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Abstract: Drought and flooding conditions are increasingly common abiotic factors that affect citrus
crops in both the Mediterranean Basin and Florida. Furthermore, emerging diseases, such as Huang-
longbing (HLB), are a potential risk for these crops in those producing areas. This study aimed to
evaluate the behavior under water-stress treatments of three new citrus rootstocks (UFR-6, B11R5T60,
and 2247 x 6070-02-2) with reported tolerance of HLB, comparing them with a common commercial
citrus rootstock (Carrizo citrange). Four water conditions were established: Control, Medium Water
Stress (MWS), Drought, and Flooding. Chlorophyll index (SPAD), growth in height, relative growth
rate, biomass (fresh and dry weight) and plant water status were evaluated. Citru rootstock response
were different for each genotype; Carrizo citrange was negatively affected by all water treatments
in the chlorophyll index (SPAD) and biomass production. By contrast, UFR-6 showed a positive
response in SPAD and growth under MWS and Drought, B11R5T60 displayed similar behavior to
Control under all water stresses, and the response of 2247 x 6070-02-2 under MWS treatment was
adequate but was not under Drought or Flooding conditions. Our study describes the behavior of
these promising new citrus rootstocks against water stress; B11R5T60 exhibiting the best performance.
These results can be useful for the citrus industry to address water-stress problems in these crops.

Keywords: drought; flooding; HLB; stomatal conductance; water status

1. Introduction

Citrus (Rutaceae family) is one the most financially important crops in the Mediter-
ranean Basin and Florida (USA) [1]. Summer seasons with high temperatures lead to water
restrictions and drought periods in the Mediterranean Basin, which is a semiarid region [2].
Furthermore, this region is suffering from a rise in soil desertification [3,4]. On the other
hand, spring and fall seasons can generate dry periods in Florida. Flooding or waterlogging
are common in both areas due to torrential rains and poor soil drainage and/or high clay
content [5,6]. Moreover, climate change is increasing drought and flooding periods in the
Mediterranean Basin’s agro-systems [7,8].

Drought stress is one of the major abiotic factors limiting agriculture production,
through restricting water availability for irrigation [9]. Citrus trees are quite sensitive to
water deficiency, and various physiological alterations have been reported due to water
restrictions [10]. One effect of early drought is stomatal closure, which diminishes stomatal
conductance (gs) in order to reduce plant water loss [11,12]. Drought conditions reduce the
capacity of photosynthesis and transpiration [13,14]. When this adverse situation persists
over time, citrus plants decrease their growth, fruit production, and juice quality [15,16].
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Flooding likewise has a negative impact on citrus trees, because they are described
as sensitive [17] and result in economic losses [18] under this unfavorable environment.
Flooding stress causes soil oxygen deprivation, which generates alterations in plant growth,
development, and biomass [19]. Additionally, this disorder reduces leaf development and
chlorophyll content, which leads to premature senescence abscission of leaves and a high
incidence of shoot dieback [14,20]. Roots are markedly affected by flooding due to a hypoxic
situation, generating reactive oxygen species and a mobilization of carbohydrates [21,22].
As in drought stress, flooding produces physiological changes in stomatal conductance,
net carbon dioxide (CO2) assimilation, and photosynthesis [23]. In addition, waterlogging
situations result in a reduction in citrus fruit yield and quality [24].

Currently, the Mediterranean Basin’s citrus orchards are under an emerging risk of
Huanglongbing (HLB, or citrus greening disease). HLB is considered the most devastating
citrus disease (Bové 2006), and it has caused significant financial and production losses
in Florida since it was first reported in 2005 [25]. The presumed causal agent of HLB is
Candidatus Liberibacter asiaticus (CaLas), a Gram-negative proteobacteria. This pathogen
dramatically alters plant physiology, producing numerous symptoms, including leaf chloro-
sis and characteristic asymmetrical blotchy mottling, and reductions in fruit production
and quality, and it ultimately leads to tree decline and even death a few years after initial
infection [26–29]. CaLas is spread by the Asian citrus psyllid (ACP) vector, Diaphorina citri
Kuwayama. Another species, Candidatus Liberibacter africanus (CaLaf), causes African
greening (a less-aggressive but equally devastating citrus disease), and is vectored by
another psyllid, Trioza erytreae Del Guercio. While neither of these species have yet been
detected in Mediterranean Basin countries [30], T. erytreae has been found affecting citrus
plants in Iberian mainland [31,32].

This threatening situation demands efforts now to find solutions for the new citricul-
ture challenges ahead, as well as to avoid the damage that may arise from abiotic and biotic
disorders, such as water stress and new devastating diseases like HLB. The appropriate
use of citrus rootstock selection for limiting conditions in each region is both a sustainable
method and a potential solution for abiotic and biotic problems. While citrus trees are
sensitive to water stress, they can react with different molecular, anatomical, and biochem-
ical signals for adapting to these adverse conditions [19]. As a permanent crop, citrus
orchards frequently cover extensive monoculture areas, in which farmers grow them in a
system with only one rootstock. In this sense, Carrizo citrange is the most common citrus
rootstock used in Spain (approximately 61% of citrus orchards) [33]. This rootstock has
some degree of tolerance to flooding and drought conditions; however, its HLB tolerance is
low [34–36]. Against this background, different citrus rootstock breeding programs, such
as the University of Florida Citrus Education and Research Center (CREC), are working to
obtain new citrus rootstocks with improved tolerance to abiotic and biotic limiting factors.
Evaluation of HLB-tolerant rootstocks for characteristics that are critical in other important
citrus-producing regions outside of Florida, such as the Mediterranean Basin, prior to the
incursion of this disease, is imperative. Thus, three new, promising, and HLB-tolerant citrus
rootstocks (UFR-6 [37] B11R5T60, and 2247 x 6070-02-2 [personal communication]) were
selected for evaluation of their performance against drought and flooding stress, in compar-
ison with the most commonly used commercial citrus rootstock in Spain, Carrizo citrange.

2. Materials and Methods
2.1. Plant Material and Experimental Conditions

Three new rootstocks from the CREC breeding program were assayed in this work
with the reference and most commonly used citrus rootstock in Mediterranean citriculture,
Carrizo citrange (sweet orange, Citrus sinensis L. Osb. X Trifoliate orange, Poncirus
trifoliata L. Raf.). These new citrus rootstocks obtained by the University of Florida were:
UFR-6 (‘Changsha’ mandarin (C. reticulata Blanco + Trifoliate orange 50-7)), which reported
intermediate HLB incidence under field conditions, conferring high fruit yield and juice
quality [37]; and B11R5T60 (P. trifoliata cv. Flying Dragon) x Ridge Pineapple sweet orange)
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and 2247 x 6070-02-2 (Nova + HBP x Sour orange + Flying Dragon), both of which are
recently obtained citrus rootstocks with a tolerant response to HLB disease [personal
communication]. Carrizo and B11R5T60 are diploid hybrids, but the others are tetraploid.
All six-month-old citrus plants were obtained from and provided by Agromillora Group
Nursery (Subirats, Barcelona, Spain) from in vitro culture.

The experiment was carried out with a total of 140 citrus plants in July 2020 under
greenhouse conditions. The greenhouse is located in the “Las Torres” Center of the An-
dalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), in Alcalá
del Río, Seville, Spain (37◦30′43.3′′ N; 5◦57′47.4′′ W). Each citrus plant was transferred to
1.6 L pots with peat moss substrate. Next, all plants were acclimated for 10 days in the
greenhouse, where they were irrigated three times a week with water equivalent to 100%
of evapotranspiration.

2.2. Water-Stress Treatments and Experimental Design

Following the acclimation period, three plants of each rootstock were selected and
harvested, after which their dry and fresh weights of roots, stems, and leaves were recorded.
These three plants were used as controls for the initial status of each citrus rootstock,
as well as to calculate the relative growth rate. Four different water-stress treatments
were applied to the remaining plants (128) of all citrus rootstocks, using eight plants
per treatment and rootstock (n = 8). Crop evapotranspiration was calculated to apply
accurate water depending on temperature. Thus, Control plants were watered at 100%
of crop evapotranspiration; Medium Water Stress (MWS) plants were watered at 50% of
crop evapotranspiration; Drought plants had complete water restrictions (plants were not
watered in any of the experiments); and Flooding plants were in waterlogged conditions
(plants were watered under saturated conditions, placing the plant pots in planter boxes,
maintaining plenty of water throughout the experiment). The experiment was conducted
under a factorial design with four repetitions (block) for 30 days (D30) using each plant as
the experimental unit.

2.3. Chlorophyll Index (SPAD) Evaluation

The leaf chlorophyll index was measured for a total of eight plants using a SPAD
chlorophyll meter (Minolta Co., Osaka, Japan). SPAD was measured on two expanded
leaves per plant, every 10 days (i.e., D1, D10, D20, and D30).

2.4. Plant Growth Evaluation

The plant height of eight plants per rootstock and water-stress treatment was measured
using a measuring tape every 10 days (D10, D20, and D30) from the beginning of the exper-
iment (D1). The relative growth rate (RGR) was calculated using the increment of plant dry
weight per unit (DW) per unit of time (t) (days−1) [38], with the following equation:

RGR (day− 1) =
lnDWf− lnDWi

tf− ti

where DWf is the dry weight at the end of the assay, and DWi is the initial dry weight
divided by the difference between the final time (tf) and initial time (ti).

2.5. Biomass

At the end of the experiment (D30), all plants (eight plants per treatment and cit-
rus rootstock) were cut and separated in three parts: roots (R), stems (S), and leaves
(L). Fresh plant samples were weighed on a digital scale (COBOS Precision, CB-3000C,
L’Hospitalet de Llobregat, Barcelona, Spain). The different plant samples were placed in a
labeled paper envelope and then dried in an oven at 60 ◦C for 48 h and weighed again to
record dry weight. Percentage of biomass reduction (PBR, %) was calculated for dry weight
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and fresh weight in each plant section for each sample and corrected with the Control
treatment values, as adapted from Vincent’s equation [39]:

PBR(%) =
(CW− TW)

CW
× 100

where CW is the weight (g) of control treatment plants (no water added) averaged from
eight replicates from dry weight (DW) and/or fresh weight (FW) and each section plant;
and TW is the weight (g) of treated plants in each water-stress condition (MWS, Drought,
and Flooding) from dry weight (DW) and/or fresh weight (FW) per sample replicate and
section plant.

2.6. Plant Water Status
2.6.1. Leaf Water Potential

At the end of the experiment (D30), leaf water potential (LWP) was measured using
a Pump-Up Scholander chamber (PMS Instrument Company, Albany, OR, USA) [40].
Two leaves per plant in a total of four plants per rootstock and treatment.

2.6.2. Stomatal Conductance

In the same experiment stage (D30) described above, stomatal conductance (gs) was
recorded in duplicate per plant, for a total of four plants per citrus rootstock, using an SC-1
Leaf Porometer (Decagon Devices, Pullman, WA, USA) [41].

2.6.3. Relative Water Content

Relative water content (RWC) was estimated at the end of the experiment. Two mature
and totally expended leaves per plant were selected, using a total of four plants per
rootstock and treatment in this process. Thus, two discs per selective leaf of 1 cm in diameter
were taken. All four discs obtained per plant were weighed using an AJ100 digital scale
(METTLER TOLEDO, Columbus, OH, USA), then each group of four discs was covered
with distilled water for 4 h at room temperature and weighed again. After this process, each
group of discs was placed in a labeled paper envelope, dried for 24 h at 80 ◦C, and weighed.
The RWC was calculated according to Morgan et al. [42] with the following equation:

RWC (%) =
(W−DW)

(TW−DW)

where: W is the fresh weight of the four discs in each citrus rootstock and treatment,
TW = discs turgent weight (after 4 h in distilled water), and DW is the dry weight discs.

2.6.4. Electrolyte Leakage

Electrolyte leakage (EL, %) was calculated by cell membrane stability (CMS, %).
Two leaf discs (1 cm in diameter) were cut from one leaf, to which end two leaves per
plant were selected per rootstock and treatment at the end of the experiment. Next, each
group of four discs per plant was cleaned with distilled water twice, covered with 10 mL
of distilled water in a 50 mL test tube, and incubated for 24 h at room temperature in
darkness. After the incubation period, conductance was measured for both control plants
and treated plants using a conductivity meter (METTLER TOLEDO, Columbus, OH, USA).
Next, all samples were autoclaved at 121 ◦C for 15 min, and conductivity was measured
when the samples acquired room temperature. New conductance of control plants and
stressed plants was obtained by:

CMS (%) =
1− S1

C1

1− S2
C2

EL (%) = 100 − CMS %
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where C1 and C2 are the average of four replicated and stressed control plants, and S1 and
S2 were measured for each water-stress treatment (MWS, Drought, and Flooding). EL was
calculated at the beginning (D1) and at the end (D30) of the experiment.

2.7. Data Analysis

All data obtained were subjected to analysis of variance (ANOVA) using STATISTICA
10 software (StatSoft, Palo Alto, CA, USA). Means separation were obtained using Fisher’s
test (p < 0.05). Normality and homogeneity assumptions were tested before ANOVA, using
the Kolmogorov–Smirnov and Cochran’s test, respectively.

3. Results
3.1. Chlorophyll Index (SPAD)

Chlorophyll index values were different for each rootstock throughout the time period
of the experiment. SPAD values in Carrizo citrange increased from the beginning until
day 20; SPAD values were then reduced for all water treatments on the last evaluation day,
except for the Control treatment. For UFR-6, SPAD values showed a similar behavior for
all water treatments; these values increased gradually over time until day 30. B11R5T60
displayed a different response in SPAD values among the treatments, Control, Drought,
and Flooding increased their SPAD response at the end of the experiment when comparing
each of these treatments with the first day; by contrast, MWS showed a SPAD reduction
in the last day compared with day 20. Lastly, 2247 x 6070-02-2 showed similar trends in
Control, MWS, and Flooding treatments, which increased SPAD values throughout the
experiment compared with the first day; however, the Drought treatment maintained SPAD
responses that were similar to the other treatments until day 20, but SPAD values were
lower on the last day (Figure 1).
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30 days of assessment. MWS: Medium Water Stress.
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3.2. Plant Growth

For Carrizo citrange, plants from the Control treatment displayed the highest values of
height during the entire assessment period compared with Flooding, MWS, and Drought,
which showed a similar trend in plant growth among them. In the case of UFR-6, plants
from the MWS and Control treatments displayed similar growth in height, with the highest
values in the two last assessment days under MWS conditions; however, Flooding and
Drought treatments showed the lowest values of height for assessment days 20 and 30.
For the rootstock B11R5T60, treatments of Control and MWS displayed similar trend, being
the highest values of height under Control conditions throughout all the assessment period;
on the contrary, the lowest values of growth were achieved with the Flooding treatment
from the assessment on day 10. Lastly, 2247 x 6070-02-2 displayed a similar growth trend
between the Control and MWS treatments, and the highest values of height were achieved
under MWS conditions during all the assessment periods; nevertheless, the lowest values
of growth were achieved under Flooding conditions for the entire assessment period
(Figure 2).
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Drought, and Flooding) on four citrus rootstocks (Carrizo citrange, UFR-6, B11R5T60, and 2247 x 6070-02-2) over 11 weeks
of evaluation. MWS: Medium Water Stress.

RGR response significantly decreased after application of water-stress treatments
compared with the Control treatment for all citrus rootstocks assayed, except for B11R5T60.
Carrizo citrange displayed the highest RGR in the Control treatment (37.18 day−1); RGR val-
ues decreased in all water-stress conditions, and the lowest significant value was achieved
with the Flooding treatment (22.89 day−1). UFR-6 showed a decreasing trend among the
treatments; the Flooding treatment reported the lowest RGR value (25.01 day−1), with
significant differences compared to the highest RGR value, for the Control treatment
(42.22 day−1). B11R5T60 did not show statistical differences among the treatments; how-
ever, the highest and lowest RGR values were achieved with the Control (19.05 day−1) and
Flooding treatments (8.93 day−1), respectively. Finally, 2247 x 6070-02-2 did not display sig-
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nificant differences between the Control (50.26 day−1) and MWS conditions (52.50 day−1),
but the reduction in RGR for Drought (39.89 day−1) and Flooding (37.71 day−1) conditions
was significantly different compared with the Control conditions (Figure 3).

Horticulturae 2021, 7, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 3. Relative growth rate (RGR; day−1) after 30 days (D30) under four water treatments 
(Control, MWS, Drought, and Flooding) and with four citrus rootstocks assayed (Carrizo citrange, 
UFR-6, B11R5T60, and 2247 x 6070-02-2). Values in columns with different letters indicate statistical 
differences among treatments for each rootstock by Fisher’s test (p < 0.05). MWS: Medium Water 
Stress; ns: not significant. 

3.3. Biomass 
Percentage of biomass reduction was analyzed in fresh weight (FW) and dry weight 

(DW) conditions for each citrus rootstock and treatment. FW results showed a different 
behavior under different conditions. In the MWS treatment, Carrizo citrange showed the 
highest significant PBR in all analyzed plant tissue sections (roots, stems, and leaves) 
compared with the other citrus rootstocks per plant section. On the contrary, UFR-6 
displayed the lowest significant PBR in all plant sections. For the Drought treatment, 2247 
x 6070-02-2 reported the highest PBR reduction in roots and leaves, whereas Carrizo 
citrange did so in stems, compared with the other citrus rootstocks. Otherwise, B11R5T60 
reported the lowest PBR in all plant sections analyzed. As to the Flooding treatment, the 
highest significant PBR was observed for B11R5T60 in stems and leaves, and 2247 x 6070-
02-2 in roots. The lowest significant PBR was accomplished with UFR-6 in roots and stems, 
and with 2247 x 6070-02-2 in leaves (Table 1). 

DW results revealed different courses of development depending on citrus rootstock 
and conditions. For the MWS treatment, B11R5T60, Carrizo citrange, and UFR-6 showed 
the highest PBR for roots, stems, and leaves, respectively, with statistical differences 
compared with the lowest values obtained. These lowest responses of PBR were achieved 
with UFR-6 in roots, and with 2247 x 6070-02-2 in stems and leaves. In the Drought 
treatment, 2247 x 6070-02-2, Carrizo citrange, and UFR-6 reported the highest significant 
PBR in roots, stems, and leaves, respectively. The lowest PBR rate was reached by 
B11R5T60 for roots, and by 2247 x 6070-02-2 for stems and leaves. Lastly, with the 
Flooding treatment, 2247 x 6070-02-2, Carrizo citrange, and UFR-6 displayed the highest 
significant PBR in roots, stems, and leaves, respectively. The lowest PBR was achieved 
with B11R55T60, UFR-6, and 2247 x 6070-02-2 in roots, stems, and leaves, respectively, 
with statistical differences compared with the highest rates (Table 1). 

Figure 3. Relative growth rate (RGR; day−1) after 30 days (D30) under four water treatments
(Control, MWS, Drought, and Flooding) and with four citrus rootstocks assayed (Carrizo citrange,
UFR-6, B11R5T60, and 2247 x 6070-02-2). Values in columns with different letters indicate statistical
differences among treatments for each rootstock by Fisher’s test (p < 0.05). MWS: Medium Water
Stress; ns: not significant.

3.3. Biomass

Percentage of biomass reduction was analyzed in fresh weight (FW) and dry weight
(DW) conditions for each citrus rootstock and treatment. FW results showed a different
behavior under different conditions. In the MWS treatment, Carrizo citrange showed the
highest significant PBR in all analyzed plant tissue sections (roots, stems, and leaves) com-
pared with the other citrus rootstocks per plant section. On the contrary, UFR-6 displayed
the lowest significant PBR in all plant sections. For the Drought treatment, 2247 x 6070-02-2
reported the highest PBR reduction in roots and leaves, whereas Carrizo citrange did
so in stems, compared with the other citrus rootstocks. Otherwise, B11R5T60 reported
the lowest PBR in all plant sections analyzed. As to the Flooding treatment, the highest
significant PBR was observed for B11R5T60 in stems and leaves, and 2247 x 6070-02-2 in
roots. The lowest significant PBR was accomplished with UFR-6 in roots and stems, and
with 2247 x 6070-02-2 in leaves (Table 1).

DW results revealed different courses of development depending on citrus rootstock
and conditions. For the MWS treatment, B11R5T60, Carrizo citrange, and UFR-6 showed
the highest PBR for roots, stems, and leaves, respectively, with statistical differences
compared with the lowest values obtained. These lowest responses of PBR were achieved
with UFR-6 in roots, and with 2247 x 6070-02-2 in stems and leaves. In the Drought
treatment, 2247 x 6070-02-2, Carrizo citrange, and UFR-6 reported the highest significant
PBR in roots, stems, and leaves, respectively. The lowest PBR rate was reached by B11R5T60
for roots, and by 2247 x 6070-02-2 for stems and leaves. Lastly, with the Flooding treatment,
2247 x 6070-02-2, Carrizo citrange, and UFR-6 displayed the highest significant PBR in roots,
stems, and leaves, respectively. The lowest PBR was achieved with B11R55T60, UFR-6,
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and 2247 x 6070-02-2 in roots, stems, and leaves, respectively, with statistical differences
compared with the highest rates (Table 1).

Table 1. Mean percentage of biomass reduction (PBR; %) ± standard error (SE) in roots (R), stems (S), and leaves (L) under
fresh weight (FW) and dry weight (DW) conditions, after 30 days of water treatments (MWS, Drought, and Flooding) and
with the four citrus rootstocks assayed (Carrizo citrange, UFR-6, B11R5T60, and 2247 x 6070-02-2).

Water
Treatments Rootstock

FW DW

R ± SE S ± SE L ± SE R ± SE S ± SE L ± SE

MWS

Carrizo citrange 33.35 ± 8.86 a 32.92 ± 6.44 a 33.17 ± 8.77 a 14.03 ± 5.21 ab 30.12 ± 7.02 a 24.24 ± 8.80 b
UFR-6 0.00 ± 0.00 b 9.07 ± 3.57 b 3.68 ± 2.21 b 4.00 ± 2.89 b 12.34 ± 5.56 bc 53.54 ± 3.74 a

B11R5T60 20.83 ± 5.83 a 18.91 ± 5.52 b 31.40 ± 4.79 a 19.21 ± 4.60 a 23.73 ± 5.08 ab 36.21 ± 5.79 ab
2247 x 6070-02-2 28.01 ± 4.44 a 9.10 ± 2.54 b 4.40 ± 2.99 b 5.83 ± 2.65 b 2.78 ± 1.82 c 6.21 ± 4.67 c

Drought

Carrizo citrange 54.15 ± 7.62 b 63.98 ± 3.61 a 65.35 ± 3.72 ns 9.69 ± 6.28 b 35.04 ± 6.04 a 33.33 ± 6.06 ab
UFR-6 58.47 ± 7.45 ab 59.80 ± 6.10 ab 63.24 ± 6.09 ns 6.38 ± 2.84 b 23.86 ± 6.21 ab 65.15 ± 2.53 a

B11R5T60 45.39 ±7.65 b 50.64 ± 4.43 b 59.88 ± 5.83 ns 9.15 ± 5.27 b 30.51 ± 6.99 ab 42.41 ± 4.41 b
2247 x 6070-02-2 77.42 ± 2.60 a 61.97 ± 3.72 ab 72.71 ± 2.25 ns 35.00 ± 4.67 a 16.67 ± 5.94 b 27.88 ± 4.53 c

Flooding

Carrizo citrange 52.68 ± 6.41 bc 40.99 ± 5.18 a 44.55 ± 6.17 ab 55.10 ± 5.12 ab 30.12 ± 5.55 a 34.85 ± 6.85 b
UFR-6 39.11 ± 5.99 c 19.12 ± 7.58 b 31.25 ± 4.19 b 53.15 ± 8.79 ab 11.53 ± 6.95 b 67.17 ± 1.78 a

B11R5T60 61.70 ± 5.85 ab 46.15 ± 3.75 a 54.94 ± 8.37 a 51.22 ± 7.37 b 20.34 ± 4.00 ab 35.78 ± 7.63 b
2247 x 6070-02-2 70.97 ± 3.11 a 41.31 ± 5.36 a 30.77 ± 4.07 b 70.00 ± 3.09 a 29.17 ± 7.25 b 19.85 ± 5.78 b

Values with different letters denote statistical differences among the rootstocks per treatment and plant section by Fisher’s LSD test
(p < 0.05). MWS: Medium Water Stress; ns: not significant.

3.4. Plant Water Status
3.4.1. Leaf Water Potential

All citrus rootstocks showed the lowest LWP value under the Drought treatment,
with statistical differences compared with the water treatments for each rootstock assayed.
Carrizo citrange showed similar LWP values in the Control, MWS and Flooding treatments,
without significant differences among them. UFR-6 did not show significant differences
between MWS and Flooding, but these two treatments showed statistical differences with
the Control treatment, which yielded the lowest value for this rootstock. For B11R5T60,
the MWS, Flooding, and Control treatments showed a similar response among them
without statistical differences. Lastly, the MWS treatment displayed significant differences
compared with the control treatment in 2247 x 6070-02-2, although the Flooding treatment
did not show statistical differences with MWS and Control (Figure 4).

3.4.2. Stomatal Conductance

Each rootstock showed a different response of stomatal conductance among the treat-
ments assayed. Thus, the lowest and highest values of stomatal conductance were achieved
with the Drought and Control treatments, respectively, with statistical differences when
comparing both treatments for each citrus rootstock. In Carrizo citrange, the Flooding
treatment showed a similar response to the Drought treatment without statistical differ-
ences, but they were statistically different compared with the Control response. MWS and
Flooding did not show significant differences compared with the lowest rate of stomatal
conductance; both these treatments displayed significant differences compared with the
Control treatment in UFR-6. For B11R5T60, the MWS and Flooding treatments showed
a similar response without statistical differences compared with the Control treatment.
For 2247 x 6070-02-2, the MWS and Flooding treatments showed statistical differences
compared with the highest and the lowest stomatal conductance rate (Figure 5).
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3.4.3. Relative Water Content

At day 30 (D30), RWC was different among the water treatments per citrus rootstock;
the lowest significant value of relative water content was found in the Flooding treatment
for all citrus rootstocks assayed. Carrizo citrange and UFR-6 showed the highest relative
water content rates compared with the Control and MWS treatments, without significant
differences between them per rootstock, and with a significant reduction in the Drought
treatment. In the cases of B11R5T60 and 2247 x 6070-02-2, the Control treatment displayed
the highest significant value compared with the other water treatments (Figure 6).
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(Carrizo citrange, UFR-6, B11R5T60, and 2247 x 6070-02-2) and under four water treatments (Control,
MWS, Drought, and Flooding). Values in columns with different letters denote statistical differences
among treatments for each rootstock by Fisher’s LSD test (p < 0.05). Note: data were not available for
the Drought treatment of 2247 x 6070-02-2. MWS: Medium Water Stress.

3.4.4. Electrolyte Leakage

At the end of the assay (D30), EL in Carrizo citrange displayed nonsignificant differ-
ences among the water treatments (MWS: 4.69% and Flooding: 2.85%). However, UFR-6
showed the highest and the lowest EL value with the Drought (11.70%) and MWS (2.41%)
treatments, respectively, with significant differences between them. For B11R5T60, no
statistical differences were found among MWS (0.24%), Drought (0.11%), and Flooding
(3.58%) treatments. Finally, the highest and lowest EL values were found for the Flooding
(7.72%) and MWS (1.55%) treatments, respectively, in 2247 x 6070-02-2, with statistical
differences between them (Figure 7).
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the Drought treatment of Carrizo citrange, B11R5T60, and 2247 x 6070-02-2. MWS: Medium Water
Stress; ns: not significant.

4. Discussion

Water stress is increasing in arable soils, which suffer from desertification and flooding
due to climate change depending on the season and/or region. For this reason, selecting
new citrus rootstocks that are more tolerant of various kinds of water stress is essential
for future success in growing citrus crops. Appropriate rootstock selection helps to di-
minish the negative impact of drought and flooding in different crops [43–45]. In this
study, we have successfully evaluated the effect of three water-stress conditions (plus
control). Similarly, different authors have studied citrus rootstocks under different water
conditions, such as flooding or drought, reporting different behavior among different plant
materials [45,46]. However, few studies analyzed the effect of drought and flooding simul-
taneously [23]. In addition, this study provides information to help choose the most suitable
citrus rootstock for propagation. At the end of the experiment, Carrizo citrange showed
a reduction in the chlorophyll index under the Flooding conditions. This occurrence is
common in citrus when these crops are affected by long periods of exposure to flooding
conditions [47]. The chlorophyll index values did not decrease in all citrus rootstocks.
As previous studies reported, loss of chlorophyll under flooding conditions depended on
genotype [48]. The reduction of chlorophyll could be explained in some cases by the lack
of absorption of micronutrients such as iron and manganese [47,49]. Thus, data related
to chlorophyll is useful for determining long-term tolerance against flooding conditions;
thus, our results demonstrated that B11R5T60, UFR-6, and 2247 x 6070-02-2 were more
flood-tolerant than Carrizo citrange.

According to Romero et al. [50], water restrictions generate plant growth reduction
in different citrus rootstocks species. Furthermore, others reported that flooding condi-
tions generated a clear reduction of growth in height in all citrus rootstocks studied [14].
Our results showed a slight influence of water-stress conditions, depending on the water
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treatment and genotype. Thus, plant growth was higher in the Control than in the Flooding
treatment for all citrus rootstocks at the end of the experiment.

On the other hand, biomass reduction can occur under drought conditions, though
there may be no variation of biomass production in roots [16,51]. Our results suggested that
Carrizo citrange is one of the rootstocks with the highest biomass reduction. According to
other authors [52], biomass production stops early under water restrictions, and our
study supported this conclusion, since all citrus rootstocks exhibited reduced biomass in
stems and leaves under the MWS and Drought treatments. According to Lei et al. [53],
physiological parameters, such as growth and/or biomass, are related to tolerance to
water stress. In this study, the reduction in biomass was in line with the reduction in
growth parameters.

As with other parameters described, LWP under water stress also depended on
genotype [54]. This parameter is related to stomatal conductance; water potential alter-
ations in stressed plants were reported to be a mechanism to maintain open stomata [55].
Water restrictions (Drought and MWS) caused a LWP reduction in these four citrus root-
stocks; it was more pronounced in Carrizo citrange and UFR-6 under Drought stress, and
in UFR-6 and 2247 x 6070-02-2 under MWS. Flooding conditions negatively affected LWP,
and this was more accentuated in UFR-6 and B11R5T60.

Stomatal closure is a common response under water stress; usually it is the first re-
sponse. The highest rate of stomatal closure in all four citrus rootstocks was under the
Drought treatment. Stomatal closure is hormonally induced by abscisic acid (ABA) [56];
ABA is produced under drought stress for roots and leaves in citrus, and it is a trig-
ger for mechanisms to avoid water loss [20,57,58]. Under the Flooding treatment, stom-
atal conductance in B11R5T60 was little changed, whereas Carrizo citrange, UFR-6, and
2247 x 6070-02-2 had lower stomatal conductance, reaching values similar to those under
the Drought conditions. Stomatal closure under flooding conditions can occur due to ABA
signal induction for roots and shoots [59]. In contrast, previous studies have reported
increasing stomatal conductance in Carrizo citrange under short-term flooding condi-
tions [23]; however, our results after 30 days of the Flooding treatment showed a reduction
in stomatal conductance.

Previous studies reported that RWC and EL in crops were parameters to determine
plant water status under different stress conditions [60–62]. RWC could be used to de-
termine cell water status indirectly, and it was reduced in all stressed citrus rootstocks in
our assay. However, our study showed the highest RWC reduction in the Flooding condi-
tions; additionally, with water-restriction treatments, this parameter was reduced [23,54].
EL provides information about cell membrane stability and solute accumulations in cells,
which is an avoidance strategy. EL increases under stress conditions, especially in sensitive
rootstocks, and indicates that under stress conditions, cell membrane integrity is negatively
affected [61,62]. Thus, our study showed the highest EL values were achieved under the
Drought treatment for UFR-6 and Flooding for 2247 x 6070-02-2.

5. Conclusions

Our study provides useful information about the response of three promising new
citrus rootstocks under water stress. These results can be helpful to Mediterranean and
Floridian citrus growers when selecting the appropriate citrus rootstock to avoid water-
stress problems in their orchards. Thus, the optimal choice against the Drought and
Flooding treatments was obtained by B11R5T60, having for all water treatments a similar
behavior as its control in most of the parameters studied, and an improved Carrizo citrange
response. UFR-6 had increased SPAD values in all water conditions, and its highest value
of growth and EL was achieved in the MWS and Drought treatments, respectively; further-
more, this candidate showed the lowest biomass rates with more frequency. UFR-6 could be
an accurate, promising choice due to its similar behavior to Carrizo citrange against water
stress and its additional HLB tolerance. However, our results showed that 2247 x 6070-02-2
presented adequate behavior under MWS conditions for SPAD, growth in height, RGR, and



Horticulturae 2021, 7, 336 13 of 15

PBR; additionally, the LWP was similar to the Control under Flooding conditions, as this
citrus rootstock is not optimal for water-stress environments. Further research will evaluate
water stress responses of these rootstocks in greenhouse and field conditions when grafted
with the most common local scion cultivars.
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