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Abstract: Due to climate change, we are forced to face new abiotic stress challenges like cold and
heat waves that currently result from global warming. Losses due to frost and low temperatures
force us to better understand the physiological, hormonal, and molecular mechanisms of response to
such stress to face losses, especially in tropical and subtropical crops like citrus fruit, which are well
adapted to certain weather conditions. Many of the responses to cold stress that are found are also
conserved in citrus. Hence, this review also intends to show the latest work on citrus. In addition to
basic research, there is a great need to employ and cultivate new citrus rootstocks to better adapt to
environmental conditions.

Keywords: citriculture; citrus; rootstock; cold stress

1. Introduction
1.1. Abiotic Stress

Climate change is bringing about changes in the weather that cause severe droughts,
cold waves, and waterlogging due to excess rainfall, among others. It may seem paradoxical
with climate change and global warming to think that cold waves may be caused by the
greenhouse effect. Currently, there are many theories on its origin, but the fact is that
increasingly extreme changes occur within seasons in relation to water regimes, such as
heavy rains after extreme drought periods, or with thermal imbalances, such as winters
with an average temperature that is 1–2 ◦C higher than all-time records, followed by waves
of extreme cold [1–4]. Hence the importance of new improvement programs to obtain
new crops that are more tolerant to abiotic stresses. Plant breeding programs against
abiotic stress are very complex as they involve many genes. To carry them out, first it is
necessary to know the crop of interest very well, how the studied stress affects it and what
mechanisms of action the plant uses to survive it.

1.2. Citriculture and Cold Stress

On a global scale, citrus is one of the fruit culture sectors with the highest production,
which exceeded 123 million tons in 2016 (FAOSTAT, October 2019). The citrus market
is generally divided into the production of oranges, mandarins (tangerine, mandarin,
clementine, satsuma), lemons, and limes. In 2018, the largest producers in the world were
Brazil and China with 17 and 10 million tons of oranges, respectively. Spain is in the top
10 world producers (FAOSTAT, October 2019) with a total production of 4 million tons of
oranges in 2018. Spain especially stands out for its mandarin production with 2 million
tons, is in second place behind China (19 million tons) and is also the world’s leading
exporter for exporting more than 50% of its production.

The grafting technique in agriculture has become an essential technique for the sur-
vival and cultivation of certain annual and arboreal species. This technique, which com-
bines the aerial part and roots of two different species, allows farmers to improve crops
against various problems that can arise, such as the distinct biotic and abiotic stresses
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present in the growing medium, low productivity at harvest, or simply due to a change in
the harvest season to achieve more competitive prices for its harvest.

Grafting generally affects three important plant processes, namely: the use and trans-
port of water and nutrients, the production and transport of hormones, and the large-scale
movement of proteins, mRNAs and sRNAs [5]. The rootstock/variety combination results
in transmissibility by the rootstock of different qualities that are considered beneficial for
the variety. For example, it is known that Poncirus trifoliata is one of more tolerant rootstocks
to tristeza virus (CTV) which, when grafted with a CTV-sensitive variety, is capable of
transmitting tolerance capacity [6,7]. In other words, rootstocks must be able to transmit a
quality desired by farmers to a variety and, depending on the selected rootstock/variety
combination, these skills will differ [8–11].

These graft-induced benefits are easy to demonstrate from a physiological point
of view, but it is important to give an answer to what happens at the molecular level
and be able to offer an integrated view of the long-distance communication between
the rootstock and variety. Thanks to certain techniques like RNA sequencing, it was
demonstrated that many transcripts are capable of translocating between the rootstock
and variety, which gives rise to the communication and long-distance control of different
characters [12–14]. Knowledge of the transmissibility of the genomes between both plants
allows us to understand and address the problems faced today.

Low-temperature stress is one of the abiotic stresses that leads to most losses in citrus.
In December 1990, the losses in California were quantified at 500 million dollars in fresh
fruit, and approximately 450,000 ha of affected trees [15]. In Valencia, Spain, cold losses
were also very marked in citriculture history. In 2010, two consecutive frosts caused losses
of 142 million euros according to AVA-Asaja (Valencian Association of Farmers) Records.

Citrus is considered a tropical and subtropical crop that is generally vulnerable to
cold and freezing [16–18]. In Spain, the best-quality citrus fruits are obtained in areas with
a temperature range that lies between 23 ◦C and 34 ◦C (with a minimum temperature of
13 ◦C and a maximum one of 39 ◦C, respectively) [19], with variations between species
and varieties. If temperatures lie beyond this range, they may cause massive damage [17].
Citrus fruit are self-inductive crops (i.e., do not need any climatic circumstances to induce
flowering) and do not depend on lowering temperatures to flourish [20]. However, flow-
ering and, consequently, production, are markedly stimulated by environmental factors,
including a regime of moderately low temperatures under subtropical conditions, and wa-
ter stress under tropical conditions [21]. The threshold temperature that kills young shoots
is −12 ◦C [22], but some citrus fruit can tolerate a temperature of −10 ◦C [23] (Figure 1).
This is the case of Poncirus trifoliata (L.) Raf., which is the most tolerant citrus rootstock
to low temperatures [24–26]. Nevertheless, its sensitivity to iron chlorosis is currently in
disuse in the Mediterranean region because soil there is extremely calcareous [11,27–29]. In-
stead, we find that the Carrizo rootstock [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.)
Raf.] and Forner-Alcaide hybrids [28,30–34] are extensively used. Therefore, in addition to
the interest that Poncirus trifoliata attracts for its resistance, we are also interested in other
hybrids grown in the Mediterranean region. The lemon tree Citrus macrophylla is used as a
rootstock for grafting with lemon trees because it is tolerant to the tristeza virus (CTV). This
vigorous rootstock is characterized by its high sensitivity to low temperature [18,24,35,36]
and its sensitivity to CTV when it is grafted onto other varieties.

The influence of rootstocks on fruit quality-related traits has a proven significant effect
on mandarin fruit size through cell size regulation [37], and also on tree growth, yield and
quality, the leaf mineral composition of lemon [38], and even on the flavonoid content of
lemon juice [39].

Some sweet oranges [(Citrus sinensis) L. Osbeck], such as Tarocco, Moro, and San-
guinello, are characterized by the presence of anthocyanins in both flavedo and pulp, and
crops contain the highest flavonoids content in fruit and vegetables [40]. It was shown that
the content of these compounds depends on different factors that are both endogenous to
the species (pigmented variety, maturation process, etc.) and external or environmental
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(exposure to light, nutritional balance, hormones, xenobiotics, and temperature [41]. For
these reasons, this variety is very interesting to study low-temperature stress. Table 1
shows the sensitivity/tolerance to cold stress of the different citrus genotypes reported in
Florida in Randall Driggers’ group [24].

Figure 1. Damaged shoots of Citrus macrophylla (a) and Carrizo citrange (b) seedlings grafted with
the Valencia delta seedless variety exposed to 0 ◦C for 30 days.

Table 1. Citrus cold-tolerant/-sensitive varieties to cold stress [24].

Botanical Name Common Name Cold Tolerance

Microcitrus inodora Large leaf Australian wild lime Sensitive
Citrus nobilis Lour. King tangor Sensitive

C. reticulata (‘Clementine’ x ‘Orlando’) Lee mandarin Sensitive
Microcitrus australis Australian round lime Sensitive
C. reticulata Blanco Parson’s Special Sensitive

C. sunki hort. ex Tan. Sunki mandarin Medium
C. volkameriana/C. limonia Osbeck Volkamer lemon hybrid Medium

C. jambhiri Lush. Florida rough lemon Medium
C. macrophylla Wester Alemow Medium

C. reticulata Blanco Sun Chu Sha mandarin Medium
C. sinensis Osbeck Pineaple sweet orange Tolerant

C. aurantium L. Standard sour orange Tolerant
Glycosmis penthaphylla Orange berry Tolerant

C. paradisi ‘Duncan’ × P. trifoliata) Swingle citrumelo Tolerant
Poncirus trifoliata Citrus trifoliate Tolerant

Very few studies were carried out to compare grafted citrus under cold stress. A cold
hardiness study conducted with a tetraploid Carrizo citrange rootstock showed enhanced
natural chilling stress tolerance for common clementine [42]. Carrizo citrange is a widespread
rootstock that resulted from crossing sweet orange (Citrus sinensis Osb.) and Poncirus
trifoliata (L. Raf), which possesses a certain degree of the cold tolerance from the Poncirus
trifoliata parental [43]. Other works with the commercial rootstock Carrizo grafted onto
Valencia delta seedless were carried out by María Ángeles Forner and Javier Terol’s groups
to demonstrate the rootstock influence under cold stress [9,44]. The metabolomic and
transcriptomic study performed by these groups indicates that the mechanisms activated in
plants shortly after cold exposure remain active in the long term. Both hormone quantifica-
tion and differential expression analyses suggest that ABA signaling might play a relevant
role in promoting the cold hardiness or sensitiveness of Valencia sweet orange grafted onto
Carrizo citrange or Citrus macrophylla rootstocks, respectively. This work provides new
insights into the mechanisms by which rootstocks modulate resistance to abiotic stress in
the production variety grafted onto them ([44] under review).

2. Cold Stress

Plants are exposed to an environment with its specific conditions and reach an optimal
steady state in which their metabolism is optimized for this condition. This includes



Horticulturae 2021, 7, 340 4 of 21

adjustments in the concentration and activity of enzymes, and also in the concentration of
metabolites, which allow the metabolism to function as efficiently as possible under the
conditions it is found. When plants are exposed to a changing environment, a wide range
of responses can take place over time. The cellular changes in responses can be divided
into three categories.

2.1. Molecular Response at Low Temperature

The molecular response at low temperature can occur in two ways:

1. Independent CBF activation pathway (C-repeat binding factors). That is given by the
activation of the COR (cold-regulated) response genes from an independent pathway
of the CBF transcription factors;

2. Dependent on the CBF-COR route. The CBF regulon is the central response to low
temperature. It is an activation cascade that leads to the activation of the COR
response genes that depend on the CBF transcription factors.

These COR response genes are rapidly induced from minutes to hours by low tempera-
tures [45]. Many gene products are suggested to be COR genes and act in the acclimatization
response and subsequent cold tolerance [46]. These genes include osmoprotector synthesis
enzymes, LEA proteins, transcription factors, protein kinases, proteins associated with lipid
metabolism, hormone response proteins, cell wall modifiers, and chloroplast proteins [46].

2.1.1. Stress Response by the Dependent CBF Pathway

Sequentially, as stress is detected by plants, membrane destabilization occurs and is
the first cause of plant damage by freezing [47,48]. During the acclimatization process, the
cryostability process of the plasma membrane increases because of the alteration to the
composition of the lipids that alter its behavior when facing dehydration. Uemura’s group
demonstrated changes in lipid composition during low-temperature acclimatization [49,50].
They specifically observed, on the one hand, an increase in the proportion of phospholipids
because of the rising proportion of the di-unsaturated species of phosphatidylcholine and
phosphatidylethanolamine and, on the other hand, a smaller proportion of cerebroside
lipids [50].

Plasma membrane destabilization leads to a higher concentration of cytosolic cal-
cium [50,51]. Regulation in the proteins that act as calcium sensors is direct or occurs
through a signaling cascade from kinases to induce the expression of the genes responsible
for the activation of the cold response to pre-existing transcription factors [52–54]. The
increase in calcium is transitory and exhibits a characteristic peak caused by a specific
vacuolar calcium antiporter known as a calcium exchanger (CAX1 Ca2+/H+) [52] that leads
plants to repeatedly react to the low-temperature signal. Thus the second phase activation
of the response to cold begins, which prolongs in time in a third phase of response to cold,
known as acclimatization [46]. The calcium influx reaches a receptor kinase regulated by
calmodulin 1 and 2 (CRLK1 and CRLK2), and begins a signaling cascade of the specific
cold pathway (Figure 2) [55,56]. This signaling begins with the activation of protein kinases
(MPK) that compromise three protein kinases, MEKK, MKK and MPK, which consecutively
act [57,58]. These MPKs can activate or repress the next transcription factor in the signal-
ing pathway, ICE1 (inducing CBF expression 1), which is an MYC-like helix-turn-helix
transcription factor that binds in CBF gene promoters [59–62]. These MPKs can activate
or suppress upstream of ICE1. Thus, MKK4/5 and MKK3/6 specifically promote ICE1
repression and, consequently, the repression of the response at low downstream tempera-
tures [56,63]. On the contrary, ICE1 expression is induced by MEKK1, MKK1/2, and MPK4,
which gives rise to the activation of the cold response pathway. In addition to regulation
by MPKs, the stability and, therefore, ICE1 protein activity are also regulated by the post-
translational modification of sumoylation by SUMO E3 ligase SIZ1 [62,64,65]. Thus, ICE1
reaches the nucleus and activates the central transcription factors of the cold response: the
CBF genes. This pathway of activation of the response genes plays an important role in
tolerance to low temperature stress in not only Arabidopsis thaliana, but also in other tree
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species like poplar, birch, apple, and citrus [25,66,67]. The CBF genes are also known as
DREBs (dehydration-responsive element-binding factors) and generally comprise three
members, CBF1, CBF2, and CBF3 (also called DREB1b, DREB1c, and DREB1a, respectively),
in Arabidopsis thaliana. However, this may vary depending on the species. For example, in
poplar, the induction of four CBF genes (CBF1, CBF2, CBF3, CBF4) was seen in response to
low temperatures [66]. Thus, CBFs activate low-temperature response genes, called COR,
which act in both the second phase of the response (minutes–hours) and the acclimatization
phase (days–weeks).

Figure 2. Representation of cold stress signaling, cold genes response, and acclimation.

In addition to ICE1, more activators and repressors of the CBF regulon are known
to bind to its promoters and are induced in the presence of cold. MYB15 is an MYB-type
transcription factor that can be activated in the presence of low temperatures and binds
directly to the promoters of CBF1, CBF2, and CBF3 to bring about their repression [68].
Their expression is also thought to be regulated by MPKs signaling [69,70].

Another transcription factor that activates the expression of CBFs is calmodulin bind-
ing transcription activator (CAMTA) [71] (Figure 2). CAMTA 1, CAMTA 2, CAMTA 3, and
CAMTA 5 induce CBFs. CAMTA 3 and CAMTA 5 act in the first minutes of temperatures
lowering, and it seems to be related to sudden changes in temperature (day/night), and
not to progressive changes in temperature which happens with seasonal changes [71,72].

Plants process and integrate the signals surrounding them related to seasonal changes
and light. This is a crucial element for their response to acclimatization and tolerance to
cold (Figure 2). Phytochromes (PHYA, PHYB, PHYC, PHYD and PHYE) absorb red and
far-red light, while cryptochromes (CRY1, CRY2, and CRY3) absorb blue light and UV-A
light [73]. Phytochromes are known to activate COR genes like COR15a and COR14b, and
regulate the genes targeted by CBFs under near/far-red light conditions [74].

Phytochromes activate the bZIP long hypocotyl 5 (HY5) transcription factor, which
happens to be a central modulator of the coordinated response between light signaling
and plant development, and also regulates other genes through subnetworks using other
regulators [75]. HY5 is overexpressed by low temperatures and mediates the induction
of the genes expressed in the presence of this stress due to its binding to the Z-box of
promoters, which constitute an LTRE (low-temperature response element) domain or other
LTREs yet to be characterized [76].
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2.1.2. The Molecular Response in Citrus under Cold Stress

The molecular response at low temperatures as indicated above is a general response
that it is known in model plants, but previous experiments have found that this response
its conserved in Citrus spp. [77,78].

In Citrus sinensis Osbeck cv. Gannanzao grafted onto the Poncirus trifoliata rootstock,
CAMTA genes are conserved and intervened in abiotic stress regulation processes, such
as cold, salt and drought, and also respond to ABA and JA treatments [3]. Specifically
after cold stress treatment, a 3-fold induction of CsCAMTA1, CsCAMTA2, CsCAMTA3,
CsCAMTA4, and to a lesser extent of CsCAMTA5, was observed at 24 and 48 h [79].

Another study in Poncirus trifoliata showed the conserved function of MAPK in a
cDNA amplified fragment length polymorphism (cDNA-AFLP) assay. This group located
a putative MAPK3 in Poncirus trifoliata and observed that its expression at 4 ◦C for 17 h
was 17-fold vs. its control expression [80].

The inducer of CBF expression gene ICE1, as previously mentioned, has a complex
regulation. ICE1 is a bHLH transcription factor and, in citrus, some groups are working
to elucidate its function. Liu Jihong’s group performed some works in Poncirus trifoliata
and isolate a bHLB with a probable putative ICE1 function [81–83]. One of these articles
shows that PtrbHLH overexpression of tobacco (Nicotiana tabacum) or lemon (Citrus limon)
conferred enhanced tolerance to the cold with chilling or freezing temperatures, whereas
the down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted
in marked cold sensitivity [81]. In a second study, the putative ICE1 from Poncirus trifoliata
overexpressed in lemon and tobacco showed greater activity of antioxidant enzymes, such
as superoxide dismutase and catalase, and were detected in transgenic lines under cold
conditions. Taken together, these results demonstrate that PtrICE1 plays a positive role in
cold tolerance, which may be due to the modulation of polyamine levels by interacting with
the ADC gene [82]. A third work in pummel was performed, in which the overexpression
of transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels
consistently with marked activity and high expression levels of antioxidant enzymes
(genes), including catalase (CAT), peroxidase, and superoxide dismutase [83].

The putative HOS1 gene has been isolated from Poncirus trifoliata by Zhong-Hai Sun
group in 2010 [84]. In their work, PtHOS1 was cloned, its protein was isolated and its
gene expression was quantified in roots, stems, and leaves [84]. Interestingly, the PtrHOS1
expression underwent a declining period in leaves, stems, and roots after cold and ABA
treatments, which suggests that the PtrHOS1 expression was down-regulated by both cold
and ABA, which occurs in other species [84].

The CBF genes’ function was demonstrated in two works in which CBF1 was iso-
lated from citrus and cloned to demonstrate its function when faced with cold stress.
The first one, putative CBF1, was isolated from Poncirus trifoliata (PtCBF1) and Citrus
paradisi (CpCBF1) [78]. PtCBF1 accumulated not only earlier, but also at higher levels than
CpCBF1. Furthermore, CORc115, a cold-induced group II LEA gene, also accumulated
earlier and at higher levels in P. trifoliata in response to cold temperatures [78]. The second
one was an isolated putative CBF1 from Poncirus trifotiala, sweet orange (Citrus sinensis),
pummelo (Citrus grandis), and rough lemon (Citrus jambhiri) with complete open reading
frames. The results of the multiple sequence alignment and phylogenetic analyses on
putative protein sequences suggest that AP2 DNA binding domains and CBF signature
sequences are highly conserved in four citrus CBF proteins [85].

The response to cold stress that takes place through light was also conserved in citrus,
as demonstrated in two very recent works. One was carried out in pigmented oranges,
in which the CgRuby1 promoter was isolated from Citrus grandis and overexpressed in
Arabidopsis thaliana [86]. It was shown how transcription factor HY5 binds to the Ruby1
promoter to give rise to the synthesis of anthocyanins, and this response is also conserved
in citrus [86]. Another very recent work about the response to light was carried out by Juan
Xu’s group, who found that the overexpression of Citrus sinensis CsPIF8 led to an increase
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in anthocyanin synthesis with low temperatures in transgenic tomato plants and grapefruit
calli [87].

2.2. Physiological Response

Once signaling occurs, a series of physiological responses takes place in plants. A drop
in temperature, without freezing, is harmful for plant tissues because the fluidity in
membranes is lost due to the increasing proportion of unsaturated fatty acids that need to
adapt to the new conditions.

Changes occur in the structure of chloroplast thylakoids, chlorophyll content, the
activity of photosynthetic enzymes and electronic transport, which are associated with
a drop in temperatures. However, the relation between physiological changes is not
entirely clear [88]. These changes combined with stomatal closure are known to be largely
responsible for declining photosynthesis in winter [89].

The result is ion leakage, which is caused by the inactivation of the channels and
pumps anchored to the membrane [90], which affect any physiological process that takes
place in the membrane that can be cellular and of any other organelle.

2.2.1. Membrane Changes in Citrus under Cold Stress

In citrus, changes in the structure of cell membranes and the composition of lipids
was also shown as mentioned above. In many studies carried out at low temperatures,
losses of ions and ruptures of the membrane occurred, thus damaging the processes taking
place there [91–96].

In 1985, George Yelenosky’s group analyzed the membrane and damage caused
by cold stress in fatty acids. Three genotypes were compared: Citrus sinensis, Poncirus
trifoliata and a hybrid between ((Citrus paradisi x Poncirus trifoliata) x Citrus sinensis). Fatty
acids degradation was greater in phosphatidylcholine (89%), phosphatidylglycerol (83%),
monogalactosyldiglyceride (79%), and digalactosyldiglyceride (50%). Total leaf fatty acids
in the freeze-thaw regime increased 12% in the cold hardened hybrid. Three molecular
species of triacylglycerol, which were rich in linolenic acid, increased in the hardened
hybrid in the freeze–thaw regime [96]. The increase in highly unsaturated triacylglycerol
species under freeze–thaw stress suggests that triacylglycerol plays a role in maintaining
the fluidity of biomembranes under freezing conditions [96].

As with Citrus sinensis and Poncirus trifoliata, for grapefruit (Citrus paradisi) it was
shown that the expression of the genes involved in both fatty acid biosynthesis and phos-
pholipids degradation was strongly activated, whereas several fatty acid desaturases were
down-regulated, except the acyl-[acyl-carrier-protein] desaturase and stearoyl-acyl carrier
protein desaturase (Genbank CV706341 and CN182241CV706341CN182241), which were
specifically up-regulated in the cold-acclimated fruit [97]. Likewise in blood orange or
finger citron, the gene expression of some desaturases lowered [94,95].

2.2.2. Photosynthesis and Cold

Photosynthesis is known as one of the most temperature-sensitive physiological
processes in plants. Therefore, understanding the physiological processes underlying
the temperature response of photosynthesis and its acclimatization is important for both
agriculture and the environment. Many plants are well able to adjust their photosynthetic
characteristics to their growth needs depending on temperature [98–102].

Some of the mechanisms that lead to low-temperature acclimatization in winter
annuals also do so at high irradiation [103–105]. Thus, the photosynthetic adjustment
shown by cold-hardened plants resembles that exhibited by plants exposed to high light
intensity, while the photosynthetic response of non-hardened plants is imitated by plants
growing at low light intensity. The role of light in developing tolerance to freezing is
also indicated by improved freezing tolerance under high light conditions with no cold
treatment [106]. These results indicate that low temperature and light induce signaling
pathways that overlap and accelerate others while plants develop cold tolerance. Several



Horticulturae 2021, 7, 340 8 of 21

studies show that light can also substantially broaden the wide range of early protective
compounds that are connected during the hardening process [107–109].

Photoinhibition

Photoinhibition is a phenomenon that reduces photosynthetic activity, mainly due to
the assimilation of the CO2 induced by excess light [110]. Although reduced photo assimi-
lation may depend on damage to some photosynthetic machinery components, the term
inhibition is often used to define the inhibition of photosystem II (PSII) activity [111–113].
As light is the energy required to drive the photosynthesis process, photoinhibition is in-
evitable when light exceeds the photosynthetic rate. However, the extent of photoinhibition
depends on the photodamage-PSII repair balance [114].

Photosystem II (PSII) is the most susceptible component that can be damaged in
thylakoid membranes. The main result of abiotic stress is to make PSII prone to photoinhi-
bition [112]. In fact, citrus leaves subjected to temperatures above 0 ◦C do not show any
symptoms. However, when their photosystems are studied by the chlorophyll fluorescence
imagine technique (CFI), damage to photosystem II is detected (Figure 3). This technique
is very helpful for evaluating damage due to low temperatures. Photosystem I (PSI) is
less frequently damaged thanks to the highly efficient photoprotection mechanism, with
which it prevents photoinhibition [115]. PSI photoinhibition occurs when PSII’s supply
of electrons exceeds its ability to accept electrons [116]. When PSI is photodamaged, its
recovery process is very long [117]. However, the photoinhibition mechanisms of PSI are
not yet well understood.

2.2.3. Photosynthesis and Photoinhibition in Citrus under Cold Stress

In citrus, there are many examples shown in different citrus species that photosynthesis
and photosystems are damaged in the presence of low temperatures: in Citrus junos [91], in
Carrizo citrange [9,42], in Fortune mandarin and Ellendale tangor [118], in Citrus deliciosa
and Poncirus trifoliata var. ’Pomeroy’ [119], Citrus clementina [42], Citrus medica (fingered
Citron) and sweet orange [120] and satsuma mandarin [121]. In all cases, photosynthesis
(Pn) decreases, stomatal closure takes place (Gs), respiration reduces and internal CO2
concentration (Ci) rises. Therefore, photoinhibition occurs and stops the function of PSII to
lower Fv/Fm values.

2.3. Water Potential

Water balance in plants is very important for physiological, cellular, and metabolic
processes to be carried out. Water can be transported in a plant in three ways.

1. Apoplastic transport, which occurs along cell walls and without cell barriers, and
gives rise to water transport over long distances that favors the water potential;

2. Transport by the simplastic route, which takes place between cells through plasmodesmata;
3. Transcellular transport through cell membranes. In the presence of abiotic stress like

drought, salinity, or temperature stress, plants are compromised between water use
to perform physiological CO2 fixation functions, water photolysis, and transpiration
or stopping resources consumption to, thus, stop growth.

PIPs and Low-Temperature Stress

Transcellular water transport is carried out mainly by aquaporins. Aquaporins belong
to a group of highly conserved membrane-binding proteins, better known as MIP (major
intrinsic protein). Aquaporins are a large family of proteins, with 35 genes coding for aqua-
porins in Arabidopsis [122,123], 31 in maize [124], 33 in rice [125], 47 in tomato [126], 55 in
poplar [127], 66 in soybean [128], 50 in banana [129], 71 in cotton [130], 41 in sorghum [131],
and 34 in sweet orange from [132]. MIPs are classified according to their expression patterns,
levels of modification in the amino acid sequence, regulation and intracellular location,
which means they are classified into different families. PIPs (plasma membrane intrinsic
proteins), NIPs (nodulin-26-like intrinsic proteins) and XIPs (uncategorized X intrinsic
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proteins) are generally located in the plasma membrane and are expressed on the cell
surface, while TIPs (uncategorized X-proteins intrinsic properties of tonoplast) are located
in the tonoplast membrane, which is the vacuole membrane [122]. However, some NIPs
and SIPs (small basic intrinsic protein) are located in the endoplasmic reticulum [123].

Figure 3. Representation of CFI (chlorophyll fluorescence imaging technique) of cold symptoms in
citrus leaves exposed for 30 days to 1 ◦C. (a,c) are the control groups of Carrizo citrange rootstock and
Citrus macrophylla rootstock, respectively, grafted with the Valencia delta seedless variety. (b,d) where
the cold treatment group of the Carrizo citrange rootstock and the Citrus macrophylla rootstock,
respectively, grafted with the Valencia delta seedless variety.

2.4. Water Balance in Citrus under Cold Stress

Water balance in citrus in the presence of low temperatures can be contradictory. Low
temperatures lead to stomatal closure, decreased transpiration, and a drastically reduced
osmotic potential (Ψπ), which occurs in extreme drought situations in which plants attempt
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to not lose water through the transpiration process. However, plants usually have the
typical water potential Ψstem and RWC values typical to actively grow, with well-watered
trees grown in commercial grove situations on warm sunny days [121,133].

In this case, the transcellular water movement that occurs through aquaporins is
very important. Thus, in citrus, from the RNA-seq results obtained in Carrizo citrange
and Citrus macrophylla grafted onto the Valencia delta seedless variety, it was seen that at
low temperature for Carrizo citrange plants that the expression of putative aquaporins
PIP1-2, PIP2-2, and PIP2-5 is higher in relation to the low-temperature-sensitive rootstock
Citrus macrophylla [134], which could be associated with a better use of transcellular wa-
ter and more tolerance to stress due to low temperatures in the long term, as in other
species [129,135,136].

2.5. Biochemical Response

As a broad definition, osmoprotectants are small compounds with a neutral electrical
charge and low-toxicity organic solutes. They accumulate in large quantities in cells and
compensate the imbalance that occurs in the extracellular space when stress occurs. Thanks
to their high solubility and them barely interfering with metabolic pathways, they are also
called compatible solutes.

2.5.1. Osmoprotectors and Low Temperature

Temperate zone plant species acclimatize to the environment in autumn by redirecting
their metabolism toward the synthesis of cryoprotective molecules like soluble sugars
(sucrose, raffinose, stachyose, trehalose), sugar-alcohol (sorbitol, ribitol, inositol) and low-
molecular-weight nitrogenous compounds (proline, glycine, betaine). They also contribute
to the synthesis of protein dehydrins, COR and HSPs (heat shock proteins) to stabilize
phospholipids, membrane proteins, and cytoplasmic proteins by maintaining hydropho-
bic interactions and homeostasis, and eliminating ROS. Other solutes are released from
the symplast and protect the plasma membrane from ice adhesion and subsequent cell
disruption, as discussed above [137–140].

Proline

Proline is an amino acid that acts as an osmoprotector. It performs many functions
in the cell, but it particularly plays a key role in osmotic adjustment by increasing the
ability to resist cell dehydration. Proline is capable of accumulating in some species
like citrus [18,141,142] y in the presence of certain abiotic stresses, i.e., salinity, drought,
waterlogging and temperature stress (heat, cold, freezing) [143–148]. Proline performs its
functions at the cellular level by promoting the stabilization of subcellular structures and
membranes, the stabilization of proteins upon denaturation, and the detoxification and
maintenance of ROS [145,146].

Proline in plants is synthesized mainly from amino acid glutamate (Figure 4), which is re-
duced in the cytosol to glutamate-5-semialdehyde (GSA) by pyrroline-5-carboxylateosyntases 1
and 2 (P5CS1 and P5SC2) and is spontaneously converted into pyrroline-5-carboxylate
(P5C). P5C reductase (P5CR) reduces P5C in proline. However, proline catabolism occurs
in mitochondria via proline dehydrogenase (PDH), which produces P5C again, as well as
delta 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), which converts P5C into gluta-
mate. Alternatively, proline can also be synthesized by another route from ornithine, which
is transaminated in mitochondria by delta ornithine aminotranferase (dOAT) to produce
GSA and P5C, which is then converted into proline [143,144,146,149].

Anthocyanins

Anthocyanins are not considered to be osmoprotective molecules, but are known to
play a key role in some abiotic stresses, such as low temperature, given their properties,
such as antioxidant and ROS detoxification [150]. As previously cited, pigmented citrus
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varieties turn out to have a high anthocyanin content, which makes them very interesting
to study.

Figure 4. Schematic representation of the anthocyanin pathway. (a) Sketch of the MBW an-
thocyanin pathway activation complex and (b) genes that encode their biosynthesis enzymes;
CHS (chalcone synthetase), CHI (chalcone isomerase), FLS (flavonol synthetase), F3H (flavonone
3′-hydroxylase), F3′H (flavonoid 3′-hydroxylase), F3′5′H (flavonoid 3′5′ hydroxylase), DFR (di-
hydroflavonol 4-reductase), ANS (anthocyanidin synthetase), and UFGT or 3GT (UDP-glucose-
flavonoid glucosyl transferase).

Anthocyanins are water-soluble pigments from the flavonoid family and are to pro-
cesses like development, defense and adaptation to unfavorable environments, such as
damage from excess UV light and cold [151], as stated above. Anthocyanins are glycosides
and acylglycosides of anthocyanidins.

Free anthocyanins are synthesized by the secondary route of flavonoids, and their
biosynthesis enzymes are well characterized. Biosynthesis gene activation is regulated
by an MBW complex formed by three transcription factors, MYB, bHLH, and WD40,
and the MYB transcription factor change depending on the activation gene pathway
(Figure 4a) [152,153]. It was demonstrated that the MBW complex is conserved in different
species and in active CHI, CHS, F3H, and DFR genes in grapefruit [153] and in PAL, CHS,
DFR, ANS, UFGT, and GST in citrus pigmented species [154–156] Biosynthesis begins from
amino acid phenylalanine, which becomes a trans-cinnamic acid by the elimination of an
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ammonium group by the PAL enzyme (phenylalanine ammonium lyase). In the following
steps, four hydroxylations of trans-cinnamic acid take place, which generates p-coumaric
acid. This is carried out by the C4H enzyme (cinnamate 4 hydroxylase). p-coumaric acid
is then activated by 4CL (4-coumarate-CoA ligase). The first enzyme in the anthocyanin
biosynthesis pathway is CHS (chalcone synthetase), which condenses the malonyl-CoA and
p-coumaronyl-CoA molecules (Figure 4b) to produce narengin chalcone, which is involved
in both the anthocyanin biosynthesis process and the synthesis of phenolic compounds.
The narengin chalcone is then isomerized by CHI (for its initials chalcone isomerase) to
flavanone narengin, which is then converted into dihydrokaempferol by F3H (flavonone
3’-hydroxylase). Dihydrokaempferol is the starting point of three more compounds, dihy-
droflavonol, hydroquercitin and dihydromyricetin, which are the result of the reactions
catalyzed by F3’H and F3’5’H (flavonoid 3‘hydroxylase and flavonoid 3’5‘hydroxylase, re-
spectively). Subsequently, dihydroflavonol 4-reductase (DFR) can reduce dihydroflavonols
in their respective leucoanthocyanidins (leucopelargonin, leucocyanidin and leucodel-
phinidin). Finally, anthocyanidin synthetase (ANS) converts leucoanthocyanidins into
anthocyanidins, and confers the characteristic color to all three pigments. Once formed
(pelargonidin, cyanidin and delphinidin), pigments have to be modified to their active
form so that UDP-glucose-flavonoid glucosyl transferase (UFGT) catalyzes the addition
of glucose to the 3-OH position of anthocyanidins to increase its hydrophobicity and
stability [152].

2.5.2. Osmoprotectors in Citrus under Cold Stress

In citrus, the increase in the content of osmoprotectors is a preserved response to low
temperature stress, with numerous studies in citrus demonstrating this. A relevant work on
the synthesis of sugars and starch was conducted in Citrus junos. It carried out a proteomics
work and bioinformatics analysis, which revealed that most differential abundance protein
species (DAPS) participated in starch and sucrose metabolism based on the COG, KEGG,
and protein interaction network analyses [91]. For instance, starch synthase (A0A067H6P7),
1,4-alpha-glucan-branching enzyme 1 (A0A2H5PA48), and glucose-1-phosphate adenylyl-
transferase (V4S7Z6) were down-accumulated protein species, while a polygalacturonase
(A0A067H357) and mannitol dehydrogenase (A0A2H5Q4U0) were up-accumulated protein
species under cold stress [91]. Furthermore, the physiological data also demonstrated that
the contents of glucose, fructose, and soluble starch significantly increased [91]. A relevant
work on the Poncirus trifoliata rootstock isolated the PtrBAM1 gene and overexpressed it
in tobacco plants. Overexpressing plants leads to increased starch degradation, maltose,
and soluble sugars compared to citrus lemon plants [157]. Moreover, the bioinformatics
analysis and yeast one-hybrid showed that the PtrBAM1 promoter possessed a recognition
zone in the PtrCBF gene [157].

Apart from the proline amino acid conferring tolerance to cold, it has been found to be
of much help for selecting tolerant genotypes in citrus [9,92,93,158]. In two works carried
out by Abouzar Abouzari, two markers associated with proline content on chromosomes
5 and 8 (CT21 and GT03, respectively) were selected based on the association of the
physiological results with molecular markers [92,93].

The anthocyanin synthesis response to cold is also widely known and conserved
in citrus fruits, with numerous works showing this fact, where apart from measuring
the concentration of anthocyanins and flavonoids, they quantify the gene expression of
biosynthesis genes by comparing it among several citrus genotypes [95,159–164]. Angela
Roberta Lo Piero’s group has analyzed the anthocyanin synthesis route in citrus. One of
her works focuses on analyzing the transcriptome of the pigmented citrus variety Tarocco
Sciara [95]. The same work observed the enhancement of the transcripts involved in
intense rearranging activity of membrane lipids, mainly to address lipid desaturation
by encoding enzymes which form part of both defense mechanisms against oxidative
damage and processes that adjust the cell osmotic potential, as well as many ESTs of
the genes implicated in primary and secondary metabolisms. In particular, its results
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showed that cold stress induces transcriptome modifications, undoubtedly toward the
enhancement of both the flavonoid biosynthesis pathways. Those authors propose that the
rise in anthocyanin levels that occurs in oranges subjected to cold stress might contribute
to control the cell osmotic potential [95].

2.6. Hormones and Stress Due to Low Temperatures
2.6.1. ABA and Cold

In higher plants, ABA regulates several aspects of plant growth, such as seed devel-
opment and maturation, germination and stomatal closure [165,166]. The ABA response
is necessary for the transcriptional activation of the genes involved in dehydration, low
temperature, and other stresses [149,167]. The activation of the ABA response genes leads
to the synthesis of the proteins belonging to different families, including the chloroplas-
tic proteins involved in photosynthesis, and in ROS production and detoxification [168].
Other ABA-regulated genes encode transcription factors, chaperones, osmolyte synthesis
enzymes, LEA proteins, and COR proteins [169–172].

ABA response is induced by the activation of several protein kinases, including
SnRK2s, CPK3, SOS2, CIPK24, and CIPK23 in Arabidopsis, and MdCIPk22 in apple, which
affect changes in the phosphorylation of many downstream regulators [60,173–180].

It is known that once the binding between ABA and its PYL receptors takes place, it in-
teracts with type A PP2Cs which, in turn, releases the inhibition of SnRK2.2/3/6 [179–185].

Increased ABA hormone concentration correlates with greater ABA biosynthesis in
Arabidopsis and rice [186,187], and occurs in response to cold stress in several species. The
exogenous application of the ABA hormone promotes low temperature stress tolerance,
and ABA mutants exhibit altered resistance. However, it is thought that ABA does not act
at the level of CBF genes expression, but at the upstream control [188–190].

2.6.2. Jasmonic Acid and Cold

Jasmonic acid (JA) is a hormone that intervenes in biotic and abiotic stresses that
is thought to suppress growth in the presence of cold stress. JA is an oxilipin hormone-
type whose concentration increases in cold stress in different plant species, including
maize, rice, and Arabidopsis [187,191–193]. A rise in the JA concentration correlates
with the increased expression of the biosynthesis genes in Arabidopsis and rice [191,192]
and the repression of the genes that code for genes involved in the catabolism of JA in
rice [191]. Once the concentration of JA increases, binding occurs with its COI1 receptor
and ubiquitination signaling begins. Thus, the proteasome-dependent degradation of JAZ
proteins is stimulated, which repress the expression of the JA response genes. Exogenous
JA application enhances the induction of the CBFs and CBFs upstream genes after low
temperature treatment and promotes cold tolerance. In Arabidopsis, repressors JAZ1 and
JAZ4 are thought to interact directly with transcription factors ICE1 and ICE2 to directly
repress their effect [192]. A microarray assay in coi1 mutant plants has shown that some of
the COR genes corresponding to the CBF-independent pathway were altered [192].

2.6.3. ABA and JAs in Citrus under Cold Stress

Citrus exposed to low temperatures was also affected by ABA and jasmonic hormones,
and several studies were carried out in which response to cold is involved [79,84,194,195].

Other studies were also conducted on citrus by applying exogenous ABA, which
responded to low temperatures. One study has indicated that foliar ABA applied to citrus
effectively increases freeze tolerance if ABA is applied 3 days before the freezing event
takes place, but it does not occur when ABA is applied in soil [196]. Subsequently, another
ABA application experiment was carried out to compare Poncirus trifoliata vs. Citrus limonia,
and leaves were treated with ABA exposed to low temperatures. Pretreatment with abscisic
acid can significantly reduce the membrane damage caused by freezing stress. However,
the lipid peroxidation damage caused by low temperature and activities of antioxidant
enzymes are irregularly influenced by ABA pretreatment [197].
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3. Conclusions

This synthesis work of our knowledge about abiotic stress due to low temperatures in
citrus fruits was conducted given the need to find answers to this very interesting stress
type caused by climate change.

Acquiring further knowledge about rootstocks/variety interactions has allowed us
to advance in grafting techniques and to better select plant material from plant breeding
programs. The physiological changes caused by low temperatures were known since
the 1980s and 1990s [18,21,43]. Stopping photosynthesis, water potential, chlorophyll
degradation, and the synthesis of compatible solutes are examples of responses that take
place without knowing why. Thanks to the analysis of transcriptomes and genomes, this
knowledge sheds light on the lack of knowledge.

In recent years, the most immediate response to low temperatures has become known
in model organisms like Arabidopsis thaliana. This fact greatly facilitates extrapolating
these findings to other horticultural or arboreal species absent in a multitude of loss and
gain-of-function mutants.
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