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Abstract: In subtropical regions, tomato (Solanum lycopersicum) is mainly produced in autumn and
winter. To enhance the off-season production of tomato, summer cultivation has become a prime
objective. Grafting tomato scions onto eggplant (Solanum melongena) rootstocks is a key method
to overcome the difficulties of tomato cultivation in summer. In this study, we collected seedling
growth data over six growing seasons in Taiwan and established growth models by employing
three commonly used sigmoid growth curves, namely the Gompertz, Richards, and Logistic curves.
Cumulative temperature was introduced as an independent variable and its relationship with plant
stem diameter determined. The R2 values of the growth models were 0.74–0.85 and 0.72–0.80 in
calibration and validation, respectively. Performance did not differ markedly among models in the
same growing season, but notable differences were observed among models for different growing
seasons. In addition, the estimates of several model parameters differed significantly among the
seasons; hence, separate models should be established for different seasons. The results of this study
can be used in prediction of tomato and eggplant seedling growth and arrangement of the grafting
schedule to improve the efficiency of seedling production in subtropical countries.

Keywords: growing season; Gompertz model; Logistic model; Richards model; cumulative temperature;
synchronous growth; grafting schedule arrangement

1. Introduction

Tomato (Solanum lycopersicum) is a key crop in tropical and subtropical regions. Toma-
toes are rich in nutrients, such as vitamin A, vitamin C, lycopene, and carotenoids [1–3].
Appropriate consumption of tomatoes can help reduce the incidence of many diseases [4].
According to the Food and Agriculture Organization of the United Nations, tomato
crops accounted for 5 million ha of cultivated land worldwide and a gross output of
180.8 million Mg in 2019. According to Taiwanese government statistics, tomatoes occu-
pied approximately 4300 ha of cultivated land in Taiwan during 2019, with an output
valued at nearly USD 130 million. As tomatoes are native to Andes Mountains in South
America, they are typically produced during autumn and winter in subtropical regions.
Due to the concentration of the production period, market price decreases and severe
supply shortages occur in summer. Therefore, summer cultivation and production of
tomatoes have become key goals of the agricultural industry. However, the high summer
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temperatures and humidity in subtropical regions as well as the severe damage caused by
diseases and pests hamper the cultivation of tomatoes in summer.

Grafting, the union of two plant parts—namely, a rootstock and a scion—is a technique
for combining the genetic materials of two plants [5]. Grafting technology is currently
popular and is commonly applied to Solanaceae and Cucurbitaceae crops [6,7]. Grafting
is a method of preventing soilborne diseases [8–11]. Therefore, grafting crops that are
susceptible to disease onto more disease-resistant crops is frequently performed to reduce
the risk of plant infection [12]. For tomato, bacterial wilt (Ralstonia solanacearum) and
Fusarium wilt (Fusarium oxysporum f. sp. Lycopersici) are critical soil-borne diseases. Hence,
nursery operators generally graft tomatoes onto the rootstocks of more disease-resistant
crops and then sell the grafted seedlings to growers. Rootstock grafting can enhance the
disease resistance of plants as well as their growth potential under abiotic stress [11,13–16].
For example, grafted fresh pepper (Capsicum annuum) have reduced the content of heavy
metals, such as cadmium, iron, manganese, and zinc [17]. Grafting tomatoes can reduce
cadmium-based toxicity [18]. To render summer tomato production more feasible, eggplant
(Solanum melongena), which can improve plant tolerance to water stress and flooding,
is often used as the grafting rootstock. Additionally, grafting tomato on eggplant can
increase the yield and quality of the fruit [19–21]. Grafting technology has already resolved
many problems in tomato production and has gradually become a routine operation in
agricultural production.

Generally, three pivotal factors should be considered when grafting. The first is the
choice of rootstock and scion. Different rootstock–scion combinations exhibit differing
growth performance, and the genotypes of rootstock and scion also affect the compatibility
of grafting. The second is the grafting method. The most commonly used method is tube
grafting, which can ensure that the vascular cambia of the rootstock and scion are held
in close contact. The third is the timing of grafting, which is mainly determined by the
stem diameter of the scion and rootstock. For tomatoes, grafting is most effective when
the stem diameter of the scion and rootstock are approximately 1.5–2.5 mm [20,22,23]. In
addition, the synchronization of seedlings in nurseries is highly sensitive to temperature.
Therefore, to support agricultural management, a technique that enables reliable prediction
of seedling growth is necessary [24].

Mathematical modeling is a method of describing the characteristics of crop growth,
with such models known as growth models [25]. Establishing a growth model is helpful
in understanding the growth cycle of crops and the responses of crops to their environ-
ment. Moreover, a growth model can effectively predict critical agricultural dates, such
as the optimal sowing and harvest days, aiding in work scheduling and improving the
efficiency of agricultural production [26,27]. As the growth and development of crops are
easily affected by many environmental factors, various physiological features are typically
produced. Therefore, if a prediction model can consider environmental variables that affect
crop growth, the model’s predictive ability should be improved.

By definition, in a mathematical model, if the second derivative of the function for
the parameter is not zero, then the parameter is nonlinear; otherwise, it is a linear parame-
ter [28]. In some specific areas, compared with linear growth models, nonlinear models are
more parsimonious and easily described. In addition, most of the parameters in nonlinear
models refer to biological characteristics, rendering the growth process of crops more
easily interpretable [28]. Consequently, several studies have used nonlinear functions to
establish crop growth models [28]. The sigmoid curve is a typical nonlinear model category,
with models typically used to describe plant height, weight, leaf area index, nitrogen
fertilizer application amount, and herbicide dosage [28–30]. The Gompertz [31] and Lo-
gistic [32] models are sigmoid nonlinear models commonly employed in growth analysis
and have been used in growth modeling for many crops, such as squash (Cucurbita pepo)
and fresh pepper [33]. The parameters in sigmoid curve models can provide effective
explanations [33–35]. However, the Richards model [36] is more flexible than both the
Gompertz and Logistic models because it can describe asymmetric growth [28].
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This study assessed the timing of tomato grafting to predict when the stem diameters
of the rootstock (eggplant) and scion (tomato) would reach the grafting standard. Seedling
growth data were collected for a total of 3 years (six growing seasons) in Taiwan, and
three commonly used nonlinear functions—the Gompertz, Logistic, and Richards models—
were employed to establish growth models. Cumulative temperature was used as an
independent variable to predict the growth of the stem diameters for tomato and eggplant.
This study’s results can be applied to the prediction of tomato and eggplant seedling
growth and the development of a grafting schedule. The present findings can improve the
efficiency of tomato seedlings production in subtropical countries.

2. Materials and Methods
2.1. Data Sources

In this study, tomato (Rosada cultivar) scion and eggplant (EG203 cultivar) rootstock
were seeded in plug trays filled with peat moss (BAIU036AD5E7; Peltracom, Ghent,
Belgium). The seedlings were irrigated daily and fertilized with 20N-10P-20K (JR Peters
Inc., Allentown, PA, USA) water-soluble fertilizer solution once a week. All experiments
were executed in the nursery in Chiayi County, Taiwan. Seedlings were arranged randomly
in a greenhouse covered with insect-proof nets and polyethylene film on the roof. Growth
and environmental parameters were collected at the seedling stage. The investigated
growth parameter was plant stem diameter, which was measured above the cotyledons
of 36 randomly selected seedlings by using a Vernier caliper (Li-Ji, 56-44, China). The
mean stem diameter was calculated. These measurements were performed 7–10 days after
sowing and repeated every 3–4 days thereafter until the seedlings had reached the grafting
standard level. The environmental parameters—air temperature (◦C), relative humidity
(%), and light intensity (µmol m−2 s−1)—were measured automatically every minute
(and averaged every hour) using a data logger (CR300; Campbell Scientific Inc., Logan,
UT, USA). In this study, the growth data of the seedlings were collected for a total of six
growing seasons: spring–summer (April–August) and autumn–winter (September–March
of the following year) for 2018–2020. The collected data related to a total of 1441 and
1244 tomatoes grown in spring–summer and autumn–winter, respectively, and 1566 and
1310 eggplants grown in spring–summer and autumn–winter, respectively.

2.2. Growth Model Establishment

The increase in seedling stem diameter was predicted on the basis of the cumulative
mean temperature in the seedling growth environment. As crop growth can be affected by
environmental conditions, we divided the spring–summer and autumn–winter seasonal
growth data to establish different-season-based models. However, the data of the six
growing seasons were also combined to establish a global model. The descriptive statistics
of the environmental parameters of the three data sets (i.e., spring–summer, autumn–winter,
and combined) are presented in Table 1. For more detailed environmental information,
please refer to Table S1.

Table 1. Descriptive statistics of the environmental parameters of each data set used in this study. Values are presented as
means (standard deviations).

Data Set

Eggplant Tomato

T
(◦C)

RH
(%)

Light Intensity
(µmol m−2 s−1)

T
(◦C)

RH
(%)

Light Intensity
(µmol m−2 s−1)

Spring–summer 27.25
(2.68)

80.96
(5.59)

79.42
(27.10)

27.50
(2.39)

81.39
(5.60)

78.99
(27.01)

Autumn–winter 23.82
(2.61)

78.13
(6.03)

58.42
(24.48)

23.47
(2.51)

78.23
(6.06)

57.64
(21.17)

Combined 25.68
(3.15)

79.67
(5.96)

69.83
(27.94)

25.72
(3.16)

80.00
(6.01)

69.57
(26.77)

RH: relative humidity; T: temperature.
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The first step in establishing a growth model is selecting a suitable model form.
This study considered three nonlinear models—the Gompertz (Equation (1)), Logistic
(Equation (2)), and Richards (Equation (3)) models—for predicting the plant stem diameter
(Y) by using the cumulative temperature as a predictor variable (X).

yi = a·e(−eb−cxi ) + εi (1)

yi =
a

1 + e(−b−cxi)
+ εi (2)

yi =
a[

1 + de(−b−cxi)
]1/d + εi (3)

where a denotes the asymptotic value of the dependent variable (i.e., the maximum value of
the dependent variable of the model), b is the location parameter related to the initial value
of the model, c is the parameter that affects the growth rate in the curve, d describes the
asymmetric growth (notably, when d = 1, the Richards model degenerates to the Logistic
form), and εi is the error term.

For each data set, 70% of the data were randomly selected for model training and the
remaining 30% of the data were used for model validation. For the three aforementioned
nonlinear models, the cumulative temperature was used as a predictor variable to fit the
plant stem diameter. Ultimately, nine model variants were established and compared.

2.3. Model Assumption Verification

Before fitting a candidate model, whether the model violates assumptions, such as
those of normality and variance homogeneity, has to be examined. This can be done using
graphical methods or formal statistical tests [28,37]. In examining the assumptions of a
model, residuals are usually applied. A residual is defined as the difference between the
observed and fitted values. This study used the probability plot correlation coefficient
(PPCC) to test the normality hypothesis [38]. Higher PPCCs suggested values consistent
with the normality. The hypotheses of homogeneity of variance were evaluated by plot-
ting residuals against fitted values. The residuals randomly scattering around 0 and not
appearing in a megaphone shape indicates that the variance is constant.

2.4. Model Performance Evaluation

Common criteria used for model performance evaluation—the determination coeffi-
cient (R2), Akaike information criterion (AIC), root mean square error (RMSE), and mean
absolute error (MAE)—were used in this study. For these criteria, the lowest values in-
dicate the optimal model except in the case of R2, for which larger values signify higher
model performance.

R2 = 1− SSE
SST

(4)

AIC = −2 log L + 2p (5)

RMSE =

√
SSE

n− p− 1
(6)

MAE =
∑n

i=1|yi − ŷi|
n

(7)

where SSE is the error sum of squares of the model, SST is the total sum of squares of the
model, L is the likelihood function of the model, n is the number of observations, p is the
number of parameters in the model, yi is the ith observation value, and ŷi is the fitted value
of the ith observation.

In the validation stage, we additionally implemented the prediction of a new obser-
vation Yh at X = xh. Plugging xh into the estimated growth model, we can obtain the Ŷh
to predict Yh. If we define pred = Yh − Ŷh, then the estimated standard deviation of the
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prediction s{pred} can be calculated by considering the variance of the distribution of Y at
X = xh and the variance of sampling distribution of Ŷh. Hence, the prediction limits for a
new observation at a given xh were described as follows [37]:

Ŷh ± t (1 − α/2; n − p) s{pred} (8)

where t (1 − α/2; n − p) is the (1 − α/2) 100th percentile of the t distribution with n − p
degrees of freedom, n is the number of observations, p is the number of parameters in the
model, and s{pred} is the estimated standard deviation of the prediction.

2.5. Model Parameter Comparison between Two Growing Seasons

To compare the model parameters between the different-season-based models for the
eggplant rootstock and tomato scion, the 95% confidence intervals of the model param-
eters for each growing season were calculated [26,39]. If none of the estimates from one
season were within the range of the confidence intervals computed for another season, the
parameter estimates differed between the two season models. By contrast, if at least one of
the parameter estimates was within the confidence interval generated by another season
model, then no notable difference between the two season models was indicated in terms
of the model parameters.

Regarding the calculation of the parameter confidence interval, the approximate
(1 − α) 100% confidence interval of the parameter was obtained as follows [37]:

Estimate ± t (1 − α/2; n − p) SE (9)

where t (1 − α/2; n − p) is the (1 − α/2) 100th percentile of the t distribution with n − p
degrees of freedom, n is the number of observations, p is the number of parameters in the
model, and SE is the standard error of the parameter estimates.

2.6. Statistical Analysis

All statistical analyses were implemented using the R software, with “minpack.lm,”
“ggplot2,” and “ppcc” packages used for modeling, graphing, and normality verification,
respectively.

3. Results and Discussion

Nonlinear models have been used to explain the growth process of many crops [28],
such as squash [33], fresh pepper [33], and sunn hemp (Crotalaria juncea) [26,39]. To identify
a model that exhibits good adaptability, obeys the model assumptions, and can clearly
explain the crop’s growth, a series of steps are required. In the study of Archontoulis and
Miguez [28], several steps were performed, including (1) selecting suitable model types,
(2) evaluating model assumptions, (3) fitting models, (4) estimating model parameters,
(5) comparing model performance, (6) and model interpretation. In the present study, we
employed three nonlinear models (i.e., Logistic, Gompertz, and Richards) to identify the
relationship between the stem diameter and cumulative temperature.

3.1. Verifying the Model Assumptions

When a model is considered for an application, we usually cannot be sure in advance
that the model is suitable for that application. Some of the features of the model may be
violated for the particular data at hand. Hence, it is important to verify the aptness of the
model for the data before inferences based on that model are made [37]. As the residuals of
the fitted model (based on the original data) violated the assumptions of homogeneity of
variance (Figures S1 and S2), we took the square root transformation of the stem diameter as
a new dependent variable. After the variable transformation, the normality hypothesis test
results suggested that the PPCC values of the nine models were all higher than 0.99 and the
p-values were all less than 0.05, indicating that the model residuals obeyed the normality
assumption (Table 2). The residual plots revealed that the residuals of each model did not
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represent specific structures or trends, suggesting that the assumption of homogeneity of
variance was upheld (Figures 1 and 2).
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Figure 1. Residual plots of the eggplant stem diameter by using spring−summer, autumn−winter, and combined data with
the Logistic, Gompertz, and Richards growth models. (A) Spring−summer Logistic model; (B) spring−summer Gompertz
model; (C) spring−summer Richards model; (D) autumn−winter Logistic model; (E) autumn−winter Gompertz model;
(F) autumn−winter Richards model; (G) global Logistic model; (H) global Gompertz model; (I) global Richards model.
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Figure 2. Residual plots of the tomato stem diameter by using spring−summer, autumn−winter, and combined data with
the Logistic, Gompertz, and Richards growth models. (A) Spring−summer Logistic model; (B) spring−summer Gompertz
model; (C) spring−summer Richards model; (D) autumn−winter Logistic model; (E) autumn−winter Gompertz model;
(F) autumn−winter Richards model; (G) global Logistic model; (H) global Gompertz model; (I) global Richards model.
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Table 2. Results of the normality tests for the residuals of the eggplant rootstock and tomato stem
diameter, based on the Logistic, Gompertz, and Richards growth models and using different seasons
and combined data.

Data Set Model
Eggplant Tomato

PPCC p-Value PPCC p-Value

Spring–summer

Logistic 0.9966 0.0001 0.9984 0.0385

Gompertz 0.9964 0.0000 0.9984 0.0379

Richards 0.9975 0.0019 0.9984 0.0407

Autumn–winter

Logistic 0.9931 0.0000 0.9947 0.0000

Gompertz 0.9942 0.0000 0.9945 0.0000

Richards 0.9948 0.0001 0.9948 0.0000

Combined

Logistic 0.9926 0.0000 0.9945 0.0000

Gompertz 0.9924 0.0000 0.9946 0.0000

Richards 0.9926 0.0000 0.9945 0.0000
PPCC: probability plot correlation coefficient.

3.2. Model Training and Validation

Figure 4 shows the plot of the eggplant stem diameter versus the cumulative tempera-
ture, with the fitted growth curves for the spring–summer, autumn–winter, and combined
data sets. These plots suggest that the three nonlinear growth models were appropriate
for the data. Additionally, the results presented in Table 3 indicate that the performance of
the three nonlinear models did not differ markedly in the same growing season, with the
difference being less than 0.01 among the R2 values for the three growth models. However,
a difference in the performance of the models was noted among the different growing
seasons. The autumn–winter model exhibited optimal performance (R2 = 0.85), followed by
the global model (R2 = 0.83); the spring–summer model performed most poorly (R2 = 0.82;
Table 3).

Table 3. R2, AIC, RMSE, and MAE of the eggplant rootstock training models used to fit the spring–
summer, autumn–winter, and combined data sets.

Data Set Model R2 AIC RMSE MAE

Spring–summer

Logistic 0.8184 −1.2573 0.1406 0.1077

Gompertz 0.8157 −1.2426 0.1416 0.1084

Richards 0.8203 −1.4335 0.1399 0.1080

Autumn–winter

Logistic 0.8518 −1.8066 0.1068 0.0837

Gompertz 0.8540 −1.8217 0.1060 0.0831

Richards 0.8548 −1.9924 0.1058 0.0829

Combined

Logistic 0.8316 −1.4828 0.1256 0.0958

Gompertz 0.8306 −1.4769 0.1260 0.0959

Richards 0.8316 −1.6490 0.1256 0.0959

AIC: Akaike information criterion; MAE: mean absolute error; R2: correlation coefficient; RMSE: root mean
square error.

Figure 3 illustrates that the fitting performance of the tomato scion model had a
similar tendency to that of the eggplant rootstock model. In the same growing season,
the performance of the three nonlinear models did not vary greatly, with differences in
R2 values for the three growth models of less than 0.01. However, a significant difference
across growing seasons was observed. Among the three growth models, the autumn–
winter model performed optimally (R2 = 0.80), followed by the global model (R2 = 0.752);
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the spring–summer model was the worst performer (R2 = 0.746; Table 4). Regardless of
whether the R2, AIC, RMSE, or MAE criterion was used, the fitting ability results were
nearly identical (Tables 3 and 4). Although these findings are slightly poorer than those of
another study on sunn hemp [26], which reported model R2 values of 0.85–0.86 when using
the Logistic and Gompertz nonlinear models to establish the relationship between the fresh
stem mass of sunn hemp and the days after sowing, the growth models developed in the
present study demonstrate acceptable fitting ability.
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Figure 3. Scatter plots of the tomato stem diameter versus cumulative temperature, obtained using the Logistic, Gompertz,
and Richards models (blue curves) to fit the spring–summer, autumn–winter, and combined data sets. (A) Spring–summer
Logistic model; (B) spring–summer Gompertz model; (C) spring–summer Richards model; (D) autumn–winter Logistic
model; (E) autumn–winter Gompertz model; (F) autumn–winter Richards model; (G) global Logistic model; (H) global
Gompertz model; (I) global Richards model.
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Figure 4. Scatter plots of the eggplant stem diameter versus cumulative temperature, obtained using the logistic, Gompertz,
and Richards models (blue curves) to fit the spring–summer, autumn–winter, and combined data sets. (A) Spring–summer
Logistic model; (B) spring–summer Gompertz model; (C) spring–summer Richards model; (D) autumn–winter Logistic
model; (E) autumn–winter Gompertz model; (F) autumn–winter Richards model; (G) global Logistic model; (H) global
Gompertz model; (I) global Richards model.

To examine the stability and rationality of the regression coefficients, validation
is a necessary step in the model construction. Therefore, we randomly classified 30%
of the data from each data set as a validation set. The graph illustrating the observed
versus fitted values indicates that most of the data points were within the 95% prediction
interval for each validated model (Figures 5 and 6). Moreover, most of the observed values
demonstrated no significant deviation from the straight line with a slope of 1, and the
correlation coefficients (r) between observed and fitted values were all higher than 0.80
(Figures 5 and 6), indicating that the fitted and observed values were close and the model
had accurate predictive ability. Tables 5 and 6 detail the performance of the eggplant and
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tomato validation models by using the spring–summer, autumn–winter, and combined
data sets. The validation indicated that in the same growing season, the performance of
the three nonlinear models did not greatly differ. Among the different-season models,
the autumn–winter model had the highest performance. The R2 values for the eggplant
and tomato models were 0.86 and 0.83, respectively. The global model registered the
second-best results among the different-season models, with R2 values for the eggplant
and tomato models of 0.80 and 0.75, respectively. The spring–summer model performed
the worst, with R2 values for the eggplant and tomato models of 0.80 and 0.72, respectively
(Tables 5 and 6). Moreover, the validation results were noted to display the same tendency
regardless of whether the R2, AIC, RMSE, or MAE criterion was used (Tables 5 and 6).
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(B) spring–summer Gompertz model; (C) spring–summer Richards model; (D) autumn–winter Logistic model; (E) autumn–
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(I) global Richards model. Prediction intervals are shown at a 95% level (dashed lines). The solid red lines represent the
regression lines, and the dotted lines refer to the 1:1 lines.
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Figure 6. Relationship between the fitted and observed values of the tomato model in validation. (A) Spring–summer
Logistic model; (B) spring–summer Gompertz model; (C) spring–summer Richards model; (D) autumn–winter Logistic
model; (E) autumn–winter Gompertz model; (F) autumn–winter Richards model; (G) global Logistic model; (H) global
Gompertz model; (I) global Richards model. Prediction intervals are shown at a 95% level (dashed lines). The solid red lines
represent the regression lines, and the dotted lines refer to the 1:1 lines.

Notably, the spring–summer model of the tomato scion was outperformed by the two
other models in both calibration and validation, with R2 being 0.72–0.746 (Tables 4 and 6).
We thus inferred that tomatoes are better adapted to autumn–winter production than to
summer production in Taiwan. The summer environment restricts tomato growth. The
Richards model, which allows for asymmetric growth, also performed suboptimally on all
of the evaluation criteria except the AIC, for which it was only slightly outperformed by
the Gompertz and Logistic models. Therefore, we conclude that introducing an additional
parameter to explain asymmetric growth in the prediction of tomato (Rosada cultivar) and
eggplant (EG203 cultivar) stem diameter at the seedling stage is unnecessary.
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Table 4. R2, AIC, RMSE, and MAE of the tomato scion training models used to fit the spring–summer,
autumn–winter, and combined data sets.

Data Set Model R2 AIC RMSE MAE

Spring–summer

Logistic 0.7459 −0.9653 0.1627 0.1307

Gompertz 0.7455 −0.9637 0.1628 0.1309

Richards 0.7459 −1.1310 0.1628 0.1308

Autumn–winter

Logistic 0.8038 −1.5461 0.1217 0.0946

Gompertz 0.8029 −1.5416 0.1220 0.0948

Richards 0.8041 −1.7130 0.1217 0.0946

Combined

Logistic 0.7516 −1.1499 0.1483 0.1177

Gompertz 0.7509 −1.1471 0.1485 0.1178

Richards 0.7516 −1.3161 0.1484 0.1177

AIC: Akaike information criterion; MAE: mean absolute error; R2: correlation coefficient; RMSE: root mean
square error.

Table 5. R2, AIC, RMSE, and MAE of the eggplant validation models used to fit the spring–summer,
autumn–winter, and combined data sets.

Data Set Model R2 AIC RMSE MAE

Spring–summer

Logistic 0.8012 −1.2114 0.1438 0.1090

Gompertz 0.7962 −1.1867 0.1456 0.1103

Richards 0.8070 −1.4054 0.1419 0.1082

Autumn–winter

Logistic 0.8558 −1.8070 0.1068 0.0848

Gompertz 0.8573 −1.8177 0.1062 0.0841

Richards 0.8572 −1.9813 0.1064 0.0845

Combined

Logistic 0.8030 −1.3278 0.1357 0.1046

Gompertz 0.8014 −1.3198 0.1363 0.1046

Richards 0.8031 −1.4938 0.1358 0.1047

AIC: Akaike information criterion; MAE: mean absolute error; R2: correlation coefficient; RMSE: root mean
square error.

Table 6. R2, AIC, RMSE, and MAE of the tomato validation models used to fit the spring–summer,
autumn–winter, and combined data.

Data Set Model R2 AIC RMSE MAE

Spring–summer

Logistic 0.7219 −0.9929 0.1605 0.1292

Gompertz 0.7225 −0.9952 0.1603 0.1291

Richards 0.7220 −1.1576 0.1606 0.1295

Autumn–winter

Logistic 0.8305 −1.7108 0.1121 0.0913

Gompertz 0.8293 −1.7041 0.1124 0.0918

Richards 0.8309 −1.8769 0.1121 0.0914

Combined

Logistic 0.7524 −1.1338 0.1495 0.1186

Gompertz 0.7517 −1.1309 0.1497 0.1186

Richards 0.7524 −1.2993 0.1496 0.1187

AIC: Akaike information criterion; MAE: mean absolute error; R2: correlation coefficient; RMSE: root mean
square error.



Horticulturae 2021, 7, 537 14 of 19

During the validation step, the fitted value of a model can be compared with the actual
observed value to evaluate the predictive ability of the trained model [37]. Shah et al. [40]
used weather-related variables to predict the probability of wheat head blight. Before
establishing their Logistic regression model, 70% of all data were randomly selected as
the training set for model construction, and the remaining 30% data were classified as the
testing set used for the model validation. They identified the weather-related predictors
through the model selection process to develop a relatively simple model. In the present
study, the fitting and predictive capabilities of each model were generally favorable and
the performance criteria for validation did not change significantly compared with the
calibration, indicating that these models were not overfit. Hence, the models developed in
this study should have high application potential.

3.3. Comparison of Model Parameters for Data from Different Growing Seasons

Table 7 displays the estimates and 95% confidence intervals for various eggplant
parameters based on the three nonlinear growth models in different seasons. In the
eggplant model, most parameter estimates varied significantly among the different seasons
(Table 7). The Logistic model estimated parameter a as 1.6559 for the spring–summer data,
which was outside of the 95% confidence interval (1.5486, 1.5917). Similarly, the model’s
estimate of 1.5702 for the autumn–winter data was not within the 95% confidence interval
(1.6275, 1.6842). Therefore, in different seasons, the models generated distinct parameter
estimates despite having been developed using the same variables. These findings are
consistent with those of previous studies [26,39], which demonstrated that the parameters
estimated for sunn hemp were different when differing growth models were employed.
Notably, the performance of growth models is affected by the growing season. However, no
significant differences in parameter estimates for the tomato models were noted between
the seasons; only the estimate of parameter c for the Logistic model was on the boundary
(Table 8).

Table 7. Estimates, SEs, and 95% confidence intervals of eggplant parameters based on the three nonlinear growth models
in different seasons.

Model Parameter

Eggplant (Spring–Summer) Eggplant (Autumn–Winter)

Estimate SE Lower
Limit

Upper
Limit Estimate SE Lower

Limit
Upper
Limit

Logistic

a * 1.6559 0.0144 1.6275 1.6842 1.5702 0.0110 1.5486 1.5917

b * −2.0222 0.0693 −2.1582 −1.8863 −2.5662 0.0880 −2.7389 −2.3935

c * 0.0053 0.0002 0.0049 0.0057 0.0071 0.0002 0.0066 0.0075

Gompertz

a * 1.7021 0.0186 1.6656 1.7386 1.5986 0.0128 1.5734 1.6238

b * 3.2076 0.1764 2.8615 3.5537 5.3383 0.3802 4.5921 6.0844

c * 0.0039 0.0002 0.0036 0.0043 0.0055 0.0002 0.0052 0.0059

Richards

a 1.6040 0.0147 1.5753 1.6328 1.6375 0.0255 1.5876 1.6875

b * −4.3237 0.8051 −5.9034 −2.7439 −0.9572 0.2814 −1.5095 −0.405

c * 0.0088 0.0012 0.0064 0.0111 0.0043 0.0005 0.0032 0.0053

d * 3.5041 0.8306 1.8743 5.1339 −0.8156 0.3103 −1.4247 −0.2065

* denotes significant difference between two growing seasons (α = 0.05); SE: standard error.
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Table 8. Estimates, SEs, and 95% confidence intervals of tomato parameters based on the three nonlinear growth models in
different seasons.

Model Parameter

Tomato (Spring–Summer) Tomato (Autumn–Winter)

Estimate SE Lower
Limit

Upper
Limit Estimate SE Lower

Limit
Upper
Limit

Logistic

a 1.5000 0.0174 1.4660 1.5341 1.5012 0.0232 1.4556 1.5468

b −1.9437 0.0878 −2.1160 −1.7714 −1.9607 0.0823 −2.1222 −1.7993

c 0.0061 0.0003 0.0055 0.0066 0.0067 0.0003 0.0061 0.0074

Gompertz

a 1.5377 0.0219 1.4947 1.5806 1.5749 0.0337 1.5089 1.6410

b 3.1026 0.2217 2.6676 3.5376 2.9736 0.2025 2.5761 3.3711

c 0.0046 0.0003 0.0041 0.0051 0.0048 0.0003 0.0042 0.0054

Richards

a 1.5035 0.0292 1.4461 1.5608 1.4710 0.0419 1.3888 1.5532

b −1.8477 0.6408 −3.1052 −0.5902 −2.4943 0.9138 −4.2877 −0.7008

c 0.0059 0.0012 0.0036 0.0082 0.0079 0.0020 0.0041 0.0118

d 0.8839 0.7698 −0.6266 2.3944 1.6152 1.0238 −0.3942 3.6246

In practice, a model that can fit various seasonal conditions is more widely applicable.
Therefore, we combined the data from different seasons to test the generalizability of the
models. Table 9 lists the eggplant and tomato parameter estimates and 95% confidence
intervals obtained using three nonlinear growth models to fit the combined data. The
parameter estimates of all global models were significantly different from those of the
spring–summer and autumn–winter models for eggplant, except for parameter a in the
Richards model (Tables 7 and 9). Conversely, the Gompertz and Richards model parameter
estimates for the global data did not significantly differ in relation to spring–summer and
autumn–winter tomatoes (Tables 8 and 9). Nevertheless, as mentioned in the previous
section, the model fit and validation performance of the global model were inferior to
those of the autumn–winter model (but superior to those of the spring–summer model
(Tables 3–6). Therefore, the various environmental conditions suggest that different growth
models should be employed in different seasons to achieve optimal model validity.

Table 9. Estimates, SEs, and 95% confidence intervals of eggplant and tomato parameters based on the three nonlinear
growth models fitted to the combined data.

Model Parameter

Eggplant (Global) Tomato (Global)

Estimate SE Lower
Limit

Upper
Limit Estimate SE Lower

Limit
Upper
Limit

Logistic

a 1.6108 * 0.0086 1.5940 1.6277 1.3871+ 0.0084 1.3706 1.4036

b −2.2376 * 0.0546 −2.3447 −2.1305 −3.1616+ 0.0842 −3.3267 −2.9964

c 0.0061 * 0.0001 0.0058 0.0063 0.0102+ 0.0003 0.0097 0.0107

Gompertz

a 1.6463 * 0.0106 1.6256 1.6671 1.5171 0.0153 1.4871 1.5471

b 3.9172 * 0.1709 3.5821 4.2523 3.1341 0.1591 2.8221 3.4460

c 0.0046 * 0.0001 0.0044 0.0049 0.0049 0.0002 0.0046 0.0053

Richards

a 1.6070 0.0125 1.5824 1.6316 1.4783 0.0187 1.4416 1.5151

b −2.3698 * 0.3341 −3.0249 −1.7146 −2.0085 0.4494 −2.8898 −1.1272

c 0.0063 * 0.0006 0.0052 0.0074 0.0066 0.0009 0.0049 0.0083

d 1.1490 * 0.3697 0.4240 1.8740 1.0766 0.5444 0.0090 2.1442

* denotes a significant difference between the global and spring–summer/autumn–winter models (Table 7; α = 0.05); + denotes a significant
difference between the global and spring–summer/autumn–winter models (Table 8; α = 0.05).
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3.4. Estimation of a Suitable Grafting Standard by Using the Cumulative Daily Temperature

Three nonlinear growth models developed for different seasons were used to estimate
the time required for eggplant rootstocks and tomato scions to reach the grafting stan-
dard (1.5–2.0 mm) given the cumulative daily temperature (Table 10). In spring–summer,
the eggplant and tomato could be grafted when the cumulative temperature reached
578.2–724.1 and 567.4–789.2 ◦C, respectively; in autumn–winter, the eggplant and tomato
could be grafted when the cumulative temperature reached 541.4–688.5 and 509.6–718.6 ◦C,
respectively. The combined data for the various seasons suggested that the eggplant
and tomato could be grafted when the cumulative temperature reached 558.8–702.8 and
540.3–770.6 ◦C, respectively. As detailed in Table 1, the average temperature recorded in
each data set suggest that for grafting during spring–summer, eggplant and tomato require
approximately 21–27 and 21–29 days, respectively. However, in the autumn–winter, the
eggplant and tomato require nearly 23–29 and 22–31 days, respectively. In addition, the
combined data indicate that eggplant grafting requires approximately 22–27 days, whereas
tomato grafting requires 21–30 days (Table 10).

Table 10. Summary of cumulative temperatures required to reach the seedling stem diameter
standards of 1.5 and 2.0 mm for eggplant and tomato based on the spring–summer, autumn–winter,
and combined data sets and calculated using the three nonlinear growth models.

Plant Data Set
Model Cumulative Temperature (◦C)

1.5 mm 2.0 mm

Eggplant

Spring–summer

Logistic 579.5 716.1

Gompertz 578.2 724.1

Richards 584.4 703.3

Autumn–winter

Logistic 542.2 675.1

Gompertz 541.4 681.7

Richards 541.5 688.5

Combined

Logistic 559.7 694.7

Gompertz 558.8 702.8

Richards 559.9 693.7

Tomato

Spring–summer

Logistic 567.4 783.6

Gompertz 570.7 789.2

Richards 567.7 784.3

Autumn–winter

Logistic 511.3 707.1

Gompertz 514.5 694.2

Richards 509.6 718.6

Combined

Logistic 540.5 770.5

Gompertz 544.1 770.0

Richards 540.3 770.6

In summary, if the stem diameter of 1.5 mm is selected as the grafting standard, the
growing time of eggplant is nearly 1 day longer than that of tomato, except during spring–
summer. By contrast, the required eggplant growth time is 1–2 days shorter than that of
tomato when 2.0 mm is designated as the necessary stem diameter for grafting (Table 10).
However, Norday et al. [5] considered seedling stem diameter as a dependent variable
and employed multiple linear regression analysis on two independent variables (i.e., the
number of days after sowing and the temperature), discovering that the eggplant rootstocks
required more growth time than the tomato scions to reach the 1.6 mm stem diameter they
deemed suitable for grafting based on personal experience. The eggplant rootstock growth
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time was approximately 2 weeks longer than that of the tomato scion. This is not entirely
consistent our results; the difference could have resulted from the different experimental
materials, environmental conditions, or statistical models.

Stem diameter is the most crucial indicator in evaluation of grafting timing because the
stem diameters of the rootstock and scion seedlings must not only be within a certain range
but also be similar at the time of grafting [41–43]. Several studies have suggested that the
stem diameter of the rootstock and scion being similar during grafting increases the grafting
success rate [20,22,23]. Other suitable stem diameters of eggplant rootstock and tomato
scion (e.g., 2.0 mm for tomato scion and 2.5 mm for eggplant rootstock) are planned topics
of our further studies in Taiwan. In addition, during the growth process, crops are highly
susceptible to environmental conditions, which affect their growth rates. Therefore, to more
effectively control error variation and improve a model’s interpretation and predictive
ability, the amount of data gathered during the data collection stage can be increased or
additional independent model variables (e.g., varieties and environmental factors) can
be considered. Jones et al. [44] estimated several physiological parameters of tomato
under various environmental conditions, asserting that estimating the parameters based
on specific cultivation conditions and crop varieties necessitates the use of an established
growth model. Yuan and Bland [45] modeled the weights of the stems, leaves, and tubers
of potatoes (Solanum tuberosum) by using two independent variables (i.e., temperature
and photosynthetically active radiation), reporting that the growth and development of
potatoes were greatly influenced by the weather and field management procedure in
response to local seasonal weather differences. The models established in the current study
were constructed using only the data of a single region. We plan in our future works to
acquire data from other regions to improve our model’s ability to predict the stem diameter
of eggplant rootstocks and tomato scions.

4. Conclusions

In the present study, we collected seedling growth data for a total of 3 years (six
growing seasons) in Taiwan and established growth models by using three sigmoid growth
functions: the Gompertz, Logistic, and Richards models. The nonlinear growth models
established in this study can accurately predict the growth of the stem diameter of eggplant
and tomato. It is unnecessary to introduce an additional parameter to explain asymmet-
ric growth in the prediction of tomato (Rosada cultivar) and eggplant (EG203 cultivar)
stem diameter at the seedling stage. When these models are used to predict the growth
of seedlings, the cumulative temperature predictions through local weather forecasts or
historical weather data can be used to adjust the planned sowing and grafting times of
eggplant and tomato. Similarly, nurseries can plant different batches of seedlings at the
optimal time and arrange the schedule of grafting operations in advance to improve graft-
ing efficiency. Taking Taiwan environmental conditions as an example, we can predict that
when grafting during spring–summer, eggplant and tomato, it will require approximately
21–27 and 21–29 days to reach cumulative temperature; while in the autumn–winter, it will
take nearly 23–29 and 22–31 days, respectively. Basically, tomato must be sown 1–2 days
earlier than eggplant. With this information, the planting date can be scheduled in advance
according to the market demands.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/horticulturae7120537/s1, Table S1: Descriptive statistics of the environmental parameters of
each data set used in this study (information presented separately by year). Figure S1: Residual plots
of eggplant stem diameter (untransformed) by using spring–summer, autumn–winter, and combined
data with the Logistic, Gompertz, and Richards growth models. Figure S2: Residual plots of tomato
stem diameter (untransformed) by using spring–summer, autumn–winter, and combined data with
the Logistic, Gompertz, and Richards growth models.
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