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Abstract: In many parts of the world, the agricultural sector is faced with a number of challenges
including those arising from abiotic environmental stresses which are the key factors responsible
for most reductions in agrifood production. Crude oil contamination, an abiotic stress factor and
a common environmental contaminant, at toxic levels has negative impacts on plants. Although
various attempts have been made to demonstrate the impact of abiotic stresses on crops, the underlying
factors responsible for the effects of crude oil and its induced abiotic stresses on the composition of
the stressed plants are poorly understood. Hence, this review provides an in-depth examination of
the: (1) effect of petroleum hydrocarbons on plants; (2) impact of abiotic environmental stresses on
crop quality; (3) mechanistic link between crude oil stress and its induced abiotic stresses; as well as
(4) mode of action/plant response mechanism to these induced stresses. The paper clearly reveals
the implications of crude oil-induced abiotic stresses arising from the soil-root-plant route and from
direct application on plant leaves.

Keywords: agrifood; crude oil contamination; crop quality; environmental stresses; petroleum
hydrocarbons; stressed plants

1. Introduction

Crude oil pollution, arising from exploration and processing operations, is a common
environmental challenge [1]. This introduction of crude oil (via large or small spills) into the
environment could arise from technical errors, deliberate human acts as well as transportation and
storage faults [2–6]. Schmidt-Etkin [7] noted that although large spills sometimes occur with serious
environmental and socioeconomic damage, small spills are more common. As explained in detail
in a later section, the impacts and damages caused by these spills generally depend on the location,
oil type, volume, closeness to sensitive resources, and season, among other factors [7]. Nonetheless,
accidental large-scale oil spills make up a significant part of contaminants in the globe [8]. There are
more cases of oil spills on land than those recorded in water [4] in which plant life in agricultural
fields becomes exposed to petroleum hydrocarbons (PH) [8] with both acute and chronic effects on
agricultural produce [1].

Interestingly, the various technological/prevention measures coupled with better industry practices
have helped in the global reduction in oil spillage but the risk involved in significant oil spills remain [7].
Table 1 provides a record of the largest oil spill cases in the world’s history.
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Table 1. The top 20 largest oil spills (>125,000 tonnes) in world’s history.

S/N Location Source Name Quantity (Tonnes) Date

1. Kuwait 700 oil wells 71,428,571 10 March 1991
2. Kuwait Min al Ahmadi Terminal 857,143 20 January 1991
3. Russia Oil wells 700,000 3 August 2000
4. United States Deepwater Horizon 686,000 20 April 2010 *
5. Mexico Ixtoc I well 476,190 3 June 1979
6. Iraq Bahra oil fields 377,537 1 February 1991
7. Uzbekistan Oil well 299,320 2 March 1990
8. Trinidad/Tobago TN Atlantic Express 286,354 19 July 1979
9. Russia Kharyaga-Usink Pipeline 285,714 25 October 1994
10. Iran No. 3 Well (Nowruz) 272,109 4 February 1983
11. South Africa TN Castillo de Bellver 267,007 6 August 1983
12. France TN Amoco Cadiz 233,565 16 March 1978
13. Canada TN Odyssey 146,599 10 November 1988
14. Italy TN Haven 144,000 11 April 1991
15. Libya D-103 concession well 142,857 1 August 1980
16. Nigeria Pipeline 142,857 6 January 2001
17. Kuwait TN Al Qadasiyah 139,690 19 January 1991
18. Kuwait TN Hileen 139,690 19 January 1991
19. United Kingdom TN Torrey Canyon 129,857 18 March 1967
20. Oman TN Sea Star 128,891 19 December 1972

* From Ivshina et al. [4] as well as Levy and Gopalakrishnan [9]; others adapted from Schmidt-Etkin [7].

Although the effect of PH such as from crude oil spills in the environment has been studied for
many years, even with respect to the impact on plants, there is still a gap in understanding how the
composition of the affected plants is influenced. Some researchers, such as Levy and Gopalakrishnan [9],
Okpokwasili and Odokuma [10], Njoku et al. [11], and Ylitalo et al. [12], have reported the effect
of crude oil spills on the general environment while others like Venosa et al. [13], Ebuehi et al. [14],
Couto et al. [15], as well as Adekunle [16], have indicated how the remediation of such polluted sites
can be carried out. Various remediation approaches, including bioremediation, have been suggested.

Evaluation of the effect of crude oil on plant growth/yield has also gained attention and the
outcome of such investigations have been documented in Kuhn et al. [17], Adam and Duncan [18],
Adieze et al. [19], Inckot et al. [20], Baruah et al. [21], as well as Odukoya et al. [22,23]. Nonetheless,
the effects of crude oil on the composition and quality of crops still remain unclear. In most cases, such
as in Baruah et al. [21], Chupakhina and Maslennikov [24], and Noori et al. [25], the impact of crude oil
on only a few crop quality parameters was investigated.

Considering the human dependence on agricultural produce for food, this review provides needed
information on the impact of crude oil-induced abiotic stresses on plant composition. It discusses
the general impact of abiotic environmental stresses on the composition of agricultural produce
(particularly with respect to crop quality), and summarises the relationship between these stresses (i.e.,
crude oil stress and its induced abiotic stresses) via a mechanistic link to provide clarity on the response
patterns observed in crude oil-stressed plants. A chemical classification of petroleum hydrocarbons is
provided in Figure 1.
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Figure 1. Chemical classification of petroleum hydrocarbons. (MAH = Monoaromatic hydrocarbons;
PAH = Polycyclic aromatic hydrocarbons). Source: Coulon and Wu [26].

2. Effects of PH on the Growing Environment and Plants

The behaviour of PH in the environment determines where they are likely to be found, such
as in air, water, soil, sediment, food, or other media that people might come in contact with [27].
In the view of Oghenejoboh et al. [28], the factors governing the spread/migration of spilled oil in soil
include the amount of oil spilled, physical properties of the spilled oil (density and viscosity), and
physical properties of the soil medium itself, particularly its porosity. Although the introduction of
PH affects the physical, chemical, and biological properties of soil [7], these factors (i.e., the soil type,
quantity, and composition of the spilled hydrocarbon) also determine the level of alteration of the soil
properties [27,29].

On agricultural lands, Plice [30] and also De Jong [31], reported that oil spills can result in reduced
plant growth for some time. PH contamination which is associated with an increase in carbon/nitrogen
(C/N) ratio and nitrogen deficiency [32], may also lead to a reduction in plant stem height, stem density,
aboveground biomass, and include death of the plant [33–37]. Meanwhile, the response of plants to
the presence of PH in soil varies [20,38,39] and is associated with the plant age [40], species of the plant
involved, type and concentration of the petroleum, time of exposure to the contaminant [20,29,38] as
well as the season [36,41], among other factors.

De Jong [31], referring to the experiment of Carr [42], indicated the possibility of a low concentration
of crude oil in the environment supporting plant growth. Although this test was conducted in duplicate,
Carr [42] found out that at 0.75% w/w of crude oil addition to the soil, the growth of soybeans was
improved. Adieze et al. [19] also recorded an increase in shoot height and weight of two of the plant
species examined at 1% w/w oil-in-soil. This stimulating effect according to Plice [30] may be as a result
of the bacterial breakdown of the hydrocarbons. Other possible reasons for plant growth-stimulation,
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as suggested by Baker [38], although subject to further investigation, could be attributed to the release
of nutrients from the oil, oil-killed vegetation, or hormonal influence. Be that as it may, there are claims
that this occurrence in plants is a result of ‘petroleum auxin’ identified as naphthenic acids, which
(i) improve the yield of different varieties of crops; (ii) stimulates photosynthesis; and (iii) increases
protein nitrogen [38].

Notwithstanding possible positive effects, most studies regarding the growth of plants in soil
containing PH have reported negative effects [20] including on the germination of seeds [18,20].
Reductions in the plant growth could be a result of (1) the direct toxic effect of oil on plants [31,38];
(2) absence of viable seeds leading to lack of germination; (3) reduced germination; (4) unfavourable soil
conditions [31]; and (5) inhibition of bacterial decomposition of the soil organic matter and associated
nutrient remineralization by the toxic components of oil [40]. The inhibition of germination may
be linked to oil entering the seed and killing the embryo, or oil coating the seed and hindering the
uptake of oxygen and water required for germination [38]. Merkl et al. [32] added that reduced
seedling emergence could be as a result of toxic effects of the oil or from the adverse soil moisture
conditions. Other effects of oil pollution on plants as stated by Baker [38] include yellowing and death
of oiled leaves, varying sensitivity, and recovery rates of perennials, among others, while a complete
elimination may occur at chronic levels. Heavier oils compared to lighter oils present less immediate
toxic impact on plants and other organisms [40].

Baker [38] indicated that photosynthetic rate is consistently reduced by oils, while the level
of reduction in this rate depends on the kind and amount of oil as well as the plant species. For
instance, the experiment of Odukoya [5] involving selected green leafy vegetables (GLV) and a fruit
vegetable (tomato (Solanum lycopersicum) indicated that the effect of crude oil contamination on the
species differed. Generally, crude oil at the concentration used in this experiment {≤10,000 mg/kg total
petroleum hydrocarbons (TPH)} altered stomatal conductance (a measure of the rate of diffusion of
carbon dioxide (CO2) into leaves for photosynthesis, and water loss via transpiration [43]), growth,
yield, and composition of the GLV. Figures 2 and 3 show the impact of the crude oil contamination
on the stomatal conductance (mmol/m2s) as well as growth of Brassica juncea, Brassica oleracea, and
Lactuca sativa. The effect on the flower production date of B. juncea is also provided in Figure 4. The
influence on yield and levels of phytochemicals in the selected GLV has been previously discussed (see
Odukoya et al. [23]).
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Figure 2. Effect of crude oil contamination on stomatal conductance (mmol/m2s) of selected green leafy
vegetables prior to harvest. Source: Odukoya [5].
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Figure 3. The growth of three green leafy vegetables ((A) B. juncea, (B) B. oleracea and (C) L. sativa) in
pots containing crude oil at different concentrations. Treatments T1, T2, T3, T4 and T5 are 0 mg/kg TPH
(Control), 1500 mg/kg TPH, 3000 mg/kg TPH, 5000 mg/kg TPH, and 10,000 mg/kg TPH, respectively.
Source: Odukoya [5].
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Figure 4. The effect of crude oil contamination on flower production date of B. juncea. Source:
Odukoya [5].
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Odukoya et al. [5,22] also recorded that crude oil contamination at concentration as low as
5000 mg/kg TPH affected the growth, yield, fruit production, and ripening of Micro-Tom tomato fruits
(Figure 5).
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Figure 5. Growth of Micro-Tom tomatoes in pots containing crude oil at 0 mg/kg TPH (left plant) and
5000 mg/kg TPH (right plant), before fruiting (A) and during ripening (B). Source: Odukoya [5].

Considering the effect of time of spillage on plant response, Baker [38] reported that application
of an emulsion of light oil on young plants in the light when the stomata are opened will lead to
death of the plant while the same application at night when the stomata are closed would not harm
them. Baker [38] also indicated that there is an increased level of phytotoxic risk at high environmental
temperature (such as during sunny or hot weather) compared to other times.

3. Abiotic Environmental Stresses and Crop Quality

Abiotic stresses, which include environmental contaminants [44], have been identified as the
key factors responsible for most of the reduction in agrifood production (Figure 6); they also play
a major role in determining the nutritional value/quality of fruits and vegetables during their growth,
harvesting, handling, storage, and transport to end users [45]. The impact made by these abiotic
stresses have been found to depend on the (1) the part (tissue or organ) of the plants involved [45,46];
(2) crop species; (3) duration; as well as (4) intensity of the stress [47] and could cause morphological,
physiological, biochemical, and molecular alterations within the affected plants [45]. Retardation of
plant growth may also occur as the plants make efforts to conserve and reallocate resources that can
become limited under extreme stress conditions [48].
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Figure 6. Agricultural yield losses due to abiotic and biotic stress. Adapted from: Gaur and Sharma [49].

Wang and Frei [47] indicated that all quality traits of agricultural produce can be influenced
by abiotic environmental stress factors which can be linked with the different physiological
reactions/responses in the affected plants as a result of changes in gene expression and enzyme
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activity, oxidative stress arising from the accumulation of reactive oxygen species (ROS), accelerated
senescence, which shortens the crop maturity period and alters the nutrient distribution processes
within the stressed plants, reduced water content which leads to increase in nutrient content, changes
in mineral uptake and translocation, as well as reduced biomass/yield which is the most obvious
and identified effect of abiotic environmental stress on agricultural produce. Although some crops
respond differently, in most cases, environmental stresses cause (1) a decrease in starch concentration,
lipids {particularly the polyunsaturated fatty acids (PUFA)}, feed value, and physical/sensory (P/S)
traits; (2) an increase in protein and antioxidant contents; and (3) no clear trend in sugar and mineral
contents [47].

On the other hand, one of the common mechanisms by which plants adapt to abiotic stresses
encountered in the environment involves the accumulation of compatible solutes which are highly
soluble and low molecular weight compounds with no toxic effect at high concentrations [50]. The
different forms of these compounds accumulated may be species-specific and include amino acids (like
proline), glycine betaine, sugars (such as sucrose, and trehalose), and sugar alcohols (like sorbitol and
mannitol) [50–52]. These compatible solutes do not interfere with normal cellular metabolism [52,53].

4. Mechanistic Link between Crude Oil Contamination and Induced Abiotic Stresses

4.1. Induced Physical Influence

The coating of plant leaves with oil may lead to temperature stress owing to the blockage of
the transpiration pathways while the process of photosynthesis in the leaves would be negatively
affected [40,54]. The penetration of oxygen into the soil could also be restrained by the layer of oil
covering the soil surface resulting in anaerobic soil conditions for the plant roots [20,40] and contributes
to oxygen stress on these roots [40].

Nevertheless, the level of reduction in transpiration and photosynthesis arising from the physical
blockage of the stomata depend on the extent of oil covering on the plant which is associated with the
hydrologic conditions, amount, type, and dispersion ability of the spilled oil [40].

4.2. Induced Chemical Influence

The chemical impact of oils on vegetation depends on the type of oil while the fouling of leaves by
oil may have more immediate effects than fouling of the soil surface [40]. Pezeshki et al. [40] reported
that reduced stomatal conductance with no detectable photosynthetic activity was evident shortly after
leaf fouling which suggests potential breakdown of the photosynthetic apparatus in the leaves directly
subjected to oil application. In their view, this breakdown of leaf structure and/or the chlorophyll
system may be associated with blocked stomata giving rise to reduced transpiration, thus increasing
the leaf temperature with the possibility of an adverse effect of the oil on cellular integrity of the leaf
tissue. They added that plants may recover from the initial, short-term (often dramatic) adverse effects
of oil on leaves while refined products, compared to crude oils, present a different effect on leaves.

Furthermore, as plants like other organisms produce ROS in response to abiotic and biotic
stresses [55], environmental contamination arising from PH reduce the availability of essential nutrients
(like nitrogen and oxygen) required for plant growth [19,56], including water [57] owing to the surface
covering of the plant roots by the hydrophobic contaminant, thereby enhancing the production of ROS
and hence, oxidative stress in plants [55,58].

Basically, PH may affect plants by (1) upsetting the plant-water relationships; (2) direct effect
on plant metabolism such as nutrient uptake [36]; (3) their toxicity to living cells [26,59]; and (4) the
reduction in oxygen exchange between the atmosphere and the soil which have negative effects on
plants [36,60].
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4.3. The Mechanistic Link

Crude oil/PH contamination, an abiotic factor [61], leads to oxidative stress in plants [25]
and gives rise to the production of ROS. Figure 7 shows the mechanistic link between crude oil
contamination/stress and identified crude oil-induced abiotic stresses.

5. The Mode of Action/Plant Response Mechanisms to the Crude Oil-Induced Abiotic Stresses

5.1. Water (Drought) and Osmotic Stresses

“Drought is a meteorological term for a scarcity of water” ([62], p. 510) while water stress on
plants occurs when there is a limitation of water supply to the roots, or when the transpiration rate
exceeds the absorption rate [45,63]. Photosynthesis and growth are among the key processes affected
by drought [64,65] whose effects can: (1) be direct, such as resulting from the alteration in the diffusion
of CO2 in leaves via a decrease in stomatal and mesophyll conductances [65,66]; or (2) give rise to
secondary effects-oxidative stress [65]. In Farooq et al. [67], it was added that drought is also associated
with accelerated leaf senescence and reduction in crop yield.

5.1.1. Plants’ Responses to Water Stress

Akinci and Losel [68] indicated that plant adaptation to dry environments can be expressed at four
different levels which are phenological or developmental, morphological, physiological, and metabolic
while the latter (metabolic or biochemical adaptation) is the least understood. Whereas some responses
of plants to water stress occur at the leaf level [69], it is the general response at the whole-plant level,
involving carbon assimilation and the distribution of photoassimilates to different plant parts and
reproductive ability that eventually determine the survival of these plants and persistence under
environmental stress [69]. Nonetheless, carbon assimilation at this whole-plant level always decreases
as a result of (1) reduction in CO2 diffusion into the leaf; (2) diversion of carbon distribution to
non-photosynthetic organs and defence molecules; or (3) biochemical changes in the leaf leading
to the down-regulation of photosynthesis [69]. The various responses of plants to water stress are
summarised in Table 2.
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Table 2. Summary of plants’ responses to water stress.

Type of Response Impact Indicators Parts of Plants/Processes Affected References

Morphological and
physiological responses

Crop growth and yield

Reduced growth parameters such as height, leaf number, leaf area index as
well as fresh and dry weight.

Akinci and Losel [68]
Timpa et al. [70]

* Shoot growth may be more inhibited than root growth. Sharp [71]
Sharp and Davies [72]

Water relations

Affects plant water relations, stomatal closure, gas exchange, transpiration,
and carbon assimilation (photosynthesis). Lisar [63]

* Stomatal opening and closing is more strongly influenced. Farooq et al. [67]

Nutrient relations

Reduced ability of plant roots to absorb water and nutrients which could be
as a result of a decrease in nutrient element demand.

Akinci and Losel [68]
Alam [73]

Reduced availability, uptake, translocation and metabolism of nutrients. Farooq et al. [67]

Increase in K, Na, Ca, Mg, and Cl; decrease in P and Fe. Abdel Rahman et al. [74]

Increase in N; decrease in P; no effect on K. Farooq et al. [67]

Osmotic adjustment

Lowering water deficiency impact and linked to the maintenance of
stomatal conductance, photosynthesis, leaf water volume, and growth.

Akinci and Losel [68]
* Most often temporary as plants usually respond quickly to increase in the
level of available water.

* Solutes accumulate with water stress and contribute to osmotic adjustment
in non-halophytes including inorganic cations, organic acids, carbohydrates,
and amino acids.

Photosynthesis Negative effect on photosynthesis of crops and possibly a cessation in the
photosynthetic process. Akinci and Losel [68]

Assimilate partitioning Often enhanced allocation of dry matter to the roots increasing root growth
which can support greater water uptake. Farooq et al. [67]
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Table 2. Cont.

Type of Response Impact Indicators Parts of Plants/Processes Affected References

Metabolic and molecular
responses

Carbohydrate changes
For moderate water stress, plant response is more regulatory rather than
stress-induced damage. Chaves [64]

Accumulation of sugars and other organic solutes. Akinci and Losel [68]

Plant proteins

Reduction in plant protein synthesis.
Akinci and Losel [68]

Dhindsa and Cleland [75]
Ben-Zioni et al. [76]

Levels of some specific types of proteins and mRNA may increase. Akinci and Losel [68]

* Three kinds of osmolytes found in water stressed organisms except the
halobacteria include polyhydric alcohols, free amino acids, and their
derivatives, combinations of urea and methylamines.

Yancey et al. [77]

Plant lipids
Contradictory reports on the effect on plant lipids. Akinci and Losel [68]

Hindered fatty acid desaturation which gives rise to a sharp decrease in
linoleic and linolenic acid biosynthesis.

Akinci and Losel [68]
Pham Thi et al. [78]

Oxidative damage Can lead to the production of ROS. Teotia and Singh [79]

* Additional information.
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5.1.2. Osmotic Stress

In line with Zhu et al. [80], osmotic stress may be used to refer to conditions in which there is
a limitation on plant growth and development as a result of shortage of water availability. Although
osmotic stress can result from drought, excessive salt in water, chilling, and freezing [80], Xiong
and Zhu [81] identified drought and high salinity as the chief causes of stress to plants under
natural conditions.

Plants respond to osmotic stress at the morphological, anatomical, and cellular levels [80] which
results in alterations in their development (such as the plant life cycle, limitation of shoot growth, and
enhancement of root growth), regulation in ion transport as well as metabolic changes which may
involve carbon metabolism and production of compatible solutes [45,81]. Some of these responses
according to Xiong and Zhu [81] are triggered by the primary osmotic stress signals while others can
be linked to secondary stresses/signals resulting from the primary signals. Examples of the secondary
signals are phytohormones [such as abscisic acid (ABA) and ethylene], ROS as well as intracellular
second messengers (e.g., phospholipids) [81].

Generally, the response of plants to osmotic stresses can be classified into three different forms
involving (a) the maintenance of homeostasis; (b) detoxification of harmful elements; and (c) efforts
towards growth recovery [81].

5.2. Anaerobic Stress

Higher plants, being aerobes, need molecular oxygen from their environment for survival [82].
However, under certain environmental conditions, there is a possibility of shortage in the supply of
O2 to plant tissues [83]. When this happens, that is, when there is restricted aeration of part or all of
the plant, “the resulting tissue hypoxia or anoxia inevitably suppresses oxygen-dependent pathways
especially the energy-generating system, disturbs functional relationships between organs such as
roots and shoots, as well as suppresses both carbon assimilation and photosynthate utilization” [82].

This shortage in the supply of oxygen has more direct effect on underground organs such as the
roots and seeds; the shoot systems are then indirectly affected as a result of the negative impact of
the stress on the root functions upon which the shoots depend [82]. The mitochondria have also been
identified by Vartapetian et al. [84] as suffering from oxygen deficiency before other cell organelles are
affected. Most plants tissues can, however, withstand anoxia (lack of oxygen) only for a short period of
time before irreversible damage occurs [85].

Plants’ Responses to Anaerobic Stress

Depletion of oxygen affects cell physiology; it alters gene expression, energy consumption, cellular
metabolism, growth, and development [86]. Based on findings by the authors, Blokhina et al. [87]
indicated that lack of oxygen primarily results in a decrease in adenylate energy charge, cytoplasmic
acidification, anaerobic fermentation, increase in cytosolic Ca2+ concentration, alterations in the
redox state, and a decline in the membrane barrier function. Low-oxygen (hypoxia) stress is also
reported to induce significant changes in the transcriptome as well as a shift from aerobic to anaerobic
respiration [88].

(a) Pasteur effect: Mustroph et al. [89] identified the Pasteur effect as a common eukaryotic response
to oxygen deficiency at the cellular level. According to Winkler et al. ([90], p. 721), this
definition “that the rate of fermentation rises when oxygen is excluded” for the Pasteur effect
by Krebs [91] has long been accepted in place of that involving “the inhibition of glycolysis by
respiration”. Kennedy et al. [85] added that most anaerobic-intolerant plants exhibit a pronounced
Pasteur effect.

(b) ROS production and oxidative stress: Like many other stress conditions, hypoxia is associated
with the excess generation of ROS [87]. Along these lines, there are two models which suggest
(1) a decrease in ROS under oxygen deprivation {low NADPH-nicotine adenine dinucleotide
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phosphate [92]—oxidase activity}; or (2) an increase in ROS due to inhibition of the mitochondrial
electron transport chain.

(c) Gene expression: As the synthesis of several proteins involved in glycolysis and fermentation
processes is induced in plants under anaerobic conditions [93], Agarwal and Grover [94] noted that
plants respond to low O2-stress condition via specific alterations in gene expression. Generally,
anaerobiosis gives rise to the alteration of gene expression in plants which leads to the accumulation
of anaerobic proteins (ANPs) [95] many of which are metabolic pathway enzymes [94].

5.3. Nutrient Deficiency

Plants need nutrient elements for their normal growth and development in which the deficiency
in any required element will have a significant impact [96]. Clarkson et al. [97] indicated that the level
of availability of certain mineral nutrients can alter plant transpiration, stomatal conductance, and root
hydraulic conductivity while the deficiency of any of these three plant nutrients—nitrate, phosphate,
and sulphate—in the growth medium, would impact the stomatal conductance and root hydraulic
conductivity in a similar way.

In line with Kandlbinder et al. [98], there are two contrasting developmental and metabolic effects
that can be induced by nutrient deficiency. At the first instance, which shows the adaptive response,
the growth of plants may decrease in an organised manner in which the number as well as size of each
part of the plant (involving the roots, leaves, shoots, and regenerative organs) are reduced while the
metabolic activity and ‘fitness’ are to a large extent unaffected [98]. In the second, the unbalanced
response gives rise to a disturbed environment and dysfunction of the whole plant—the plant becomes
stressed [98].

5.3.1. Plants’ Responses to Nutrient Deficiency

(a) Biosynthesis of stress-induced phenylpropanoids: Environmental (biotic and abiotic) stresses
like pathogen attack, wounding, nutrient deficiencies, and temperature, among others (Figure 8), are
capable of enhancing the levels of phenylpropanoids in plants [99,100].
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Figure 8. Examples of stress-induced phenylpropanoids. Source: Dixon and Paiva [100].

These phenylpropanoids are plant secondary metabolites [99,101,102] derived from trans-cinnamic
acid, produced from the deamination of L-phenylalanine via the action of the enzyme—phenylalanine
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ammonia-lyase (PAL) [99,100]. The other two enzymes involved in the first three steps that brings
about the synthesis of these secondary metabolites (phenylpropanoid-derived compounds), which
together are referred to as the general phenylpropanoid pathway (GPP) (Figure 9), are cinnamate
4-hydroxylase (C4H) and p-coumaroyl coenzyme A ligase (4CL) [101].
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Figure 9. Biosynthesis pathway of some plant phenylpropanoid compounds (PAL = phenylalanine
ammonia lyase; C4H = cinnamate 4-hydroxylase; 4CL = p-coumaroyl coenzyme A ligase). Adapted
from: [101,102].

In line with Lillo et al. [103], the shikimate pathway is found in plants and provides phenylalanine
for the synthesis of protein and secondary metabolites (like lignin and flavonoids). This shikimate
pathway, with distinct patterns of organ-specific as well as tissue-specific activity, however, depends
on developmental regulation and environmental stimuli [104]. The enzymes of this pathway also
respond to nitrogen and amino acid starvation [104].

On the other hand, Gershenzon [105] indicated that nitrogen, phosphorus, potassium, and sulphur
deficiencies most times lead to higher concentrations of phenolic compounds.
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(b) Oxidative stress: Following the acknowledgment of the relationship between macronutrient
deficiency and oxidative stress by Tewari et al. [106], Kandlbinder et al. [98] in their study found that
N-, P-, and S-nutrient deprivation triggered redox changes and induced oxidative stress.

5.3.2. Nitrogen Deficiency/Stress

Aside from oxygen, carbon, and hydrogen, among other mineral nutrients, plants need greater
amounts of nitrogen [107] whose deficiency Kovacik et al. [108] regarded as an abiotic stress factor based
on the experimental results of Shin et al. [109] in which H2O2 production occurred in nitrogen-deprived
roots. Kovacik et al. [110] also considered its absence as a form of abiotic stress.

Nitrogen deficiency is associated with increased phenolic concentration [105,108,111] including
flavonoids [108,112,113] and coumarins [108,110]. It is, however, linked with reduced mass-based
protein content [114]. In the view of Bongue-Bartelsman and Phillips [112], the increased deamination
of phenylalanine could be responsible for elevated flavonoid content under nitrogen limitation.

In addition, Kovacik et al. [110] indicated that nitrogen deficiency will affect amino acids and
carbon metabolism while Kovacik et al. [108] as well as Shin et al. [109] added that nitrogen limitation
can encourage the generation of ROS. When the level of these ROS produced exceeds that of removal
by the antioxidant defense mechanisms, oxidative stress occurs in the cell [115].

The indicators of senescence, which is an important outcome of N or P deficiency [106], is
reported to be similar to those of oxidative stress which include net loss of chloroplastic pigments
and proteins [106,116–118], lipid peroxidation, and membrane alterations, giving rise to a progressive
decline in photosynthetic capacity [106,118].

5.4. Temperature (Heat) Stress

Although living organisms recognise temperature beyond the normal optimal as heat stress [119],
Wahid et al. [120] referred the transient increase in temperature, usually 10–15 oC above ambient,
as heat shock or heat stress. They also added that heat stress occurs when there is an increase in
temperature above a threshold level for a period of time which can cause irreversible damage to plant
growth as well as development. In other words, heat stress depends on the intensity (in terms of
temperature in degrees), time of exposure, and rate of increase in temperature. For instance, very
high temperatures may lead to severe cellular injury and cell death within minutes as a result of the
damaging effect on cellular organization. However, at moderately high temperature, injuries, or death
may still occur but after a long-term exposure [120].

Plants’ Responses to Temperature (Heat) Stress

The direct adverse effects of high temperature include protein denaturation and aggregation,
as well as increased fluidity of membrane lipids. Meanwhile, enzyme inactivation in chloroplast and
mitochondria, inhibition of protein synthesis, protein degradation, and loss of membrane integrity are
associated with indirect or slower heat injuries. The resultant effects of these injuries are starvation,
growth inhibition, reduced ion flux as well as production of toxic compounds and ROS (Wahid
et al. [120]). The established responses of plants to temperature/heat stress are highlighted in Table 3.
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Table 3. Summary of plants’ responses to temperature/heat stress.

Type of Response Impact Indicators Parts of Plants/Processes Affected References

Morpho-anatomical and
phenological responses

Morphological symptoms

High temperature leads to loss in yield.
Wahid et al. [120]

Hasanuzzaman et al. [121]
Guilioni et al. [122]

High temperatures affect performance and crop quality
characteristics. Hasanuzzaman et al. [121]

Anatomical changes
High temperature impacts anatomical structures at the tissue,
cellular and sub-cellular levels in which the associated alterations
may give rise to poor plant growth and productivity.

Wahid et al. [120]

Phenological changes

Heat stress to some extent affects all plant vegetative and
reproductive stages. Wahid et al. [120]

* The extent of possible damage depends on the developmental stage
of the plant. Wollenweber et al. [123]

Physiological responses

Water relations

When water is limiting, plant tissue water status is affected at high
temperature. Wahid et al. [120]

Under field conditions, high temperature stress reduces water
availability which negatively affects plant productivity. Simoes-Araujo et al. [124]

Accumulation of compatible
osmolytes This is a basic adaptive mechanism.

Wahid et al. [120]
Bohnert et al. [125]

Hare et al. [126]
Sakamoto and Murata [127]

Photosynthesis

At moderate heat stress, inhibition of photosynthesis is reversible.
Severe heat stress causes permanent damage to the photosynthetic
apparatus.

Salvucci and Crafts-Brandner [128]

Has more significant effect on the photosynthetic capacity of C3
plants than that of C4 plants. Wahid et al. [120]

* Regarded as the physiological process most susceptible to high
temperatures. Wahid et al. [120]
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Table 3. Cont.

Type of Response Impact Indicators Parts of Plants/Processes Affected References

Physiological responses

Assimilate partitioning

Low to moderate heat stress may cause a reduction in source and
sink activities giving rise to severe reductions in plant growth,
economic yield, and harvest index.
High temperatures affect the transport and transfer processes in
plants because of assimilate partitioning taking place via apoplastic
and symplastic pathways.

Wahid et al. [120]

Cell membrane
thermostability

Increases the kinetic energy and movement of molecules across
membranes resulting in loosening of the chemical bonds within
molecules in biological membranes.

Wahid et al. [120]

Affects the tertiary and quaternary structures of membrane proteins.

Hormonal changes

Affects hormonal homeostasis, stability, content, biosynthesis, and
compartmentalization. Wahid et al. [120]

Gives rise to increased levels of abscisic acid (ABA) which brings
about modification of gene expression in response to stress.

Secondary metabolites Induces production of phenolic compounds such as flavonoids and
phenylpropanoids. Wahid et al. [120]

Molecular responses
Oxidative stress Increases production of ROS. Hasanuzzaman et al. [129,130]

Stress proteins Leads to the expression of stress proteins as an adaptive mechanism. Wahid et al. [120]

* Additional information.
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5.5. Oxidative Stress

Oxidative stress is defined as a “state in which oxidation exceeds the antioxidant systems in the
body secondary to a loss of balance between them” ([131], p. 271) and according to Lushchak ([132],
p. 176) “its development is either the reason, or common event of many pathological states, including
aging”. In line with Lushchak [132], oxidative stress occurs in situations where the equilibrium
between ROS generation and elimination is upset leading to their enhanced steady-state level. Birben
et al. [92] referred it to a shift in balance between oxidant/antioxidant which favours the oxidants as
shown in Figure 10. This perturbation of the equilibrium between generation and scavenging of ROS
may be caused by various biotic and abiotic stress factors which are known to reduce global crop
production [133].
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Figure 10. Relationship between oxidants (ROS) and antioxidants (AOX) leading to oxidative stress.

The ROS consists of free radicals, reactive molecules, as well as ions that are derived from O2,
which in plants, depending on their concentrations, can either be harmful or beneficial [115]. The
most common ROS are singlet oxygen (1O2), superoxide anion (O2

•−), hydrogen peroxide (H2O2), and
hydroxyl radical (OH•) [115]. At elevated concentrations, ROS bring about damage to biomolecules
while at low/moderate concentration, they function as second messengers in intracellular signaling
cascades that mediate several responses in plant cells [115] such as stomatal closure [115,134,135],
programmed cell death [115,136,137], gravitropism [115,138], and acquisition of tolerance to both biotic
and abiotic stresses [115]. Mittler [139] added that ROS levels that are too low (cytostatic level) or too
high (cytotoxic level) have a negative effect on plant growth and development while ROS level within
the right range (basal level) support plant health.

As noted by Sharma et al. [115], in plants, ROS are generated in both unstressed and stressed
cells at different locations in chloroplasts, mitochondria, plasma membranes, peroxisomes, apoplast,
endoplasmic reticulum, and cell walls. These authors added that the ROS are usually produced
as a result of the leakage of electrons onto O2 from the electron transport activities of chloroplasts,
mitochondria, and plasma membranes or as byproducts of various metabolic pathways in different
cellular compartments.

Generally, under ideal growth conditions, the generation of ROS in organelles is low [140] but are
formed excessively during adverse/stressful conditions [140,141], which can bring about damage to
biomolecules like lipids, proteins, and deoxyribonucleic acid (DNA) [115]. These reactions according
to Sharma et al. [115] can affect intrinsic membrane properties such as fluidity, ion transport, loss
of enzyme activity, protein cross-linking, inhibition of protein synthesis, and DNA damage, which
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eventually lead to cell death. Gill and Tuteja [142] pointed out that in addition to the ability of ROS to
damage cells, they can also initiate responses such as new gene expression.

Plants’ Responses to ROS and Oxidative Stress (Antioxidant Systems)

In line with Gill and Tuteja [142], the balance between generation of ROS and scavenging at the
proper site as well as time, determines whether ROS will act as damaging, protective or signaling
factors. Hence, as a result of the multifunctional roles of these ROS, cells must control their levels to
prevent any oxidative injury but not eliminate them completely [115]. The scavenging or detoxification
of excess ROS is carried out by the antioxidant system comprising the non-enzymatic antioxidants and
enzymatic antioxidants [115]. The former class of non-enzymatic antioxidants within cells is comprised
of ascorbic acid (AA), glutathione (GSH), carotenoids, α-tocopherol, phenolics and amino acids like
proline while the latter class (enzymatic antioxidants) include superoxide dismutase (SOD), catalase
(CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR), glutathione reductase (GR), and guaiacol peroxidase (GPX) [115,143].

Basically, the ability of plants to maintain a high antioxidant capacity to scavenge toxic ROS (i.e.,
reduce oxidative stress) implies increased plant tolerance level to environmental stresses [115,144].
Figure 11 provides a connection between the impact of the various levels of ROS on plants and the
antioxidant system.
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6. Conclusions

Although a number of studies have recorded the negative impacts of crude oil contamination
at toxic levels on plants, this review elucidates the underlying factors responsible for the observed
responses in the crude oil-stressed plants. It highlights the various ways in which crude oil and its
induced abiotic stresses may affect the composition of agricultural produce. It is believed that a clear
understanding on the influence of crude oil contamination/induced abiotic stresses on crop yield,
quality, and agrifood production, in general, would assist the government, agronomists, environmental
as well as food scientists in proffering solutions to the problem of food security in regions of the world
prone to/affected by crude oil spills.
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