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Abstract: In precision agriculture, the nitrogen level is significantly important for establishing pheno-
type, quality and yield of crops. It cannot be achieved in the future without appropriate nitrogen
fertilizer application. Moreover, a convenient and real-time advance technology for nitrogen nutrition
diagnosis of crops is a prerequisite for an efficient and reasonable nitrogen-fertilizer management
system. With the development of research on plant phenotype and artificial intelligence technology
in agriculture, deep learning has demonstrated a great potential in agriculture for recognizing nonde-
structive nitrogen nutrition diagnosis in plants by automation and high throughput at a low cost. To
build a nitrogen nutrient-diagnosis model, muskmelons were cultivated under different nitrogen
levels in a greenhouse. The digital images of canopy leaves and the environmental factors (light and
temperature) during the growth period of muskmelons were tracked and analyzed. The nitrogen con-
centrations of the plants were measured, we successfully constructed and trained machine-learning-
and deep-learning models based on the traditional backpropagation neural network (BPNN), the
emerging convolution neural network (CNN), the deep convolution neural network (DCNN) and
the long short-term memory (LSTM) for the nitrogen nutrition diagnosis of muskmelon. The ad-
justed determination coefficient (R2) and mean square error (MSE) between the predicted values
and measured values of nitrogen concentration were adopted to evaluate the models’ accuracy.
The values were R2 = 0.567 and MSE = 0.429 for BPNN model; R2 = 0.376 and MSE = 0.628 for
CNN model; R2 = 0.686 and MSE = 0.355 for deep convolution neural network (DCNN) model; and
R2 = 0.904 and MSE = 0.123 for the hybrid model DCNN–LSTM. Therefore, DCNN–LSTM shows the
highest accuracy in predicting the nitrogen content of muskmelon. Our findings highlight a base for
achieving a convenient, precise and intelligent diagnosis of nitrogen nutrition in muskmelon.

Keywords: machine learning; deep learning; convolution neural network (CNN); long-short term
memory (LSTM); deep convolution neural network (DCNN); nitrogen nutrition diagnosis

1. Introduction

The netted muskmelon (Cucumis melo L. var. etiquettes Naud.) is a delicious and
nutritious fruit. It is widespread and grown worldwide. Nitrogen is one of the critical
environmental factors that affects the growth process of muskmelon. Both the external
phenotype and internal activity are significantly affected by nitrogen [1–3]. The appropriate
nitrogen levels are helpful for the accumulation of nitrogen and fruit biomass production
in crops [4,5]. However, farmers often overuse nitrogen in muskmelon, and this reduces
the quality and yield of muskmelon fruit. At the same time, the overuse of nitrogen
causes serious environmental problems, such as contamination of water resources, nitrogen
leaching losses and emission of greenhouse gases [6,7]. Therefore, an efficient and real-time
nitrogen nutrition diagnosis technology is necessary for achieving the goal of rational
nitrogen application in crops.

Traditionally, crop nitrogen nutrition status is artificially judged by plant phenotypical
traits or determined with the chemical analysis method. However, the plant-image-based
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artificial judgment is empirical, and the chemical analysis method is destructive for the
plants. After all, phenotypical traits of crops can help to guide real-time fertilizer applica-
tions to the plants in greenhouses and fields [8]. At present, image-based machine vision
techniques have been adopted for plant nutrition diagnosis in agriculture sector. These
techniques can detect automatically or semi-automatically the slight changes in leaves’
reflection characteristics to visible light due to variation in different nutrition levels of the
plants [3]. Machine learning techniques could be considered effective processes which
are used to analyze the big data and give efficient results with outstanding performance
in many fields, such as artificial neural network, decision tree, support vector machine
(SVM), etc. Therefore, combining machine vision technique with machine learning is
an ideal choice for realizing the nondestructive diagnosis of plants’ nitrogen nutrition.
Non-destructive testing technology is more efficient and accurate than traditional manual
measurement methods. This technology is cheaper and requires less time than hyperspec-
tral [9–11] and chlorophyll fluorescence [10,12]. It has been used in many agricultural fields,
such as biomass accumulation through image analysis [13], crop coefficient [14], abiotic
stresses [15,16] and nutritional diagnosis [3,17,18].

Deep learning is considered to be a promising and advanced subset of machine
learning. It has emerged as a technique to process and analyze large and complex datasets.
Now, it has been used in image-based plant phenotyping [19], plant species and pest
identification [20–24], yield prediction [25–27] and protein and gene identification [28,29].
Concerning the prediction accuracy, deep learning methods give direct information as
inputs of images’ data into the deep neural networks. It is helpful to avoid artificial image
processing steps in data processing to filter out the redundant information of the images
and reduction in dimensions [30]. The use of deep learning in agriculture to perform
nitrogen nutrition diagnosis for crops, such as maize [31], rape [32] and masson pine [33],
and showed remarkable potential in agriculture. This technique promptly predicts nitrogen
status before appearance of nitrogen deficiency symptoms in plants and guides real-time
nitrogen application in plants. It has a huge significance for improving crop quality
and yield. Many studies used canopy leaf reflectance spectrum information for nitrogen
nutrition diagnosis through deep learning [34,35], but limited data have been found for
phenotypes and nitrogen nutrition diagnosis of muskmelon through image-based plant
phenotyping in light and deep learning.

In deep learning, a convolution neural network (CNN) is a class of feed-forward
neural networks in which sets of images are filtered through convolution and other pooling
layers for feature extraction of images. Convolutional images or feature maps are obtained
by repeating convolutional and other pooling layers for getting labeled estimated class in
the model network as an output. In a training dataset, handcrafted features are used in
traditional machine learning techniques while CNN is not this way [36]. In CNN, images
are used to filter parameters by optimizing the weights in the hidden layers to generate
the parameters of the features that are suitable to solve the classification problems. In
principle, backpropagation is used to optimize the parameters in the model network [37],
and classification errors are minimized by using gradient descent approaches [38]. By
extracting the feature parameters as an interpretable form in CNN model confirms its
reliability. In the training dataset, model authenticity and validation can be checked by the
human interference.

In deep learning, CNN is developed for few hidden layers to extract the features from
images, while, in recent years, neural networks with more layers have emerged and are
called deep convolutional neural network (DCNN). Deep CNN has the same extraction
features and performance as CNN, but it includes hidden layers and larger space for
extraction features from images. In DCNN, the number of hidden layers greater than
in CNN. In deep CNN, extraction features are performed automatically from the image
processing, while, in CNN, extraction features from the image processing are performed by
human interference. The extraction features are distributed across the layers by fine-tuning
in an optimal way for the learning process in DCNN. It is not easy to adequately determine
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the most important extraction features in deep learning for large and/or complex datasets
for human being. For that reason, we noticed a significant progress and achievement
in accurate determination of different models in different fields when compared with
other machine learning and/or deep learning methods [39]. Lin et al. [40] used the CNN
semantic segmentation method for the identification of powdery mildew in cucumber. The
model identified the powdery mildew by intersection over union (72.11%), dice accuracy
(83.45%) and average pixel accuracy (96.08%) in the CNN model. CNN is mostly used for
visual plant disease related problems in plants, but there are rare works in the literature on
the comparison of CNN and DCNN in plant nutrition.

Deep CNN is mostly used for spatial data; deep recurrent neural network is built for
sequential data modeling, such as time series [41,42]. It used widely in speech recognition,
machine translation, emotion analysis and picture description. The input volume can be
put as a series of text, speech, time, etc., that depends on previous elements. The time steps
at the same state (input, output and hidden conditions) share one weight matrix, which
greatly reduces the number of parameters to be learned in the model. DCNN model used
to identify the nutrients deficiencies (nitrogen (N), potassium (K) and calcium (Ca)) in
tomato leaves and fruiting phase accurately [43]. DCNN with the AlexNet model showed
the highest accuracy rate of a model (92.1%) on the five different types of vegetables’
images-based dataset (mushrooms, pumpkin, broccoli, cucumber and cauliflower) [44] as
compared to backpropagation neural network (BPNN) (78%) and support vector machines
(SVM) classifier (80.5%). The DCNN model was used in cucumber to identify the cucumber
diseases with the average pixel accuracy (93.4%) [24].

However, standard deep RNN may not be quite suitable for long-range order or
memories in time series modeling. In such cases, long short-term memory (LSTM) has
been reported as an effective and popular method in time series. Long short-term memory
(LSTM) is a variant of RNN that can learn long-term dependence and is the most widely
used. Compared with the traditional RNN, LSTM introduces controllable self-cycling,
which is more suitable for processing and predicting important events with relatively
long intervals or delays in time series. The network solves problems such as gradient
disappearance and gradient explosion caused by time backpropagation during training [45].
Jiang et al. [46] used LSTM to predict the corn yield by using soil and weather data
and described promising results. Wheat forecast production is accurately predicted by
using LSTM model [47]. Plant growth variation and forecast yield production in tomato
and Ficus benjamina stem growth by LSTM showed promising results in the controlled
environments [48]. LSTM showed a great ability to disclose phenological properties, while
DCNN has a great ability to extract more spatial features [49]. However, little attention has
been directed to use the DCNN and LSTM for nitrogen nutrition in muskmelon.

This study aimed to predict the nitrogen content of greenhouse netted muskmelon ac-
curately in real-time and guide the decision-making of nitrogen application of muskmelon
in the greenhouse by using machine-learning or deep-learning approaches. Based on leaf
images and measured nitrogen values, nitrogen nutrition diagnosis models were estab-
lished and optimized by using machine learning or deep learning approaches. Nitrogen
nutrition diagnosis by different deep learning models, step by step, is shown in Figure 1.
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Figure 1. Systematic overview based on the deep learning approaches for the prediction of nitrogen
nutrition diagnosis. The proposed system consists of several steps to collect the dataset and provides
classification and prediction of results.

2. Materials and Methods

A thick-skinned netted muskmelon variety, Wanglu, was used as the material in this
study. This experiment was carried out in a Venlo glass greenhouse (31◦11′ N, 121◦36′ E),
C-2 block at Shanghai Jiao Tong University, from March 2018 to June 2018.

The seedlings of muskmelon Wanglu variety were grown in the seedling tray and
then transplanted into pots containing a substrate “vermiculite and peat moss, 1:1 v/v”
at the three-leaves stage. Each pot contained two plants (Figure 2). The pH of growing
substrate of muskmelon was 6.77 and contained the following nutrients: available nitrogen
at 332 mg/kg, available phosphorus at 124 mg/kg and available potassium at 118 mg/kg.
Two weeks after transplanting, the muskmelon plants were treated with four different
nitrogen applications with three replications. Different treatments of nitrogen were as
follows: T1, 2.7 g nitrogen/pot; T2, 5.4 g nitrogen/pot; T3, 8.1 g nitrogen/pot; and T4,
10.8 g nitrogen/pot. The amount of phosphorus and potassium added per pot was 5.2 and
9.0 g, respectively, in all the pots. The sources of N, P and K fertilizers were calcium nitrate,
potassium nitrate, magnesium nitrate and potassium dihydrogen phosphate. The total
N fertilizer was applied at six growing stages of muskmelon, namely pre-planting (10%),
seedling stage (5%), vine elongation stage (10%), initial fruit stage (35%), fruit expanding
stage (35%) and mature stage (5%). All other nitrogen fertilizer applications were applied
with drip irrigation, for except pre-planting (10%).

In this experiment, three fruiting vines kept in the beginning at the 10th–16th fruiting
nodes, and later only one elegant-shaped big fruit and single main vine were kept, and
we removed all redundant side vines at the 20–22 leaves stage. Hand-pollination was
performed in time to ensure the fruit set.

The flowchart of this study is described in Figure 3. Four different treatments of
nitrogen were applied to muskmelon and after harvesting, determined the nitrogen con-
centration in muskmelon. For this purpose, we collected the digital images from four fully
expanded apical leaves for the whole growth period of muskmelon and measured the
nitrogen concentration of muskmelon. Based on leaf images and measured nitrogen values,
nitrogen nutrition diagnosis models were established and optimized by using machine
learning or deep learning approaches.

In the machine learning-based nitrogen nutrition diagnosis models, plantCV, an open-
source software for image analysis, was utilized to extract phenotypical features from
the plants’ images. Furthermore, ANOVA and principal component analysis (PCA) were
performed to analyze feature extraction parameters and reduced the dimensions. After
that, three principal components were chosen. Dataset 1 was obtained by combining three
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principal components and nitrogen concentration data, and then it was randomly divided
into a training subset (80%) and test subset (20%).

A backpropagation neural network (BPNN) model was built and trained by dataset
1. BPNN is not a two-layer network but with only 1 hidden layer. In BPNN, we used
Empirical Formula (1) to calculate the hidden neurons. After testing, we set the number
of hidden neurons at 12. In the BPNN model, we set 50 epochs, 100 epochs, 200 epochs,
etc. In addition, we found a decline in accuracy after training 100 epochs. Therefore, we
stopped training.

We also established a nitrogen nutrition diagnosis model based on deep learning
approaches (Figure 3). First, the original dataset of images was processed through data
augmentation, normalization, annotation, stitching, etc. Secondly, Dataset 2 was created by
combining the processed dataset of images with nitrogen concentrations data, and then
it was randomly divided into a training subset (80%), validation subset (10%) and test
subset (10%).

Thirdly, convolutional neural network (CNN) and deep convolutional neural network
(DCNN) models were built and trained by Dataset 2. Dataset 3 was covered by combing
the processed dataset of images with nitrogen-concentration data and the dataset of mete-
orological factors. It was also randomly divided into a training subset (80%), validation
subset (10%) and test subset (10%). A hybrid model based on DCNN–LSTM was finally
built and evaluated by Dataset 3 as input data.

At last, the precision accuracy of all the models was compared to choose the best one
among them.
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curation in Step 2 and made a Dataset 2 and Dataset 3 by using training and validation testing data; in Steps 4 and 5, Dataset
2 and Dataset 3 used to get clear connected object by convolutional and pooling layers, and then predicted the nitrogen
concentration in convolution neural network (CNN), deep-learning convolution neural network (DCNN) and hybrid long
short-term memory (DCNN–LSTM) model by training and validation testing of model loss; in Step 6, evaluated the CNN,
DCNN and DCNN–LSTM models to select the best model among them on the basis of coefficients of determination (R2)
and mean square error (MSE) in muskmelon for nitrogen diagnosis.

3. Data Collection
3.1. Measurement of Nitrogen Concentration in Plants

For nitrogen measurement, plant samples were collected total of thirteen times
throughout the experimental period at different growth stages. The first sampling was
after the 5th day of nitrogen application at the seedling stage (5%) in pots. Each time,
one plant from each pot was collected, and total 156 plant samples were collected from
seedling stage to fruit maturity stage, with the interval of one week. After the removal
of the abovementioned ground parts, digital images of leaves were collected. Only the
four fully expanded leaves at the apical part of the plants were used for digital images
analysis. Nitrogen concentration in plants was measured by mixing of all plants leaves.
The plant leaves were used for nitrogen measurement by initially subjected to 30-min
enzyme deactivation treatment at 105 ◦C, followed by drying at 80 ◦C to a constant weight,
and finally ground into pieces of 100 mesh sieves. Nitrogen concentration was ultimately
determined by elemental analysis isotope mass spectrometer Vario EL III/Isoprime element
analyzer (Hanau, Germany) [50].

3.2. Leaf Image Acquisition

Images of upper leaf surfaces were taken by a single-lens reflex (SLR) camera (Canon
EOS 5D Mark II, Japan) in a closed box of 60 cm × 60 cm × 60 cm. The camera settings
were adjusted at M mode, exposure compensation set to zero, 1/320 shutter speed, 60 mm
focal length and ISO 200. In the photo box, the light was evenly illuminated, and there
was a fixed panel of light-emitting diode (LED) on the top two-sides of the photo box.
Controlled LED power light was used with 60 W maximum value. Astral lamp panels
(38 cm × 38 cm) were fixed to hold the leaves. The box opened at the top.

Finally, 624 digital images were taken from 156 plants’ samples. One image was taken
from each of the four canopy leaves of the plant.

3.3. Collecting Meteorological Data of Greenhouse

After transplanting seedlings to the pots, environmental factors of the greenhouse,
such as temperature and photosynthetically active radiation, were monitored by two
portable automatic weather stations (HOBO-U30, Onset, Bourne, Ma, USA) in every 5 min.

3.4. Establishment of Machine Learning (ML) Model
Extraction of Phenotypical Features

Phenotypic extraction parameters were used as conversion from visual characteristics
of images into mathematical forms that could be recognized, processed and analyzed
by a computer. In this study, the image-analysis software (PlantCV 3.2.0) was used for
high-throughput plant phenotyping. PlantCV 3.2.0 is a modular open-source framework,
which is written in Python [51].

Two steps were included in the visual digital images processing pipeline of PlantCV,
which were used as segmented object (detection or isolation) and analysis (analysis of
segmented objects). Taking a muskmelon plant as an example, we show the procedures of
image processing in Figure 4. The procedures were as follows: (1) recognized the digital
images; (2) converted color space from red green blue (RGB) to hue saturation value (HSV)
and extracted saturation channel to get saturation threshold level; (3) removed the image
noise with median filtering algorithm; (4) converted color space RGB to LAB and extracted
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blue channel to get blue threshold level image; (5) segmented the original image into the
targeted region and object of interest based on the thresholds of saturation and blue-yellow
images; (6) analyzed morphological features; (7) extracted color indexes based on color
histogram and pseudo-colored image; (8) extracted the netting indexes based on gray-level
co-occurrence matrix; and (9) extracted phenotypic parameters as output. Furthermore,
a color histogram and pseudo-colored image of the fully expanded leaf are presented
in Figure 5.
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properties relative to user boundary line.
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Figure 5. Color histogram (A) and pseudo-colored image (B) of leaf image.

Thirty-one phenotypical parameters were extracted from each image and numbered 1
to 31 (Table 1), including 9 color parameters involved in 3 color spaces (RGB, LAB, and
HSV), 16 morphological parameters based on contour tracking method, 6 netting charac-
teristics parameters based on grey level co-occurrence matrix. All parameters contained
means of four canopy leaves of plants.

Table 1. List of phenotypic feature parameters.

Category Serial No. Extracted Index Reference

Color
1–3 blue/green/red mean
4–6 lightness/green-magenta/blue-yellow mean
7–9 hue/saturation/value mean

Morphology

10 area
11 hull-area
12 solidity
13 perimeter
14 width
15 height [52]
16 longest-axis
17 center-of-mass-x
18 center-of-mass-y
19 hull-vertices
20 ellipse-center-x
21 ellipse-center-y
22 ellipse-major-axis
23 ellipse-minor-axis
24 ellipse-angle
25 ellipse-eccentricity

Texture

26 contrast
27 dissimilarity
28 homogeneity
29 ASM
30 energy
31 correlation

4. Result
4.1. Phenotypical Feature Parameters Screening

One-way ANOVA: One-way ANOVA was performed to analyze the relationship be-
tween the extracted feature parameters and plant nitrogen concentration (Figure 6). Results
highlighted three color indexes (1 blue, 7 hues and 8 saturation) and eight morphological
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feature indexes (13 perimeters, 17 center-of-masses-x, 18 center-of-masses-y, 19 hull-vertices,
20 ellipse-center-x, 21 ellipse-center-y, 24 ellipse-angle and 25 ellipse-eccentricity) were
not associated with plant nitrogen concentration (p > 0.01). In contrast, the other 20 fea-
ture parameters were significantly correlated with the nitrogen concentration (p < 0.01).
Thus, the 20 feature parameters were chosen for the construction of nitrogen nutrition
diagnosis models.
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Principal component analysis (PCA): PCA was further performed to reduce the above
20 screened feature parameters’ dimensions (Table 2). First, these 20 feature parameters
were used to determine the sampling adequacy of data for analysis by Kaiser–Meyer–
Olkin (KMO) test [53] and Bartlett spherical test [54], using SPSS Statistics version 22.0.
The results indicate that the images’ data obtained adequate results (KMO = 0.797), and
both the correlations and partial correlations between these parameters were significant
(p = 0). Then, PCA was performed to select the principal components whose eigenvalues
were more than 1, and only three principal components showed eigenvalues more than 1
(Figure 7). The scatter plots showed projections of the top three PCs based on the PCA of
images-based dataset. The component scores (shown in points) were presented as different
colors with the same shape, according to the phenotypical features. The component loading
vectors (represented in lines) of all features were superimposed proportionally to their
contributions. The contribution rates of PC1, PC2 and PC3 are 51.277%, 27.290% and
11.158%, respectively; namely, a total contribution rate of 89.725% was reached. The three
principal components could be used as an input variable for nutrient diagnosis models,
indicating the input data dimension as a reduction from 20 to 3.
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Table 2. Factors of principal component analysis of phenotypic feature parameters.

Category No. Parameters Name F1 F2 F3

Yan Color
Special Sign

2 Green −0.488 0.855 −0.067
3 Red −0.462 0.840 −0.119
4 Lightness −0.484 0.853 −0.076
5 green-magenta 0.496 −0.787 −0.107
6 blue-yellow −0.480 0.854 −0.008
9 Value −0.486 0.856 −0.068

Shape State
Special Sign

10 Area 0.784 0.540 0.190
11 hull-area 0.896 0.356 0.199
12 Solidity −0.239 0.606 0.001
14 Width 0.917 0.263 0.214
15 Height 0.897 0.304 0.208
16 longest-axis 0.900 0.325 0.214
22 ellipse-major-axis 0.887 0.390 0.178
23 ellipse-minor-axis 0.880 0.383 0.214
26 Contrast 0.611 0.109 −0.757

Pattern
Reason

Special Sign

27 dissimilarity 0.721 0.093 −0.676
28 homogeneity −0.889 0.011 0.353
29 ASM −0.933 0.003 −0.070
30 Energy −0.957 −0.018 −0.073
31 correlation −0.290 −0.207 0.919
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4.2. Establishment of Backpropagation Neural Network (BPNN)

Backpropagation neural network (BPNN) was trained as a two-layer forward neural
network by using a backpropagation algorithm [55]. It is one of the most widely used and
most mature machine learning model. The architecture consisted of three parts: input layer,
hidden layer and output layer. Three principal components were used as input that were
considered as the input layer, and the nitrogen concentration of corresponding plants was
obtained as input which was considered as output in the model. Thus, the input node was
set to 3, the output node was set to 1 and the hidden neuron node was calculated according
to Empirical Formula (1):

l < a +
√

m + n (1)

where n, l and m represent input layer, hidden layer and output layer, respectively; a is a
constant with range within 0–10.

A random 80% of the total dataset (124 plants) was used as the training dataset, and
the other 20% (32 plants) was used as the test dataset. In a MATLAB R2016a based on
BPNN, used after a series of tests to debug the parameters of BPNN, we normalized input
data by mapminmax () function, selected logsid () function as the activation function and
adopted the variable learning rate to the learning algorithm in the model. The maximum
learning rate was 0.2, the minimum learning rate was 0.02 and the momentum learning
rate was 0.02 (Codes in Supplementary Materials S1).

4.3. Establishment of Deep Learning Models

In deep learning, the models were established by using Python 3.6.5 programming
language and Keras 2.1.2. Keras 2.1.2 [56] is a high-level neural network API that is written
in Python and capable of running on the top of TensorFlow 1.6.0 [57].

4.3.1. Image Preprocessing

First, each leaf image was annotated to correspond the leaf nitrogen concentration.
Then the 624 original leaf images were amplified through rotating the original images
at 5 random angles, and finally 3744 images in total were obtained for analysis. After
splicing the images of four leaves of a plant together, then 936 new images were used as an
input dataset of the neural network, while the image resolution changed from 128 × 128
to 256 × 256. The measured nitrogen concentration was still put as the output dataset.
The input and output datasets were randomly divided into a training subset (80%), cross-
validation subset (10%) and test subset (10%).

4.3.2. Data Preprocessing of Environmental Factors

The growth rate of plants was mainly determined by the relative thermal effectiveness
(RTE) of temperature and photosynthetic active radiation (PAR). The growth and devel-
opment of netted melon in greenhouse is a dynamic process that changes with time. If
the planting days are used to predict the growth and development of the crop at a certain
time node, and the influence of the temperature and light as environmental factor due
to specific plant location cannot ignore for plant growth and development. In addition,
meteorological and environmental data also affect the phenotype (such as color) of plant
leaves. As the accumulated total production of thermal effectiveness and PAR gradually
increased in the cultivation condition in this study. For the RGB color space, the blue
value changed smoothly, and the red and green values both increased first, then decreased
and then again increased, represented as green > red > blue (Figure 8A); meanwhile, for
the LAB color space, the green-magenta value hardly changed, but the blue-yellow and
lightness values both showed a slight increase, then decreased and then again increased,
but the blue-yellow value changed a little, and the lightness value fluctuated widely,
represented as blue-yellow > green-magenta > lightness (Figure 8B). For the HSV color
space, the hue value showed almost no change; the saturation and value values both
showed a trend of first increasing, then decreasing and then again increasing, represented
as saturation > value > hue (Figure 8C).
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Therefore, this study used the light–temperature index radiant thermal product TEP
instead of planting days as a time series variable and combined them with images data to
predict the growth and development stage of greenhouse netted muskmelon and plants’
nitrogen concentrations. We measured the cumulative radiant heat product of the plant at
each sampling time [58] and annotated it into the corresponding canopy leaf images as the
environmental input variable of the neural network.

4.4. Establishment of CNN Model

In deep learning, a convolution neural network (CNN) is a class of feed forward
neural networks and most commonly applied to analyze visual images. CNN employs
convolution operation in place of general matrix multiplication operation at least one of
their layers. CNN generally consists of an input layer, output layer, and multiple hidden
layers, such as convolutional layers, pooling layers, and fully connected layers. The pooling
layers are connected with all the neurons of the convolutional layers [59].

We set two convolutional layers, two pooling layers and two fully connected layers
in the CNN model by using LeNet as the backbone. In the convolution layers, kernel size
was 5 and padding was set as “same”. In pooling layers, pool size and strides were both (2,
2), rectified linear units (ReLU) were set as the activation function, Adam () was set as the
optimizer and batch size was kept as 12 (Codes in Supplementary Materials S2). The input
volumes and output volumes of every layer are presented in Figure 9. The R2 and MSE
methods were used for model evaluation.

4.5. Establishment of DCNN Model

Based on CNN architecture, three convolutional layers, three pooling layers and
three fully connected layers were supplied to build up a deep-learning convolution neural
network (DCNN) model. Different filters in the convolutional layer had placed for other
parameters. After a series of convolution, pooling and activation operations in the network,
the features of input images were detected and learned. The feature maps of essential areas
of the image out of each of the middle layers are presented in Figure 10. With the increased
of network depth, the extracted features became more filtered and gave more precise
extracted feature parameters. The high activation layer carried more targeted information:
the valuable information was enlarged and refined, while the irrelevant information was
filtered out (Codes in Supplementary Materials S3). However, in CNN, the too-deep neural
network presented results with less prediction accuracy, excessive calculation time and
over-fitting, while, in DCNN, the results presented more predication accuracy in less
calculation time, without over-fitting. The parameters were set in DCNN as the same in
the CNN model.

4.6. Establishment of DCNN–LSTM Model

A recurrent neural network (RNN) is a class of neural networks that utilizes input
data in series. The architectures (Figure 11) are considered as flexible and used in speech
recognition, machine translation, emotion analysis and picture description. The input
volume can be used as a series of text, speech, time, etc., that depends on previous elements.
The time steps at the same state (input, output and hidden conditions) share one weight
matrix, which greatly reduces the number of parameters to be learned in the model.
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CNN; x (t) and y (t) are put as an input and output step respectively. The right-side graph shows the RNN expansion
architecture. Respectively, u, v and w are the weight matrices corresponding to the input, output and hidden states. The
same time states share one weight matrix, which greatly reduces the number of parameters in the model to be learned.

Long short-term memory (LSTM) is a variant of RNN that can learn long-term depen-
dence. It is the most widely used type of RNN. Compared with the traditional RNN, LSTM
introduces controllable self-cycling, which is more suitable for processing and predicting
important events with relatively long intervals or delays in time series. The network
solves problems, such as gradient disappearance and gradient explosion caused by time
backpropagation during training [60]. The LSTM schematic view is shown in Figure 12.
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A hybrid neural network model based on DCNN and LSTM was built (Codes in
Supplementary Materials S4), and shown in Figure 13. The structure of DCNN showed
consistency with increasing the number of hidden layers in the establishment of the CNN
model. The LSTM part had put three layers and function as stateful = False. To make
hybrid neural network, two fully connected layers of DCNN and LSTM models are put
as an output with ReLU and linear functions as the activation function in the model. The
leaf-image dataset was put as input from the DCNN part, the TEP dataset was put as
input from the LSTM part in the hybrid neural network model and then the nitrogen
concentrations of muskmelon plants were predicted. The R2 and MSE method were used
for the model evaluation.

4.7. Evaluation of Models

The adjusted determination coefficient (R2) and mean square error (MSE) between
predicted and measured values were used for model evaluation. In general, the higher R2

value and the lower MSE are considered as more accurate and the best model.
The calculation formulas were put as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (2)

MSE =
1
n ∑n

i=1 (yi − ŷi)
2 (3)

where yi represents the measured value, ŷi represents the predicted value, y is the mean of
measured values and n represents the sample number.
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ML, DCNN and DCNN–LSTM were optimized to diagnose nitrogen concentration
in muskmelon plants. A 1:1 scatter diagram of the predicted values and the measured
values were plotted to evaluate models’ precision (Figure 14A). Evaluation results were
shown as R2 = 0.567 and MSE = 0.429 for the BPNN model, R2 = 0.376 and MSE = 0.628
for R2 = 0.686 for the CNN model, R2 = 0.686 and MSE = 0.355 for the DCNN model, and
R2 = 0.904 and MSE = 0.123 for the DCNN–LSTM model. With mean square error (MSE) as
the loss function, the loss results of three deep learning models (DCNN and DCNN–LSTM)
are shown in Figure 14B. For all models, the prediction accuracy improved to some extent
with the increase of iterative training, but after reaching a certain number of trainings, the
accuracy did not show a significant increase, or even decrease. At the same time, the more
iterative training times required more time for model calculation. For the deep learning
model, the model loss was very high in the initial iterative training. With the increase of
the number of training iterations, the training sets in model loss showed a sharp drop in
the beginning, but later did not show decline in falling and tended to the flat. The model
loss of the test set also gradually decreased, but later tended to the flat and showed similar
trends of the training set of model loss. In general, the test set was shown to have slightly
higher model loss than the training set.
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5. Discussion

In the present study, we collected the digital images of canopy leaves and meteoro-
logical data during the whole growth period of muskmelon in the greenhouse. Using
these data, plant nitrogen nutrition diagnosis models were built based on machine learning
or deep learning. The first model (BPNN (R2 = 0.567, MSE = 0.429) was constructed by
adopting machine vision technology to extract and process the phenotypic features of leaf
images. Then a CNN nitrogen nutrition diagnosis model (R2 = 0.376, MSE = 0.628) was
constructed. For the CNN model, the original leaf image was directly put as input into the
model and preprocessed. By increasing the depth of CNN, we built DCNN (R2 = 0.686,
MSE = 0.355) for nitrogen nutrition diagnosis. Furthermore, based on DCNN, a hybrid
model, namely DCNN–LSTM, was constructed, and R2 = 0.904 and MSE = 0.123 were used
as the evaluation indexes’ values. For the model, TEP, instead of time series, was used as a
time variable.

Many emerging technologies have been applied to crop nitrogen nutrition diagno-
sis [8]. Based on the spectral information or digital images, the nitrogen nutrition status of
rice [61,62], wheat [17,63] and corn [64] has been predicted. These studies only statistically
analyze the relationship between reflectance spectrums, phenotypes, plant growth and
physiological characteristics [15,65] through simplifying the deduction process and improv-
ing the calculation efficiency and accuracy by using a numerical optimization algorithm,
PCA, neural networks, etc. Such an idea is adopted in this study for models’ construction.
The distribution of nitrogen at different canopy heights did not show uniformity [66], and
the correlation between nitrogen concentration, spectral and fluorescence characteristics of
extra vertical heights also showed difference [67]. Hu et al. [49] reported that the SPAD val-
ues of three apical leaves of melon showed the highest correlation with the nitrogen content
in leaves, which showed suitability for the diagnosis of nitrogen nutrition, and indicating
that it was feasible to predict the nitrogen content of the whole plant through the canopy
leaves. Padilla et al. [35] predicted the nitrogen nutrition index (NNI) of muskmelon by
using the canopy reflectance characteristics of plants by optical sensor, the flavonol and
chlorophyll contents in the leaves also determined to evaluate the nitrogen status. NNI
refers to the ratio of the actual nitrogen concentration in the upper part of the crop to the
critical nitrogen concentration under the corresponding biomass. It is one of the basic
method to judge the crops’ nitrogen profit and loss level [52,68]. To measure the actual
nitrogen concentration in the crops are considered as the premise of calculating NNI, but
the above research could directly predict the nitrogen concentration in plants.

Compared with traditional machine-learning-based models, deep-learning-based
models’ virtue is considered as an approaches to avoid the manual handcrafting and the
problems of inconsistent criteria in parameters [69]. Machine-learning-based models are
considered as a reliable technology for selecting parameters, reducing dimensions and then
decreasing the number of neural network nodes. Nevertheless, the input-data information
is reduced and further lowers the accuracy of the predicted values. Deep-learning-based
models overcome the disadvantage through inputting the original images’ information
directly in the model. In such a way, adequate original information improved the accuracy
of output in the model.

The deep learning approaches are booming in the plant community, and this proves
that it has a great potential in agriculture. It has been widely used in species identifica-
tion [70], pests detection [71] and yield prediction [72] of horticultural crops. CNN is the
most commonly used deep-learning-based technology, in which the plant features extracted
by using deep neural network are better than the artificial design. This is confirmed and
verified briefly by the better performance of the deep learning model. In terms of prediction
accuracy, the hybrid model DCNN–LSTM was the best among the four models, followed
by DCNN, BPNN and CNN, in our study. DCNN is a machine learning-based model,
but it shows higher prediction accuracy than the deep-learning-based model BPNN. This
indicates that the machine-learning-based model is not necessarily considered less than
deep-learning-based models based on prediction accuracy. If machine learning approaches
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are combined with proper parameters, trained with adequate data and have less of a
loss of information, then high prediction accuracy can be obtained. While deep learning
techniques are less costly and have more efficiency to get an output results in less time as
compared to machine learning parameters.

Similarly, DCNN–LSTM was the best deep learning-based model followed by DCNN
and the CNN was at the bottom. DCNN–LSTM is presented the most reliable and ap-
plicable model among the three models and has shown the highest prediction accuracy,
combining with real-time leaf images and environmental factors. The model can be im-
proved and used in other fields of agriculture. Previously, Schmidhuber [19] combined
CNN and LSTM to predict soybean yield, with a histogram of the whole images as an input
dataset. Ghazaryan et al. [73] estimated crop yield by using multi-source satellite image
series and deep learning, the CNN–LSTM model presented the highest accuracy results.
Namin et al. [30] improved the plant classification by using time series with digital images
of various genotypes of Arabidopsis in the CNN–LSTM model on the basis of accuracy.
Haryono et al. [74] used CNN–LSTM methods for identification and authentication of
the herbal leaves with an accuracy of 94.96%. Baek et al. [75] presented by combine use
of CNN and LSTM networks for simulating water quality including total nitrogen, total
phosphorous, and total organic carbon. It was concluded that the proposed approach
CNN–LSTM could be used accurately in simulating the water level and water quality.
Sun et al. [76] used the deep CNN–LSTM model to predict soybean yield on the county
level. The results indicated that the prediction performance of the proposed deep CNN–
LSTM model showed outstanding performance from the pure CNN or LSTM model in both
end-of-season and in-season. Recent experiments in this area suggested that CNN could
explore more phenotype features and LSTM showed the ability to reveal phenotypic charac-
teristics. So, deep CNN and LSTM both play an important role in crop nitrogen prediction.
The accumulation of environmental data could be used to study the relationship between
phenotype changes and nitrogen concentration during crop growth process. In our study,
TEP values used as time series, the prediction accuracy of LSTM model is also improved
and indicating that TEP values are a good substitute for time series. Thus, our constructed
nitrogen nutrition diagnosis models presented timely and accurately providing an excellent
way of prediction for nitrogen nutrition management in muskmelon production.

However, this study had some limitations: the image data were not adequate in the
experiment. In the future, we can use the method of increasing sample size, melon varieties
and cultivation environments to establish a more applicable, reliable and stable model.

6. Conclusions

In conclusion, this study provides the knowledge for the diagnosis of nitrogen nutri-
tion for greenhouse muskmelon by using machine-learning-based and deep-learning-based
models. A hybrid model, DCNN–LSTM, which combines real-time digital images with
meteorological factors, shows the highest accuracy (R2 = 0.686, MSE = 0.355) in the predic-
tion of plant nitrogen concentration in muskmelon production in the greenhouse. These
findings indicate the great potential of deep learning technology in crop nutrition diagnosis
and provide a technique and reference for real-time, convenient, accurate and nondestruc-
tive nitrogen nutrition diagnosis in greenhouse muskmelon production. The study lays the
foundation for the intelligent monitoring of nitrogen nutrition in plants.
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