels of fiber, which may affect water and plant nutrition, creating
a greater or lesser abiotic degree of stress. Therefore, we hypothesize that coir can replace
peat, but it is necessary to know their effects on yield and nutritional quality of the produce.

Therefore, this study aimed to evaluate the effects of different coir types on plant
growth and nutritional quality, such as phytochemical composition, antioxidant enzyme
levels, and antioxidant activity of spinach grown during late winter and early spring in
unheated greenhouses.

2. Materials and Methods
2.1. Growth Conditions and Substrates

The experiment was conducted in a greenhouse located at the “Herdade Experimental
da Mitra” (38◦31′52′′ N; 8◦01′05′′ W), University of Évora, Portugal. The greenhouse was
covered with polycarbonate and had no supplemental lighting or heating. Diurnal changes
in air temperature inside the greenhouse at the plant canopy level ranged from 8 to 27 ◦C.
Solar radiation ranged from 34 to 248 W·m−2·d−1.

Our experiment used four commercial substrates: peat (70% black peat + 30% white
peat) and three different types of coir from Projar Group (Table 1). According to the
manufacturer, coir chips, coir pith, and coir pith + fiber had 0, 7, and 20% fiber, respectively.

Spinach (Spinacia oleracea L. cv. Manatee) seedlings were produced in soil blocks
with six seedlings per block 18 days after emergence. Soil blocks were obtained from a
commercial nursery. They were transplanted into Styrofoam plant boxes on 16 February
2017. The boxes (100 × 25 × 10 cm) were filled with 14 L substrate at the height of approx.
7 cm. The blocks were spaced 12.5 cm in two rows per box and 10 cm between rows with
a plant density of 384 plants m−2. Treatments were arranged in a complete randomized
block design with five replicates. Each planting box was irrigated using 4 L·h−1 pressure-
compensating and antidrain emitters. The emitters were attached to 4 fine tubes with 70 cm
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length and 5 mm diameter, inserted into the substrate along the center of the Styrofoam
box. Thus, 8 water emission points were used per box.

Table 1. Physicochemical properties of substrates.

Substrate Peat Coir Pith Coir Chips Coir Pith +
Fiber

Composition 70% black peat +
30% white peat 100% 100% 93% coir pith +

7% fiber

pH * 5.5–6.0 5.5–6.0 5.5–6.2 5.5–6.2
EC (dS·m−1) * 1.5–1.8 <1.9 ≥1.5 ≥1.5

CEC (meq/100g)* 100–190 60–120 20–40 40–80
N (mg L−1) * 50–300
P (mg L−1) * 35–131
K (mg L−1) * 60–330

Total porosity (v/v, %) * 95
Granulometry (mm) * 0–10 10–15 2–4

Air (v/v, %) * - 25 40 30
Water holding capacity

(v/v, %) * - 70 54 65

Mass wetness (g water/g
substrate) ** 6.07 † c 7.84 b 5.75 d 8.65 a

Moisture content
(w/w, %) ** 82.6 ab 84.68 a 71.10 b 84.63 a

Bulk density (g·cm−3) ** 0.127 a 0.103 a 0.070 b 0.081 a
* According to the manufacturer. ** Determined following the methods described in [22]. Moisture content: The
percent moisture found in a sample on a wet mass basis. This is calculated by ((wet weight − dry weight)/wet
weight) × 100. Mass wetness the water content of a sample on a dry mass basis. This is calculated by (wet
weight − dry weight)/dry weight. † Means followed by different letters within a line are significantly different at
p < 0.05.

The irrigation schedule was optimized for peat. It was based on substrate volumetric
water content at Styrofoam box control (peat), measured using a soil moisture probe
(SM105T delta devices England), and the volume of water drained.

The nutrient solution was applied three to seven times per day, depending on climatic
conditions, and averaged 15 to 30% drainage, i.e., leaching fraction, for each application.
The leaching fraction was controlled through a relay level connected to an electric valve
that stopped watering when the level of leached water was within 10 to 25% of the applied
water. Excepting the first irrigation to moisten the growing mediums, the nutrient solution
was applied continuously from transplanting to the day before harvesting.

The fresh tap water had an electrical conductivity (EC) of 0.4–0.5 dS·m−1 and a pH of
7–7.4 and contained 0.10–0.30 mol·L−1 NO3, 1 mol·L−1 Ca, 1 mol·L−1 Mg, 2.1 mmol·L−1

Cl−, 0.7 mol·L−1 Na, 0.53 µmol·L−1 Fe, and 0.16 µmol·L−1 Mn. The nutrient solution
initially contained 7.21 mol·L−1 NO3, 2.32 mmol·L−1 NH4, 0.59 mmol·L−1 P, 3.38 mmol·L−1

K, 2.55 mmol·L−1 Ca, 1.35 mmol·L−1 Mg, 0.80 mmol·L−1 S, 46 µmol·L−1 B, 7.86 µmol·L−1

Cu, 8.95 µmol·L−1 Fe, 18.3 µmol·L−1 Mn, 1 µmol·L−1 Mo, 2 µmol·L−1 Zn, 2.1 mmol·L−1

Cl−, and 0.7 mmol·L−1 Na.
At 26 DAT, in order to reduce the nitrate concentration in the leaves, the nutrient concen-

trations and the NO3/NH4 ratio in the nutrient solution were adjusted to 4.26 mmol·L−1 NO3,
4.11 mmol·L−1 NH4, 0.67 mmol·L−1 P, 2.84 mmol·L−1 K, 2.13 mmol·L−1 Ca, 0.88 mmol·L−1

Mg, 0.47 mmol·L−1 S, 46 µmol·L−1 B, 7.86 µmol·L−1 Cu, 8.95 µmol·L−1 Fe, 18.3 µmol·L−1

Mn, 1 µmol·L−1 Mo, 2 µmol·L−1 Zn, 2.1 mmol·L−1 Cl−, and 0.7 mmol·L−1 Na.

2.2. Measurements

The pH, EC, and the concentration of NO3 of the drainage water from each box were
measured weekly using a potentiometer (pH Micro 2000 Crison), a conductivity meter
(LF 330 WTW, Weilheim, Germany), and an ion-specific electrode (Crison Instruments,
Barcelona, Spain), respectively, following the procedures outlined in [23].
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The plants were harvested at 40 DAT. The shoots of the plants were cut off at 1 cm
above the substrate surface. The shoots of five representative plants from each box were
washed, oven-dried at 70 ◦C for 2–3 days, weighed, and ground.

Samples of 1.000 g of spinach leaf-blade from four treatments and five replicates were
macerated in a mortar and homogenized in 8 mL of methanol/water solution (90:10 (v/v),
MW90 extract) for 1 min and then centrifuged at 4 ◦C at 6440× g for 5 min. The methanol
extracts were stored in aliquots at −20 ◦C for later use [24]. Total chlorophyll, chlorophyll
a (Chl a) and b (Chl b), and total carotenoids (Cc) were determined in MW90 extract by the
method of [24] using the following equations:

Chl a (µg/mL) = 16.82 A665.2 − 9.28 A652.4;

Chl b (µg/mL) = 36.92 A652.4 − 16.54 A665.2;

Cc (µg/mL) = (1000 A470 − 1.91Chl a − 95.15Chl b)/225,

where A = absorbance, Chl a = chlorophyll a, Chl b = chlorophyll b, and Cc = carotenoids.
Samples of 1.000 g of spinach leaf-blade were macerated in a mortar and homogenized

in 8 mL of methanol/water solution (80:20 (v/v), MW80 extract) for 1 min and then
centrifuged at 4 ◦C at 6440× g for 5 min. The methanol extracts were stored in aliquots at
−20 ◦C for later use.

Content of total phenolic compounds (TPCs) was determined using Folin–Ciocalteau
phenol reagent described earlier [25], reading the absorbance at 760 nm. TPC content
expressed as milligrams of gallic acid equivalent (GAE) per 100 g of fresh weight (FW) was
calculated using a calibration curve (GAE, n = 6 concentrations from 0 to 50 mg/L).

For determination of flavonoid contents, 100 µL of MW80 extract was mixed with
20 µL of 10% AlCl3 (w/v), 500 µL of 1 M potassium acetate, and 380 µL of distilled water
and incubated at 25 ◦C for 30 min. Total flavonoid content was determined by reading the
absorbance at 420 nm, using an extinction coefficient of 0.004 µM−1 cm−1, and expressed
in mg of quercetin equivalent (QE) per 100 g of fresh weight [26].

Total anthocyanin content was determined by mixing 500 µL of MW80 extract with
500 µL of 50% ethanol (v/v) and 84 µL of 37% HCl. After incubation at 60 ◦C for 30 min,
the absorbance was measured at 530, 620, and 650 nm, and the absorbance of cyanidin-3-
glycoside was calculated using the following equation:

Aant = (A530 − A620) − 0.1 (A650 − A620).

Total anthocyanin content was calculated using a molar extinction coefficient of
34,300 M–1cm–1 and a molecular weight of 449.2 gmol–1 and expressed in mg of cyanidin-
3-glycoside equivalent (C3GE) per 100 g of fresh weight [27].

Ascorbic acid (AsA) content was determined by the method of [28], incubating the
sample (extracts or standard suitably diluted) in a mixture containing 5% TCA in ethanol,
0.4% H3PO4, 0.5% β-phenanthroline in ethanol, and 0.03% FeCl3 in ethanol, warmed at
30 ◦C, for 90 min. The absorbance of Fe (II)–β-phenanthroline complex formed was read at
534 nm. AsA concentration was calculated using a calibration curve (ascorbic acid, n = 6
concentrations from 0 to 30 mg/L).

Free Pro levels of MW80 extract were determined using the acid ninhydrin reac-
tion [29], reading the absorbance of yellow-orange chromophore formed 546 nm. Pro
concentration was calculated using a calibration curve (L-proline, n = 6 concentrations
between 0 and 20 mg/L).

The 2,2-diphenyl-1-picrylhydrazyl free radical scavenging antioxidant power (DPPH)
was determined by measuring the ability of plant MW80 extracts to capture the stable
organic radical DPPH• (2, 2-diphenyl-1-picryl-hydrazyl, violet) and its conversion into a
stable product, DPPH-H (diphenyl-picryl hydrazine, yellow). Aliquots of an extempora-
neous methanol solution of 0.03 g/L DPPH•, kept in the dark, were added to a known
volume of sample or standard solution. The reduction of DPPH• to DPPH-H was followed
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by reading the absorbance at 515 nm, at 25 ◦C, for 180 s. Antioxidant power reported as
milligrams of GAE per 100 g of FW was calculated using a calibration curve (GAE, n = 8
concentrations from 0 to 200 mg L−1) [30].

Ferric reducing antioxidant power (FRAP) was determined by the method of [25].
In sum, the FRAP reagent was prepared freshly by mixing 300 mM acetate buffer pH 3.6
and 10 mM TPTZ solution in 40 mM HCl and 20 mM iron (III) chloride solution (10:1:1,
v/v/v) and warmed to 37 ◦C before use. Then, 0.050 mL of the sample (suitably diluted
MW80 extracts or standard) was mixed with 0.950 mL of FRAP reagent. Absorbance
change was read at 593 nm at 37 ◦C, for 180 s. The reducing power of iron present in the
samples reported as milligrams of Trolox equivalent per 100 g of FW was calculated using
a calibration curve (Trolox solution, n = 8 concentrations from 0 to 1120 mg L−1). For all
previous determinations, a Genesys10S UV/Vis spectrophotometer was used.

Samples of 1.000 g of spinach leaf blade were macerated in liquid N2 and homoge-
nized in 5 mL of 0.12 mM phosphate buffer pH 7.2. The obtained supernatant using the
centrifugation of this extract for 15 min at 15,000× g at 4 ◦C was collected and stored in
aliquots at −20 ◦C (PB extract) for further use [31].

Glutathione (GSH) was assayed by the method of [32], based on the reaction of o-
phthalaldehyde (OPT) as a fluorescent reagent with GSH at pH 8 present in the PB extract.
The fluorescence of products was determined at 420 nm with the excitation at 350 nm, at
25 ◦C, using GSH as a standard in a single-beam Shimadzu RF-5001PC fluorimeter.

Glutathione reductase (GR) enzyme activity was determined by the method of [33]
in a reaction mixture containing 15 mM EDTA, 635 mM GSSG, and a suitable volume
of leaf-blade PB extract (0.5–0.2 mg mL−1 protein) in 0.12 mM phosphate buffer pH
7.2. The reaction was started with the addition of 9.6 mM NADPH. The oxidation of
NADPH was determined by reading the absorbance at 340 nm for 360 s. At 37 ◦C, GR
activity was calculated based on the slope of the reaction curves, using an extinction
coefficient value of 6.22 mM−1 cm−1 for NADPH. GR activity was expressed in terms of
nmol min−1/mg protein.

Peroxidase enzyme activity (POD) was determined by the method of [34] in a reaction
mixture containing 1% p-phenylenediamine, 1.5% hydrogen peroxide, and a suitable
volume of leaf-blade PB extract (0.5 mg/mL of protein) in 0.2 M potassium phosphate
buffer pH 6.5. The oxidation of p-phenylenediamine was determined by reading the
absorbance at 485 nm for 10 min, at 25 ◦C. POD activity was calculated based on the slope
of the reaction curves using the value of the extinction coefficient of 2.1 × 104 M−1 cm−1

for p-phenylenediamine. For all enzyme determinations, a double-beam Hitachi-U2001
spectrophotometer with temperature control was used.

The protein content of the PB extract was determined by the method of [35], using a cal-
ibration curve (bovine serum albumin (BSA); n = 6 concentrations from 0 to 200 µg mL−1).

Data were analyzed using the analysis of variance using SPSS Statistics 25 software
(Chicago, IL, USA). Means were separated at the 5% level using Duncan’s new multiple
range test. Bivariate correlation analysis between parameters was realized using Pearson’s
bilateral correlation coefficient.

3. Results and Discussion
3.1. Drainage Water

Nitrate and H3O+ concentration in the drainage water were affected by the substrate
(Figure 1). Nitrate concentration in the drainage water was higher in peat until 15 DAP
and in coir-chips during the crop cycle than in the other treatments (Figure 1). Coir chips
had the highest drainage volume (data not presented) and the lowest wetness mass (5.75 g
water/g substrate). In general, the H3O+ concentration was lower in peat and coir chips
than in the other coir types. The differences could be due to the different cation exchange
capacities of the substrates that contribute to the adsorption of the hydronium ions. The
differences in nitrate leaching can also affect the form of nitrogen uptake by plants, affecting
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hydronium and hydroxide concentration in the root medium. The EC of the drainage water
was not significantly affected by substrate type.

Horticulturae 2021, 7, x FOR PEER REVIEW 6 of 16 
 

 

3. Results and Discussion 
3.1. Drainage Water 

Nitrate and H3O+ concentration in the drainage water were affected by the substrate 
(Figure 1). Nitrate concentration in the drainage water was higher in peat until 15 DAP 
and in coir-chips during the crop cycle than in the other treatments (Figure 1). Coir chips 
had the highest drainage volume (data not presented) and the lowest wetness mass (5.75 
g water/g substrate). In general, the H3O+ concentration was lower in peat and coir chips 
than in the other coir types. The differences could be due to the different cation exchange 
capacities of the substrates that contribute to the adsorption of the hydronium ions. The 
differences in nitrate leaching can also affect the form of nitrogen uptake by plants, affect-
ing hydronium and hydroxide concentration in the root medium. The EC of the drainage 
water was not significantly affected by substrate type. 

NO3− concentration and the EC in the drainage water on the last three sampling dates, 
as compared with the NO3− and the EC in the nutrient solution, decreased significantly 
(Figure 1) due to the decrease in nitrate applied to the nutrient solution (264 mg NO3− L−1) 
and due to high nutrient uptake by spinach plants. 

 
Figure 1. The NO3 and H3O+ concentrations and EC in the drainage water. Each symbol represents the mean of five repli-
cates, and the error bars represent ± 1SE. 

3.2. Plant Growth and Yield 
Leaf area and spinach fresh yield in coir pith and coir pith + fiber did not differ sig-

nificantly from those obtained in peat (Figure 2). The coir pith and coir-pith + fiber yields 
were high, ranging from 3.79 to 4.32 kg·m2. These findings are consistent with those ob-
tained in [5,6]. The use of coir, a growing medium, enables the achievement of high yields. 
The fresh yield in coir chips (2.64 kg m−2) was lower than in the other substrates. 

Plants grown in coir accumulated less shoot biomass than those grown in peat. This 
could be due to the physiochemical properties of coir, with lower nutrient and water hold-
ing capacity than peat. Moreover, the initial content of nutrients in peat (Table 1) and the 
substrates’ interaction and irrigation frequency affect substrate water content and nutrient 
availability [36]. Shoot biomass accumulation was positively correlated to leaf K (r = 0.75, 
p > 0.01) and N (r = 0.58 p > 0.01) content, with a higher level in plants grown in peat than 
in plants grown in coir (Table 2). Biomass accumulation and crop growth are related to 
crop N accumulation [37]. In spinach, shoot biomass decreased in response to deficit irri-
gation [38], and it was higher in the plants grown in coir, mainly in coir chips. 

Figure 1. The NO3 and H3O+ concentrations and EC in the drainage water. Each symbol represents the mean of five
replicates, and the error bars represent ± 1SE.

NO3
− concentration and the EC in the drainage water on the last three sampling dates,

as compared with the NO3
− and the EC in the nutrient solution, decreased significantly

(Figure 1) due to the decrease in nitrate applied to the nutrient solution (264 mg NO3
− L−1)

and due to high nutrient uptake by spinach plants.

3.2. Plant Growth and Yield

Leaf area and spinach fresh yield in coir pith and coir pith + fiber did not differ
significantly from those obtained in peat (Figure 2). The coir pith and coir-pith + fiber
yields were high, ranging from 3.79 to 4.32 kg·m2. These findings are consistent with those
obtained in [5,6]. The use of coir, a growing medium, enables the achievement of high
yields. The fresh yield in coir chips (2.64 kg m−2) was lower than in the other substrates.
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Plants grown in coir accumulated less shoot biomass than those grown in peat. This
could be due to the physiochemical properties of coir, with lower nutrient and water
holding capacity than peat. Moreover, the initial content of nutrients in peat (Table 1)
and the substrates’ interaction and irrigation frequency affect substrate water content and
nutrient availability [36]. Shoot biomass accumulation was positively correlated to leaf K
(r = 0.75, p > 0.01) and N (r = 0.58 p > 0.01) content, with a higher level in plants grown in
peat than in plants grown in coir (Table 2). Biomass accumulation and crop growth are
related to crop N accumulation [37]. In spinach, shoot biomass decreased in response to
deficit irrigation [38], and it was higher in the plants grown in coir, mainly in coir chips.

3.3. Leaf Nutrients

Leaf nutrient concentrations of the plants grown in coir pith, coir pith + fiber, and peat
did not differ significantly, except for the concentrations of potassium and calcium. Leaf N,
K, Mn, and Zn concentrations in plants grown in coir chips were lower than those grown
in the other substrates (Table 2). However, leaf Ca and Mg concentrations were higher
in plants grown in coir chips than in plants grown in the other substrates. That could be
related to the low bulk density of the substrate (Table 1), which may have allowed for high
root branching and Ca and Mg uptake primarily occurring in the new roots [39].

Despite some differences, the concentrations of macronutrients, except nitrogen, were
within the sufficiency ranges (Table 2). Leaf nitrogen average values in coir pith + fiber and
coir chips were slightly lower than the lower end of the sufficiency range (4%). However,
the plant shoot dry weight of the plants grown in peat was higher, and plant nutrient
uptake may also have increased. Shoot nutrient uptake in spinach increased with dry shoot
matter in plants with the same leaf nutrient content [14].

Leaf Fe, B, Cu, and Mn concentrations were unaffected by substrate type. Leaf Zn
content was well above the recommended range (Table 2), which could be due to the NH4

+

concentration in the nutrient solution, which was high from 26 DAT until the harvest.
In lettuce, Savvas et al. (2006) [40] reported an increase in leaf Zn as ammonium supply
increased. These Zn concentrations are higher than the sufficiency range (100 µg g−1

DM [41] and 75 µg g−1 DM [42]). However, none of the plants in the treatments showed
visual symptoms of excess Zn. Zinc in excess can cause chlorosis in leaves due to a reduction
in chlorophyll [43]. According to [44], leaf Zn concentrations of up to 100–700 mg kg−1

DM can be achieved without yield loss, which can be advantageous since Zn is a desirable
nutrient for human health.

Table 2. Nutrient concentration in fully expanded spinach leaves.

Substrate
Leaf Macronutrients (%) Leaf Micronutrients (µg·g−1)

N P K Ca Mg Fe B Cu Mn Zn

Peat 4.48 a Z 0.38 6.88 a 0.94 c 0.70 b 89.2 34.0 31.2 105.2 a 198.2 a
Coir pith 4.18 a 0.36 5.96 b 1.00 b 0.64 b 112.6 33.2 39.4 104.8 a 211.0 a

Coir pith + fiber 3.98 ab 0.32 6.26 ab 1.04 ab 0.72 b 77.0 35.2 25.4 104.8 a 210.0 a
Coir chips 3.48 b 0.32 5.14 bc 1.20 a 0.82 a 65.0 30.0 29.6 73.0 b 115.2 b

Recommended
range
[41] 4.00–6.00 0.30–0.60 5.00–8.00 0.70–1.20 0.60–1.00 60–200 25–60 5–25 30–250 25–100
[42] 4.00–6.00 0.30–0.50 3.00–8.00 1.00–1.50 0.40–1.00 50–200 25–60 5–15 25–200 20–75

Z Means followed by different letters within a column are significantly different at p ≤ 0.05.

3.4. Photosynthetic Pigments

Leaf total chlorophyll (chl a + chl b) (Figure 3a) and chlorophyll b (Figure 3c) were
higher in plants grown in peat and coir chips than in plants grown in coir pith and coir pith
+ fiber. Total chlorophyll in a plant grown in peat (79.82 mg/100 g FW) was similar to that
recorded in [45] (65.4 mg/100 g FW) and [46]. However, it was lower than those reported
in [47] (96.2 to 301.8 mg/100 g FW). Conversely, the ratio of chlorophyll a to chlorophyll b
(Figure 3d) was higher in plants grown in coir pith and coir pith + fiber. The differences in
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chlorophyll could be due to the water availability; salinity in the root media; and nutrient
uptake for nitrogen, potassium, and zinc. These factors or their combination may affect
chlorophyll biosynthesis.
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Figure 3. Accumulation of photosynthetic pigments (total chlorophyll (a), Chl a (b), Chl b (c), and carotenoids (Cc) (e))
and Chl a/Chl b ratio (d). Means with different letters are significantly different at p < 0.05; FW—fresh weight. Each bar
represents the mean of five replicates, and the error bars represent ± 1SE.

Abiotic stresses have negative influences on chlorophyll biosynthesis [48]. Salinity
reduces the contents of photosynthetic pigments [49,50]. Average levels of chlorophyll
were lower in plants with average values of Zn > 200 µg g−1, that is, in plants grown in
coir pith and coir pith + fiber. As previously mentioned, high levels of Zn in spinach can
decrease the chlorophyll content.

Leaf-blade Cc content was unaffected by substrate type (Figure 3e). According to [51],
leaf Cc of strawberries was not also affected by substrate type. Carotenoid levels ranged
from an average of 25 to 30 mg/100 g FW (Figure 3e). These concentrations were in the
ranges reported in [14,52,53] (17 to 40 mg/100 g FW) for spinach grown in soil.
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3.5. Proline Accumulation

Leaf-blade proline (Pro) ranged on average from 3.22 to 4.27 mg/100 g FW (Figure 4).
These values are lower than those recorded in [54] (4.66–43.15 mg/100 g FW) and are within
the range recorded in [55] (2.74–7.2 mg/100 g FW) for spinach grown in the greenhouse
and the open air. The proline concentration was higher in plants grown in coir pith than
in those grown in the other substrates (Figure 4). Proline concentration is closely related
to abiotic stress, such as water and nutrient deficiency and salinity [56–59]. This indicates
that plants grown in coir pith may be subject to stress conditions. However, in the present
study, proline did not correlate with growth parameters, such as leaf area and plant dry
weight, as reported for young plants of tomatoes and lettuces in [60,61]. On the other hand,
proline was negatively correlated to FRAP (r =−0.628, p < 0.001), which increases when the
leaf extract’s ability to reduce ferric iron decreases. The plant produces Pro to compensate
for the oxidizing role of Fe, preventing the formation of reactive oxygen species (ROS). In
chickpea, [62] also reported a negative correlation between proline content and FRAP.

Horticulturae 2021, 7, x FOR PEER REVIEW 9 of 16 
 

 

Abiotic stresses have negative influences on chlorophyll biosynthesis [48]. Salinity 
reduces the contents of photosynthetic pigments [49,50]. Average levels of chlorophyll 
were lower in plants with average values of Zn > 200 µg g−1, that is, in plants grown in coir 
pith and coir pith + fiber. As previously mentioned, high levels of Zn in spinach can de-
crease the chlorophyll content. 

Leaf-blade Cc content was unaffected by substrate type (Figure 3e). According to [51], 
leaf Cc of strawberries was not also affected by substrate type. Carotenoid levels ranged 
from an average of 25 to 30 mg/100 g FW (Figure 3e). These concentrations were in the 
ranges reported in [14,52,53] (17 to 40 mg/100 g FW) for spinach grown in soil. 

3.5. Proline Accumulation 
Leaf-blade proline (Pro) ranged on average from 3.22 to 4.27 mg/100 g FW (Figure 4). 

These values are lower than those recorded in [54] (4.66–43.15 mg/100 g FW) and are 
within the range recorded in [55] (2.74–7.2 mg/100 g FW) for spinach grown in the green-
house and the open air. The proline concentration was higher in plants grown in coir pith 
than in those grown in the other substrates (Figure 4). Proline concentration is closely re-
lated to abiotic stress, such as water and nutrient deficiency and salinity [56–59]. This in-
dicates that plants grown in coir pith may be subject to stress conditions. However, in the 
present study, proline did not correlate with growth parameters, such as leaf area and 
plant dry weight, as reported for young plants of tomatoes and lettuces in [60,61]. On the 
other hand, proline was negatively correlated to FRAP (r = −0.628, p < 0.001), which in-
creases when the leaf extract’s ability to reduce ferric iron decreases. The plant produces 
Pro to compensate for the oxidizing role of Fe, preventing the formation of reactive oxygen 
species (ROS). In chickpea, [62] also reported a negative correlation between proline con-
tent and FRAP. 

 
Figure 4. Proline content in the leaf blade. Means with different letters are significantly different at 
p < 0.05; FW—fresh weight. Each bar represents the mean of five replicates, and the error bars rep-
resent ± 1SE. 

3.6. Phytochemical Accumulation 
Leaf-blade TPCs, flavonoids, and GSH were higher in plants grown in coir pith than 

in those grown in the peat and the other coir types (Figure 5a,b,e). 
Leaf-blade TPCs in plants grown in coir pith, peat, coir pith + fiber, and coir chips 

were 329, 263, 220, and 213 mg GAE/100 g FW, respectively (Figure 5a). TPC concentra-
tions were next to the high end of the range reported by other authors (71–320 mg 
GAE/100 g FW) [6,63–65]. 

It is worth mentioning that total flavonoid content was significantly higher in plants 
grown in the different types of coir than in those grown in peat (Figure 5b). This could be 
due to the differences in leaf nutrient contents, shoot nutrient uptake, water availability 
of the substrate, irrigation scheduling, or interaction. Flavonoid biosynthesis is affected 
by nutrient and water availability and salinity [66,67]. The total flavonoids in the plants 
grown in different coir types ranged from an average of 6.58 to 7.14 mg/100 g FW. These 
values were higher than those recorded in [68] (1.45 to 4.47 mg/100 g FW) for 27 varieties 
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3.6. Phytochemical Accumulation

Leaf-blade TPCs, flavonoids, and GSH were higher in plants grown in coir pith than
in those grown in the peat and the other coir types (Figure 5a,b,e).

Leaf-blade TPCs in plants grown in coir pith, peat, coir pith + fiber, and coir chips were
329, 263, 220, and 213 mg GAE/100 g FW, respectively (Figure 5a). TPC concentrations
were next to the high end of the range reported by other authors (71–320 mg GAE/100 g
FW) [6,63–65].

It is worth mentioning that total flavonoid content was significantly higher in plants
grown in the different types of coir than in those grown in peat (Figure 5b). This could be
due to the differences in leaf nutrient contents, shoot nutrient uptake, water availability
of the substrate, irrigation scheduling, or interaction. Flavonoid biosynthesis is affected
by nutrient and water availability and salinity [66,67]. The total flavonoids in the plants
grown in different coir types ranged from an average of 6.58 to 7.14 mg/100 g FW. These
values were higher than those recorded in [68] (1.45 to 4.47 mg/100 g FW) for 27 varieties of
spinach grown organically and conventionally and were slightly lower than those recorded
in [45] (8.25 mg/100 g FW). However, they were much lower than those reported in [69]
(100 mg/ 100 g FW) and [70] (185 to 375 mg/100 g FW). The high variation might result
from different genotypes investigated [68,71], maturation [70], etc.



Horticulturae 2021, 7, 127 10 of 16

Horticulturae 2021, 7, x FOR PEER REVIEW 10 of 16 
 

 

of spinach grown organically and conventionally and were slightly lower than those rec-
orded in [45] (8.25 mg/100 g FW). However, they were much lower than those reported in 
[69] (100 mg/ 100 g FW) and [70] (185 to 375 mg/100 g FW). The high variation might result 
from different genotypes investigated [68,71], maturation [70], etc. 

As a compound of the flavonoids group, the anthocyanin content ranged from an 
average of 2.05 to 2.42 mg/100 g FW. These values were similar to those recorded in [12] 
(15 to 38 mg/100 g DW), considering that the dry weight percentage of the spinach leaf-
blade is close to 12%. However, the content was not significantly affected by the treat-
ments (Figure 5c). This indicates that the higher antioxidant protection mediated by fla-
vonoids in the plants grown in coir was affected by other flavonoid types. 

AsA content of spinach grown in different growing media fell within the range re-
ported by other authors (11 to 130 mg AsA/100 g FW) [14,68,72,73]. It was higher in leaf-
blades of plants grown in peat (36 mg/100 g/FW) than in those grown in coir pith + fiber 
(13 mg/100 g/FW), coir pith (24 mg/100 g/FW), and coir chips (19 mg/100 g/FW) (Figure 
5d). The differences could be related to leaf nitrogen content and/or plant nitrogen uptake 
since the nitrogen amount [74–76] and its form can affect AsA [53,77]. However, AsA was 
slightly correlated to leaf N (r = 0.483, p < 0.05). This may be due to the maintenance of 
ascorbic acid synthesis requiring a moderate amount of N [78]. 

Glutathione (GSH) content was higher in plants grown in coir than in those grown 
in peat. This indicates that plants grown in coir may have higher availability of antioxi-
dant activity modulated by the SH group of cysteine [79]. ROS are scavenged by low-
molecular-weight antioxidative metabolites like glutathione [80]. Leaf-blade GSH ranged 
from an average of 40 to 54 nmol/g FW (Figure 5e). These values are lower than those 
reported for spinach grown in soil in [81] (114–136 nmol/g FW), which could be related to 
the level of oxidative stress [79]. 

 
Figure 5. Contents of total phenolic compounds (TPCs) (a), flavonoids (b), anthocyanins (c), ascor-
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Figure 5. Contents of total phenolic compounds (TPCs) (a), flavonoids (b), anthocyanins (c), ascorbic
acid (AsA) (d), and glutathione (GSH) (e) in the leaf blade. Means with different letters are signifi-
cantly different at p < 0.05; FW—fresh weight. Each bar represents the mean of five replicates, and
the error bars represent ± 1SE.

As a compound of the flavonoids group, the anthocyanin content ranged from an
average of 2.05 to 2.42 mg/100 g FW. These values were similar to those recorded in [12] (15
to 38 mg/100 g DW), considering that the dry weight percentage of the spinach leaf-blade
is close to 12%. However, the content was not significantly affected by the treatments
(Figure 5c). This indicates that the higher antioxidant protection mediated by flavonoids in
the plants grown in coir was affected by other flavonoid types.

AsA content of spinach grown in different growing media fell within the range
reported by other authors (11 to 130 mg AsA/100 g FW) [14,68,72,73]. It was higher in
leaf-blades of plants grown in peat (36 mg/100 g/FW) than in those grown in coir pith +
fiber (13 mg/100 g/FW), coir pith (24 mg/100 g/FW), and coir chips (19 mg/100 g/FW)
(Figure 5d). The differences could be related to leaf nitrogen content and/or plant nitrogen
uptake since the nitrogen amount [74–76] and its form can affect AsA [53,77]. However, AsA
was slightly correlated to leaf N (r = 0.483, p < 0.05). This may be due to the maintenance of
ascorbic acid synthesis requiring a moderate amount of N [78].

Glutathione (GSH) content was higher in plants grown in coir than in those grown in
peat. This indicates that plants grown in coir may have higher availability of antioxidant
activity modulated by the SH group of cysteine [79]. ROS are scavenged by low-molecular-
weight antioxidative metabolites like glutathione [80]. Leaf-blade GSH ranged from an
average of 40 to 54 nmol/g FW (Figure 5e). These values are lower than those reported for
spinach grown in soil in [81] (114–136 nmol/g FW), which could be related to the level of
oxidative stress [79].
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3.7. Antioxidant Enzyme (GR and POD) Activities

Leaf-blade GR activity was unaffected significantly by substrate type (Figure 6a). This
means that the substrate type did not influence the glutathione tripeptide regeneration
capacity of the spinach leaf blade. GR activity in the present study was approximately half
of that reported in [82] for spinach (16.85 µmol min−1/mg prot).
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POD activity was significantly higher in plants grown in peat than those grown in coir
substrates (Figure 6b), reaching 527 nmol.min−1/mg in peat, 433 nmol.min−1/mg in coir
pith + fiber, and 114 nmol.min−1/mg in coir pith and coir chips. This could be related to
the influence of substrates on plant nutrition and water uptake, as reported in [83]. The
lower POD activity can be advantageous since peroxidases are the enzymes responsible
for the browning of vegetable tissues [84]. Thus, spinach plants grown in coir substrate,
mainly in coir pith and coir chips, may present a longer shelf life than those grown in
peat. This is important in leafy vegetables since they are highly susceptible to enzymatic
browning, shriveling, microbial growth, and loss of nutrients [85].

3.8. Antioxidant Activity

Leaf-blade FRAP was higher in plants grown in coir pith + fiber (32 mg Trolox/g FW)
than in plants grown in peat (30 mg Trolox/g FW), coir chips (23 mg Trolox/g FW), and coir
pith (10 Trolox/g FW) (Figure 7a). Generally, FRAP concentrations in our study were higher
than those reported by other authors, which ranged from 2.67 to 13.8 Trolox/g FW [6,86,87].
The authors of [88] reported an increase in FRAP in basil as potassium increased in the
nutrient solution. However, in the present study, FRAP was not correlated to leaf K.
K concentration in nutrient solution affected total phenols, flavonoids, and antioxidant
activity (FRAP, DPPH) in Lavandula angustifolia (Mill.). However, FRAP response to leaf K
was not linear [89]. In the present study, despite K concentration in the nutrient solution
being equal, leaf K was affected, but FRAP was not correlated to leaf K.

Leaf-blade DPPH was higher in plants grown in peat (38 mg GAE/100 g FW) than
in plants grown in the coir types. Leaf-blade DPPH in plants grown in coir pith and coir
chips ranged from 29 to 31 GAE/100 g FW (Figure 7b).

The free radical-scavenging activity estimated by DPPH has a strong positive corre-
lation with AsA (r = 0.656, p < 0.01), indicating that ascorbic acid level contributes to the
scavenging capacity of the leaf extract.

The differences in dry weight accumulation, phytochemical accumulation, antioxi-
dant enzyme activities, and antioxidant power could be due to the characteristics of the
substrates and/or effects of irrigation scheduling optimized to peat in water and nutrient
uptake. Despite this, the findings indicate that the different types of coir, mainly coir pith,
may provide a promising substitute for peat since it allowed reaching a high yield and
increased total flavonoid content. The other phytonutrient contents and antioxidant activi-
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ties were within the range of values reported in the literature for spinach. The adaptation
of cultural management to the specific substrate and crop demand can further improve
the quality of horticultural products [10,14,90]. Therefore, further research is needed to
evaluate the response of spinach grown in different coir types with optimized irrigation
and nutrient solution.
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4. Conclusions

Coir pith and coir pith + fiber may provide an alternative to peat. Plants grown
in these substrates had a similar fresh yield but a higher total flavonoid content than
plants cultivated in peat. The levels of other phytochemicals and the antioxidant activity
(FRAP and DPPH) in plants grown in coir were within the usual ranges for spinach.
However, further research will be necessary to analyze the effects of adjusting the irrigation
scheduling and nutrient solution characteristics for each coir type, for instance, in coir
chips, on spinach yield and product quality.
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