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Abstract: The Brazilian Cerrado is the second largest Brazilian biome. In recent decades, a reduction
in rainfall has indicated an extension of the dry season. Among the many native species of the
Cerrado of the Annonaceae family and used in folk medicine, Annona crassiflora Mart. has fruits of
high nutritional value and its by-products are sources of bioactive compounds, such as alkaloids. The
aim of the study was to investigate how water stress impacts the production of alkaloids. The study
was carried out in a nursery, and the knowledge was flood, field capacity and drought. Gas exchange,
chlorophyll a fluorescence, antioxidant enzymes, total soluble sugars, starch, reducing sugars, sucrose,
total alkaloids and liriodenine were analyzed. We observed that plants subjected to drought had an
increase in the production of total alkaloids and liriodenine, without a reduction in photosynthetic
metabolism. Plants kept under drought and flood conditions dissipated higher peroxidase activity,
while catalase was higher in flooded plants. Starch showed the highest concentration in flooding
plants without differing from drought plants; the lowest trehalose concentrations were found in both
drought and flooding plants. The drought stimulated the synthesis of total alkaloids and liriodenine
without reducing the primary metabolism, which suggests adaptation to Cerrado conditions.

Keywords: Annonaceae; antioxidant enzymes; carbohydrates; liriodenine; photosynthesis

1. Introduction

The Brazilian Cerrado is the second largest Brazilian biome, considered one of the
25 global biodiversity hotspots, present in more than twelve states and occupying approxi-
mately 25% of the national territory, with native flora characterized by small and twisted
trees [1].

This biome covers important aquifers and rivers [2] and is located in the central area
of the country, being the origin of large hydrographic regions in Brazil and in the South
American continent [3,4]. However, Lee et al. [5], Debortoli et al. [6] and Penereiro et al. [7]
reported reduction of approximately 70 mm in annual precipitation in the Cerrado region
between 1979 and 2006, indicating an extension of the dry season. Furthermore, although
with great biological diversity, the biome is under continuous threat of extinction due to
the expansion of agriculture and pastures, as occurs with other biomes [2,8].
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The Cerrado vegetation is exposed to high irradiances (1500 to 2500 µmol. m−2 s−1),
high temperatures (25–40 ◦C at midday) and in the dry season, low relative humidity (10 to
20%) [9]. Although there is abundance of light, the seasonality of the rainfall regime is one
of the factors that limits vegetation growth, leading to greater investment in root formation
to explore deeper soil layers [3]. As a consequence, species present in the Cerrado biome
tend to have smaller specific leaf area; on the other hand, they invest more in the bark in
order to guarantee their survival in situations of water and temperature stress [10], and
present lower growth rates and greater hydraulic conductance per leaf area unit when
compared to species from other biomes [11,12].

Many native Cerrado species belong to the Annonaceae family and are widely used
in folk medicine for the treatment of different diseases [13,14]. Native Annona crassiflora
Mart., widely spread throughout the Cerrado biome, popularly known as araticum do
cerrado, marolo, araticum cortiça or bruto, is among the species with the most consumed
fruits in this biome, with pleasant sensory characteristics and high nutritional value, rich in
phenolic and oligosaccharide compounds [15], carotenoids and vitamins [16], in addition
to alkaloids found in by-products such as leaves and stem bark [17], representing a natural
source of bioactive compounds due to their antioxidant properties [14] and seeds with high
lipid yield [18].

Alkaloids make up the most diverse group among nitrogenous compounds. Mul-
tiple biological activities have alkaloid origins, and there are several drugs available on
the market produced from natural plant alkaloids [19]. Several alkaloids are found in
Annona crassiflora Mart. leaves, peels and stems. Gonçalves et al. [20] isolated two alka-
loids, namely atherospermidine and liriodenine, from the stem; Pereira et al. [21] isolated
and characterized alkaloid stephelagin from the fruit peel and Egydio et al. [22] and
Ferraz et al. [23] identified dimethoxy-dihydroxy-tetrahydroprotoberberine, isolaurelin,
xylopine, anonaine, anoretin and romucosine in leaves.

Liriodenine, an alkaloid found in abundance in the Annonaceae family [20,24–27], has
several potent biological activities [28,29], including potential antibacterial [24], antipro-
tozoal [30,31], cytotoxic [32,33] and antifungal activities [34]. In particular, it has activity
against more than 20 phytopathogens, including Rhizopus stolonifer and Aspergillus glaucus,
fungi that impair seed germination [25].

Although there are several reports of alkaloids in Annonaceae, so far, there are no
reports on how drought conditions, similar to those periodically found in the Cerrado,
impact alkaloid production in the species, or how the species tolerate flooding conditions
and how these conditions would reflect on the synthesis of specialized metabolites such
as alkaloids. Thus, the aim of this study was to investigate how water stress impacts the
production of total alkaloids and liriodenine in Annona crassiflora Mart.

2. Materials and Methods
2.1. Plant Material

Annona crassiflora Mart. seedlings were obtained in the municipality of Paraguaçu—
Minas Gerais (April 2019) and transported to the nursery of the Department of Forest
Science of the Faculty of Agronomic Sciences, Unesp—Botucatu (coordinates 22◦51′ latitude
S and 48◦26′ longitude W), where they were submitted to a 6-month acclimation period.
Transplantation to 5-L polyethylene pots was carried out in November 2019. To fill the
pots, medium-texture Dystrophic Red Latosol was used [35,36], collected from the surface
layer (0–20 cm in depth).

During the period in which the experiment was conducted, plants were submitted to
humidity and temperature conditions shown in Figure 1.
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Figure 1. Average humidity and temperature between the 13th and 31st of May 2020 in the seedling 
nursery of the Department of Forestry Science of the Faculty of Agronomic Sciences (FCA) (DAT: 
days after transplanting). 
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until the permanent wilting point was reached. Two days after this stress condition was 
reached, the entire experiment was collected. 

From the water retention curve, the percentage of water needed for the soil to reach 
−0.01 MPa (Field capacity) (Control) and −1.5 MPa (Drought) was calculated, which cor-
responded to 16% and 8% of water, respectively. After placing pots under the established 
conditions, they were weighed daily and the evapotranspiration difference was replaced 
to maintain previous conditions (−0.01 MPa and −1.5 MPa). To maintain plants under 
flooding, pots were kept in flooded trays throughout the experiment. 

The moisture values corresponding to the water retention tension obtained through 
the soil water retention curve are shown below (Table 1). 
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with the aid of a CO2 gas and infrared gas analyzer (“InfraRed Gas Analyzer—IRGA”, 
model GSF 3000 Fl WALZ, Germany) with saturating light of 450 m−2 s−1 determined by 
means of a light curve. For monitoring, six replicates (1 plant per replicate) of each treat-
ment were evaluated, taking measurements on the 2nd and 3rd fully expanded leaves. 

CO2 assimilation rate (Anet, μmol CO2 m −2 s −1), transpiration rate (E, mmol water 
vapor m −2 s −1) and stomatal conductance (gs, mol m −2 s −1) were determined. Water use 
efficiency (WUE, μmol CO2 (mmol H 2 O −1)) was calculated using the relationship between 
assimilated CO2 and the transpiration rate (Anet/E). The apparent carboxylation efficiency 
was calculated according to the relationship between CO2 assimilation rate and leaf inter-
cellular CO2 concentration (Anet/Ci, mol m−2 s −1 Pa −1). 

  

Figure 1. Average humidity and temperature between the 13th and 31st of May 2020 in the seedling
nursery of the Department of Forestry Science of the Faculty of Agronomic Sciences (FCA) (DAT:
days after transplanting).

2.2. Experimental Design

The experimental design was completely randomized, with three water stress levels
(Flooding (>0.01 MPa); Field Capacity (−0.01 MPa) (Control) and Drought (−1.5 MPa)),
with six replicates of two plants per plot. Plants remained in treatment (13–31 May 2020)
until the permanent wilting point was reached. Two days after this stress condition was
reached, the entire experiment was collected.

From the water retention curve, the percentage of water needed for the soil to reach
−0.01 MPa (Field capacity) (Control) and −1.5 MPa (Drought) was calculated, which
corresponded to 16% and 8% of water, respectively. After placing pots under the established
conditions, they were weighed daily and the evapotranspiration difference was replaced
to maintain previous conditions (−0.01 MPa and −1.5 MPa). To maintain plants under
flooding, pots were kept in flooded trays throughout the experiment.

The moisture values corresponding to the water retention tension obtained through
the soil water retention curve are shown below (Table 1).

Table 1. Water retention tension.

Tension Humidity (%)

Flooding (>0.01 MPa) 37
Field capacity (−0.01 MPa) 16

Drought (−1.5 MPa) 8

2.3. Gas Exchanges

Gas exchanges were monitored weekly in all treatments from 9:00 a.m. to 11:00 a.m.,
with the aid of a CO2 gas and infrared gas analyzer (“InfraRed Gas Analyzer—IRGA”,
model GSF 3000 Fl WALZ, Germany) with saturating light of 450 m−2 s−1 determined
by means of a light curve. For monitoring, six replicates (1 plant per replicate) of each
treatment were evaluated, taking measurements on the 2nd and 3rd fully expanded leaves.

CO2 assimilation rate (Anet, µmol CO2 m−2 s−1), transpiration rate (E, mmol water
vapor m−2 s−1) and stomatal conductance (gs, mol m−2 s−1) were determined. Water
use efficiency (WUE, µmol CO2 (mmol H2O−1)) was calculated using the relationship
between assimilated CO2 and the transpiration rate (Anet/E). The apparent carboxylation
efficiency was calculated according to the relationship between CO2 assimilation rate and
leaf intercellular CO2 concentration (Anet/Ci, mol m−2 s−1 Pa−1).
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2.4. Chlorophyll a Fluorescence

Chlorophyll a fluorescence was performed from 9:00 a.m. to 11:00 a.m. using a
fluorometer (LED-Array/PAM-Module3055-FL) on 18 plants (six replicates of 1 plant each)
and leaves were acclimated to a period of 30 min in the dark by covering them with
aluminum foil; then, an actinic light pulse of 4500 µmol m−2 s−1 was applied to obtain Fm
(maximum dark-adapted fluorescence) and Fm′ (maximum light-adapted fluorescence). In
addition to the maximum leaf light-adapted and dark-adapted fluorescence, Fo (minimum
dark-adapted fluorescence) and Fo’ values (minimum light-adapted fluorescence) were
also obtained.

The maximum quantum yield (Fv/Fm) [37], effective quantum yield (фPSII) [38],
photochemical quenching (qP) [39], non-photochemical quenching (NPQ) [40] and electron
transport rate (ETR) were calculated through Fm, Fo, Fm′ and Fo′, considering that 84% of
light is absorbed by chlorophyll, with 50% of photons activating photosystem II chlorophyll
and 50% photosystem I and photosystem II energy that cannot be dissipated (Ex), quantum
yield of unregulated non-photochemical energy loss in photosystem II (фNO) and quantum
yield of regulated non-photochemical energy loss in photosystem II (фNPQ) [41].

2.5. Carbohydrate Concentration

Total soluble sugars were extracted from the leaf material obtained from a pool of sam-
ples of two plants per replicate (six replicates per treatment), according to Garcia et al. [42],
with minor modifications, and starch was extracted according to Clegg [43]. The proce-
dure to determine the concentration of total soluble sugars was performed according to
Morris [44]; for starch, it was described by Yemm and Folkes [45]; for reducing sugars, it
was determined by Miller [46]; and for sucrose, it was established by Passos [47], with
minor modifications.

2.6. Activity of Antioxidant Enzymes, Hydrogen Peroxide and Lipid Peroxidation

The extraction of antioxidant enzymes was performed as described by Kar and
Mishra [48] from leaf material obtained from a pool of samples of two plants per replicate
(six replicates per treatment). The activities of superoxide dismutase, EC 1.15.1.1 and
catalase EC 1.11.1.6 enzymes were determined by the method of Peixoto et al. [49]; the
activity of the peroxidase EC 1.11.1.7 enzyme was established according to Teisseire and
Guy [50]; and soluble proteins were quantified as described by Bradford [51].

The hydrogen peroxide content was determined by the method of Alexieva et al. [52]
and lipid peroxidation was determined according to methodology proposed by Heauth
and Packer [53], and both analyses were obtained using a pool of leaf material from two
plants per replicate (six replicates per treatment).

2.7. Extraction of Total Alkaloids

Total alkaloids were extracted from the root material of 18 A. crassiflora plants (six repli-
cates of 2 plants each); the material was stored in a greenhouse with forced air circulation
at 30 ◦C for ten days, and subsequently ground to obtain 1 g of dry mass for each replicate.
Alkaloids were extracted from roots previously dried using the acid–base method. After
thorough grinding, the plant material was moistened with a saturated sodium carbonate
(Na2CO3) solution and left to dry for 48 h at room temperature. Alkaloids were extracted
with chloroform (CHCl3) by constant stirring for 1 h and then filtered and washed with
distilled water. The CHCl3 phases were extracted into a 1 M hydrochlo-ric acid (HCl)
solution before being alkalinized to pH 9.5 with a saturated solution of Na2CO3. The
alkaline solution was then re-extracted with CHCl3, dried with anhydrous sodium sulfate
(Na2SO4), filtered and evaporated at approximately 25 ◦C to obtain total alkaloids [25].

2.8. Quantification of Total Alkaloids and Liriodenine

To determine the total alkaloid content, the 18 samples were stored at room tempera-
ture, re-solubilized with CHCl3 and transferred to quartz cuvettes. The absorbance of each
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solution was obtained by spectrophotometer at 254 nm wavelength using liriodenine as
the standard for the elaboration of the standard curve (y = 0.0881x − 0.0112, R2 = 0.9949).

After obtaining the extract, liriodenine was quantified using ultra-high-performance
liquid chromatograph (UHPLC—Thermo Fisher-Scientific®, Waltham, MA, USA) with a
gradient pump and UV-Vis detector using C 18 reverse phase column (150 × 4, 6 mm and
5 µm in particle diameter). The mobile phase was 30:70 water (pH 3.5 with acetic acid) and
cratic isomethanol, with a flow rate of 1 mL/min, keeping the column temperature at 30 ◦C.
Detection was carried out in UV at 254 nm. For liriodenine quantification, calibration curves
were performed by analyzing the stock solution series (y = 0.3595x− 0.0011; R2 = 0.9989 for
samples with up to 10 µg of liriodenine in the extract and y = 0.3658x + 1.142; R2 = 0.9992
for samples with more than 10 µg [25].

2.9. Statistical Analysis

Data were submitted to analysis of variance (ANOVA) using the SigmaPlot software
Version 12 and means were compared by the Tukey test at 5% (p < 0.05) [54]. To present the
biochemical variables, a radar chart was used. Input variables were initially standardized
as a result of the different units, using the scale command from the basic package of the R
computing environment, which centers the mean at zero and changes the scale to standard
deviation [55].

3. Results

Annona crassiflora plants showed, in general, that the ability to adapt to water restric-
tion conditions (drought: −1.5 MPa) reflected in the increase in specialized metabolism,
unlike what occurred under flooding conditions (Figures 2 and 3, Table 2). In this ex-
periment, an increase in the production of total alkaloids without the occurrence of re-
ductions in the photosynthetic metabolism of plants (gas exchange and chlorophyll a
fluorescence) was observed when A. crassiflora plants were kept under drought stress
conditions (Figures 4 and 5).
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Figure 2. Biochemical variables: (liriodenine; total alkaloids; hydrogen peroxide (H2O2); lipoperox-
ide, peroxidase (POD); catalase (CAT); superoxide dismutase (SOD); starch; sucrose; reducing sugar;
total sugars; trehalose) obtained from young A. crassiflora plants submitted to three water condition
levels (Field Capacity (−0.01 MPa); Flooding; Drought (−1.5 MPa)) at 18 days after the beginning of
treatments. Variables represented in the graph and that showed significant differences in statistical
analysis by Tukey tests at 5% are shown in Table 2.
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18 days after the beginning of treatments.
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Table 2. Biochemical variables: liriodenine (µg.g−1), total alkaloids (µg.g−1), peroxidase (POD, µmol prupurogallin
min−1 mg prot−1), catalase (CAT, µKat µg−1 protein), starch (µg.g−1 FW) and trehalose (µg.g−1 FW) obtained from young
A. crassiflora plants submitted to three water condition levels (Field Capacity (−0.01 MPa), Flooding and Drought (−1.5 MPa)
at 18 days after the beginning of treatments.

Water Condition Total Alk Liriodenine CAT POD Trehalose Starch

Field capacity 54.26 B 10.8770 AB 0.0101 B 0.2681 B 83.90 A 69.713 B
Flooding 63.49 AB 8.4098 B 0.1034 A 0.6655 A 12.46 B 104.089 A
Drought 80.87 A 13.4374 A 0.0391 B 0.7656 A 13.16 B 89.381 AB

Averages followed by the same letter not differ based on the Tukey 5% significance test. Mean ± standard deviation (n = 4).
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under Field capacity (−0.01 MPa), Flooding and Drought (−1.5 MPa) conditions at 5, 10 and 18 days after the application of
treatments, respectively, and 168, 173 and 178 days after transplanting. Capital letters indicate significant differences among
treatments (p < 0.05).

At the same time that plants showed adaptation to water restriction conditions charac-
terized by responses observed in primary metabolism, the production of total alkaloids
and liriodenine was also increased. Plants kept under drought conditions produced higher
concentrations of total alkaloids in relation to those kept in soil with maximum water
availability (field capacity), while saturated soil did not cause significant variations in total
alkaloids but reduced the liriodenine concentration in relation to drought soils.

In this context, plants kept under water restriction showed greater carboxylation effi-
ciency of the Rubisco enzyme (Anet/Ci) compared to plants kept under flooding (Figure 4).
However, in both conditions, the carbon assimilation rate (Anet) was lower in relation to
plants without water restriction (Field Capacity) and without differences in relation to Ci
(data not shown). The other gas exchange variables did not show significant differences
(stomatic conductance (gs), transpiration (E), vapor pressure deficit (VPD) and water use
efficiency (WUE).

The chlorophyll a fluorescence was also impacted by treatments, and plants kept under
drought conditions had higher maximum quantum yield (Fv/Fm), effective quantum
yield (фPSII), potential quantum efficiency values (Fv′/Fm′) and lower fraction of energy
dissipated in the form of heat (D) compared to plants kept under flooding conditions
(Figure 5). Photosystem II energy that cannot be dissipated and used in the photochemical
phase (Ex), photochemical quenching (qP), non-photochemical quenching (NPQ), electron
transport rate (ETR), quantum yield of unregulated non-photochemical energy loss in
photosystem II (фNO) and quantum yield of regulated non-photochemical energy loss in
photosystem II (фNPQ) did not show significant differences.
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Starch and trehalose were affected depending on the conditions in which plants were
kept, while total sugars, reducing sugars and sucrose did not show significant differences.
Starch was found in higher concentrations in plants kept under flooding but without
differing from plants kept under drought, and the lowest trehalose concentrations were
found both in leaves of plants kept under both drought and flooding, indicating that this
sugar may have been translocated to roots and used in order to neutralize the damage
caused by stress (Figure 2, Table 2).

In general, the enzymatic system acted satisfactorily, preventing membrane damage,
since there was no difference in lipid peroxidation and hydrogen peroxide among treat-
ments, possibly indicating that the antioxidant enzymes inhibited the activity of reactive
oxygen species. In plants kept under drought soil and flooding, higher peroxidase activity
(POD) was observed, while catalase activity (CAT) was higher only in plants kept under
flooding. Thus, flooded plants required greater enzymatic activity (Figure 2, Table 2).

4. Discussion

The increase in alkaloid production in A. crassiflora plants kept under drought stress
conditions seems to be related to their ability to adapt to the Cerrado conditions, which has
well-defined drought periods [56], since the photosynthetic process was preserved, ensur-
ing both primary and specialized metabolism. This ability to adapt to the Cerrado condi-
tions seems to be specific, since under flooding, reductions in primary metabolism were ev-
ident, affecting the specialized metabolism, especially the synthesis of alkaloid liriodenine.

The fact that drought stress causes increases in specialized metabolism substances such
as alkaloids has been shown by several authors, such as Ghorbanpour and Hatami [57]
in work with Hyoscyamus niger; Kleinwächter et al. [58] with thyme (Thymus vulgaris);
Kleinwächter and Selmar [59] with spices and medicinal plants; and Liu et al. [29] with
Catharanthus roseus. Specifically with the genus Annona, Castro-Moreno et al. [60] found
the highest liriodenine concentration in Annona lutescens roots at the end of the dry season
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(about 377 µmol/g), which is the first report of the presence of liriodenine in Annona
crassiflora roots under water stress (about 80.9 µg/g of total alkaloids and 13.47 µg/g of
liriodenine). Some periodic collections of Annona species tissues in an annual cycle allow us
to point out that although the biosynthesis of alkaloids is distributed throughout the plant,
the roots generally accumulate the greatest number of alkaloids and produce a higher yield
regardless of the phenological stage of plants [61].

In general, water restriction conditions lead to stomatal closure and reduced CO2
absorption and, as a consequence, there is a considerable decrease in the consumption of
NADPH + H+ for CO2 fixation via the Calvin cycle, which generates an excess supply and
accumulation of this equivalent reducer. Thus, metabolic processes are directed towards
the synthesis of highly reduced compounds such as isoprenoids, phenols and alkaloids
with the use of these accumulated reducing agents [62]. In this context, although there were
no significant differences in stomatal conductance in A. crassiflora, reductions in CO2 assim-
ilation rates (Anet) were observed due to water restriction (drought) and flooding, which
corroborates the results of Simonneau et al. [63] and Oliveira and Gualtieri [64], respectively,
and may have led to lower CO2 fixation in the Calvin cycle [65]. However, only A. crassiflora
plants kept under drought conditions showed greater synthesis of total alkaloids in relation
to those kept under field capacity, in addition to having higher carboxylation efficiency
(Anet/Ci) and higher liriodenine concentration in relation to flooded plants, which indicates
that these responses were evident when plants were under water restriction.

The high carboxylation efficiency in A. crassiflora indicates adaptation for survival
in environments with periods of low water availability, which is justified by the fact that
the species is native to the Cerrado, unlike the results obtained by Mantoan et al. [66]
with A. emarginata, showing a decrease in the carboxylation efficiency under irrigation
suspension conditions, which may be related to the fact that A. emarginata is a species
present in the Atlantic Forest, an environment with greater water availability. In addi-
tion, in plants submitted to water stress events, increased damage to the photosynthetic
apparatus is observed, causing changes in chlorophyll a fluorescence patterns, which
changes the light energy dissipation pathways and increases plant stress [67]. However,
in this experiment, plants kept under drought conditions did not show reductions in the
chlorophyll a fluorescence pattern, indicating that there was no significant damage to the
photosynthetic apparatus. Under flooding, damage is evidenced by low chlorophyll a
fluorescence values (фPSII, Fv/Fm, Fv′/Fm′) and high energy dissipation in the form of
heat (D) (Figure 5), which resulted in lower carboxylation efficiency of the enzyme ribulose
1,5-bisphosphate carboxylase (rubisco) (Figure 4). Thus, flooding directly affected the
photosynthetic apparatus in A. crassiflora, reducing its efficiency regardless of stomatal
conductance, as proposed by Parolin and Wittmann [68] and Oliveira and Gualtieri [64]. In
studies with Annona glabra, this reduction in photosynthetic efficiency did not occur, which
reinforces its characteristics of adaptation to restinga, a highly flooded environment [69].

The highest effective quantum yield (фPSII), maximum quantum yield in the dark
(Fv/Fm) and potential quantum efficiency (Fv′/Fm′) values observed in A. crassiflora plants
kept under drought conditions (similar to plants kept under field capacity) indicate that
the energy generated may have been destined both for the production of carbon skeletons
used in primary metabolism and for specialized metabolism [58,70]. On the other hand,
in plants submitted to flooding conditions, the low quantum yield in the dark (Fv/Fm),
low potential quantum efficiency (Fv′/Fm′) and greater heat dissipation of the antenna (D)
indicate a photoprotection mechanism to minimize damage to the photosystem [65].

Thus, in addition to the increase in NADPH + H that can be used for the synthesis of
specialized metabolites such as alkaloids, an increase in the production of free radicals from
the energy generated in the system is observed [58], and therefore, in stress situations, in-
creases in the production of hydroxyl radicals (OH), superoxides (O2

−), hydrogen peroxide
molecules (H2O2) and singlet oxygen (1O2) are observed, originating from redox reactions
that can be in the form of free radicals or in the molecular form of a non-radical [71,72].
Lipoperoxides are the result of the interaction between free radicals and fatty acids in cell
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membranes, and when this process occurs, the cell membrane integrity is compromised,
resulting in the production of carboxylic compounds such as monoaldehyde [73]. To protect
itself and try redox homeostasis, the plant has antioxidant enzymes, such as superoxide
dismutase (SOD), catalase (CAT) and peroxidases (POD) [74].

The enzyme that acts first is SOD, catalyzing the dismutation of two O2
•− radicals,

generating H2O2 and O2. Then, CAT, which is one of the main enzymes acting in the
elimination of H2O2 generated during photorespiration and β-oxidation of fatty acids,
converts two H2O2 molecules into water and molecular oxygen. Subsequently, POD,
located in the cytosol and vacuoles, catalyzes reactions that use H2O2 as oxidants, so this
reactive oxygen species (ROS) is also eliminated, even when SOD activity is low [74,75].

Within this complex enzyme system, no significant superoxide dismutase (SOD)
activity was observed in A. crassiflora; however, CAT activity was higher in flooded plants,
which seems to be a specific characteristic of saturated soils [76] and indicates an attempt
to reduce H2O2 accumulated by stress in order to avoid damage to lipids, proteins and
nucleic acids and ensure flooding tolerance [77]. POD activity was also observed, both
in plants kept in flooding and in drought, which indicates the continued elimination of
reactive oxygen species (ROS) from the system to avoid damage to cells. In this context,
POD seems to have been efficient, since no differences were observed in the hydrogen
peroxide or lipoperoxide concentration between treatments and control (Figure 2 heat
map), which could mean higher malondialdehyde concentrations, Which, in turn, would
represent damage to cell membranes [74].

It is noteworthy that to avoid the deleterious effect caused by reactive oxygen species
(ROS) in plant tissues, especially in root regions, plants can show greater activity of
antioxidant enzymes, especially POD, and accumulate amino acids in roots. Thus, with
the greater allocation of amino acids to roots, plants can increase their nitrogen reserve by
synthesizing alkaloids [57], which would explain their higher production in A. crassiflora
roots, especially when submitted to drought stress.

Roots are the main alkaloid production organ in plants of the genus Annona [25] and
alkaloid accumulation in certain situations, as observed in A. crassiflora roots, may indicate
osmotic adjustment due to the accumulation of precursor osmolytes, such as amino acids,
carbohydrates and sugars such as starch and trehalose [78]. The accumulation of osmolytes
can alter the water potential and favor water absorption even in soils with water restriction
and generate greater alkaloid [79], which may have occurred with A. crassiflora. Thus, even
under reduced soil water conditions, gas exchange and fluorescence were not negatively
affected, and alkaloid production still occurred.

Regarding the presence of osmolytes, starch interconversion into other sugars that act
as osmoprotectors can be considered, with the ability to influence the carbon allocation
for the entire plant, mitigating the negative effect of stress caused by water restriction.
Furthermore, in photosynthetic cells, starch can be synthesized and temporarily stored
in chloroplasts, and this “transient” starch is synthesized and degraded within a 24-hour
period [80–82]. Flooding caused an increase in starch concentration in A. crassiflora leaves,
as reported in wheat (Triticum spp.) [83,84], which may be a result of the rapid inhibition
of plant growth at the beginning of flooding, leading to lower consumption of sugars
produced by photoassimilation, in addition to reduction in photosynthesis [85–87].

Another aspect to be observed regarding the capacity of A. crassiflora plants to tolerate
abiotic stress was the presence of trehalose both in flooded plants and in those under
drought stress. As this non-transport-reducing disaccharide acts as a biostimulant in stress
tolerance, its lower concentrations in leaves may indicate its translocation to roots and
use in order to neutralize the damage that could be caused by stress, since two glucose
molecules are generated from the hydrolysis of trehalose [88]. In addition, trehalose syn-
thesis is induced from some stress condition in order to protect enzymes, proteins and lipid
membranes against denaturation under stress situations, also playing an osmoprotective
role [78,89].
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In summary, when A. crassiflora plants are under stress situations, e.g., due to lack
of water, CO2 assimilation tends to decrease and as a consequence, a smaller amount
of NADPH2 is consumed within the Calvin cycle. Thus, much of the energy produced
should be dissipated, and, despite the action of non-photochemical mechanisms, such as
photorespiration and the xanthophyll cycle, these are potentiated in this situation, and
numerous electrons are still transferred to molecular oxygen, generating ROS. Under this
situation, plants activate their antioxidant system (SOD, POD and CAT), thus blocking
the harmful effect of ROS, leading to a strong increase in the reduction potential of the
reducing equivalent (NADPH2), which can be directed to the synthesis of specialized
metabolites [62], which seems to have occurred with A. crassiflora plants. Furthermore,
starch and trehalose play a role in mitigating the effects of reduced soil water availability
to ensure root water absorption (osmoregulation). Thus, A. crassiflora plants under drought
stress showed increases in the content of total alkaloids, specifically liriodenine.

5. Conclusions

A. crassiflora plants are affected by flooding and drought conditions. Drought generates
a stimulus signal for the synthesis of total alkaloids and liriodenine without reducing
primary productivity, which denotes rusticity and adaptation of the species to the Cerrado
conditions. On the other hand, flooding stress is harmful to the photosynthetic apparatus,
which does not result in increased alkaloid production and reduces liriodenine production.
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