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Abstract: Intensive tillage, high fertiliser inputs, and plastic mulch on the soil surface are widely used
by vegetable growers. A field investigation was carried out to quantify the impact of alternate land
management and fertiliser practices designed to improve offsite water quality on the productivity of
vegetable rotations within a sugarcane farming system in a coastal region of subtropical northeast
Australia. Successive crops of capsicum and zucchini were grown in summer 2010–2011 and winter
2011, respectively, using four different management practices. These were ‘Conventional’—the current
conventional practice using plastic mulch, bare inter-rows, conventional tillage, and commercial
fertiliser inputs; ‘Improved’—a modified conventional system using plastic mulch in the cropped area,
an inter-row vegetative mulch, zonal tillage, and reduced fertiliser rates; ‘Trash mulch’—using cane
trash or forage sorghum residues instead of plastic mulch, with reduced fertiliser rates and minimum
or zero tillage; and ‘Vegetative mulch’—using Rhodes grass or forage sorghum residues instead of
plastic mulch, with minimum or zero tillage and reduced fertiliser rates. During the second vegetable
crop (zucchini), each management practice was split to receive either soil test-based nutrient inputs
or a common, luxury rate of nutrient addition. The ’Trash mulch’ and ‘Vegetative mulch’ systems
produced up to 43% lower capsicum and zucchini yields than either of the plastic mulch systems.
The relative yield difference between trash systems and plastic mulch management systems remained
the same for both the soil test-based and high nutrient application strategies, suggesting that factors
other than nutrition (e.g., soil temperature) were driving these differences.
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1. Introduction

The use of plastic mulch on the soil surface is a successful commercial crop production system
practiced in several cropping industries [1,2]. Recent studies have reported increased soil organic
carbon (SOC) mineralisation under plastic mulch being offset by higher root biomass production [3],
providing a neutral effect on soil health while enhancing crop productivity. Enhanced soil health
through the incorporation of previous crop stubbles and plastic mulch has also been reported by
Huo et al. [4].

Previous studies on vegetable systems in Australia reported an accumulation of large amounts
of residual nutrients in the vegetable system as a result of over-application relative to crop nutrient
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demand [5,6]. This accumulation of excess nutrients in soil has not been restricted to the conventional
vegetable system, with Nachimuthu et al. [7] also recording accumulation of phosphorus (P) in organic
and integrated (a conventional practice incorporating some organic principles) systems. There is strong
evidence that this over application of nutrients in vegetable production systems in Australia has the
potential to cause adverse environmental impacts through the loss of dissolved nutrients in the water,
either via the leaching of excess nutrients to groundwater or the loss of nutrients in surface water
runoff [5,8].

These intensive vegetable systems also have high risks of soil erosion due to excessive tillage,
resulting in sediment and particulate nutrient movement into adjacent water bodies [9,10]. The use
of plastic mulch on the soil surface, typically in the portion of the field where crops are grown,
eliminates erosion risks from that area. However, it typically increases total runoff from the field
and channels that runoff through the uncropped interspace, exacerbating the erosion risks from that
area [11]. Previous studies in the USA [12,13] and more recently in Australia [11] reported the negative
environmental impacts of plastic mulch and the advantages of vegetative mulch in inter-rows in
terms of reducing runoff and erosion. However, none of these studies reported the productivity and
economic sustainability of systems proposed as alternatives to conventional plastic mulch systems.
There is a clear need to develop alternate vegetable systems that will reduce the environmental impact
of farming practices without offsetting productivity. In Australia, many growers and state and federal
government agencies are collaborating to develop improved farming systems that will deliver such
outcomes for a variety of crop industries across Great Barrier Reef (GBR) catchments [10,14]. This
study was part of that initiative.

The Burnett Mary region is in the southern part of the GBR catchment and is predominantly
known for producing horticulture and sugarcane crops. The value of the horticulture industry in the
Burnett Mary region has grown from $27.4 M in 1980 to $467.8 M in 2010 [11], with more than 70%
of that gross value derived from intensive vegetable production alone. Most vegetable growers in
this district follow either sugarcane—vegetable or a continuous vegetable rotation, with those in the
former system growing vegetable crops in a one in five year rotation with sugarcane. The favourable
sub-tropical climate allows for vegetables to be grown year round, with at least two seasonal crops
grown per year. Nutrients are applied to vegetables as a basal application with additional in-season
applications through trickle irrigation. The regular in-season applications occur from planting up to a
week before the last harvest of vegetables.

This investigation was designed to study the impact of a range of management practices on
productivity in intensive vegetable production systems. It was hypothesised that land management
practices designed to improve offsite water quality could be implemented without negatively impacting
productivity. The impact of these practice changes on water quality and vegetable yield were
detailed in Nachimuthu et al. [11], while this short communication assesses the impact of increased
nutrient inputs as a way of overcoming the observed decline in yield and economic returns of those
management practices.

2. Materials and Methods

2.1. Site Descriptions

The site was established in the Burnett Mary region of Queensland, Australia, in a well-drained
field containing a mixture of Yellow Brown Chromosol or Dermosol soils [15]. The average sand, silt,
and clay fractions of the soil were 77%, 16%, and 8%, respectively. The area has a subtropical climate
with long term average maximum and minimum temperatures of 17 ◦C and 27 ◦C, and the long-term
average rainfall of 1019 mm, with >50% of rainfall occurring in the summer months (January–March).

A manual rain gauge was installed at the experimental site and daily rainfall was recorded.
Rainfall during the initial capsicum crop monitoring period (October 2010–January 2011) was 884 mm,
nearly double the long-term average of 463 mm (1942–2012, Bureau of Meteorology). Rainfall during
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the fallow period between vegetable crops (February–mid May 2011) was 303 mm, slightly lower than
long-term average of 362 mm, but a period of intense rainfall in March 2011 (236 mm) was double the
long-term average. Rainfall during the zucchini crop monitoring period (May–late July 2011) was only
60.4 mm, well below the long-term average of 137 mm (1942–2012, Bureau of Meteorology).

Prior to vegetable cultivation, the field supported a commercial sugarcane crop for the preceding
five years, grown using trash retention (green cane trash blanket) and controlled traffic technologies.
The site was very uniform in the top 70 cm of the soil profile, with a soil pH (1:5, water) of 6.5
and 1.0% organic carbon (Leco combustion) in the 0–0.1 m soil layer. The field layout is depicted
in Figure 1, and was designed to facilitate the monitoring of field scale runoff volumes from the
contrasting management systems. The entire field was subdivided into five management units 9 m
wide, with four of these units sown to vegetable crops, and these contiguous management units
were further split into two blocks draining in opposite directions from the highest elevation near mid
field. The smaller 120 m blocks (where runoff flumes and water quality samplers were installed [11])
were treated with the contrasting fertiliser application strategies, as shown in Table 1, throughout the
monitoring period, while the 160 m blocks received the same contrasting applications in the initial
capsicum crop but a common, high application (HF) rate in the following zucchini crop (see Section 2.2).
Soil temperature (5 cm depth) was monitored during the capsicum and zucchini crop season using
Tinytag plus2 (Gemini data loggers (UK) Ltd., Chichester, West Sussex PO198UJ, UK), with data
presented in Figures S1 and S2 (supplementary data).
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Figure 1. Field lay out of the experimental plot. The field was split into four management units with
each unit being 280 m long and 9 m wide (i.e., 5 × 1.83 m cane rows), with contrasting management
systems randomly allocated to each strip. The 280 m length was subdivided into two subunits of
approximately 120 m and 160 m based on a highpoint in the middle of the field, with drainage in either
direction in response to a 1% slope. HF indicates high fertiliser input treatments.

Table 1. A comparative summary of treatment characteristics.

Treatment Conventional Practice Improved Practice Trash Mulch Practice Vegetable Only Practice **

Previous management Cane—1.8 m PCTF # Cane—1.8 m PCTF # Cane—1.8 m PCTF # Rhodes grass

First crop
(planting date)

Capsicum
(13 October 2010)

Capsicum
(13 October 2010)

Capsicum
(13 October 2010)

Capsicum
(13 October 2010)

Trash management Removed Removed Retained Retained
Cultivation full tillage full tillage strip none
Ground cover in bed Plastic mulch Plastic mulch Trash blanket Rhodes grass
Ground cover-inter-row None Jap millet growing Trash blanket Rhodes grass
Fertiliser Traditional Improved Improved Improved
N (kg/ha) 315 147 200 200
P (kg/ha) 130 35 24 24
K (kg/ha) 306 175 200 200
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Table 1. Cont.

Treatment Conventional Practice Improved Practice Trash Mulch Practice Vegetable Only Practice **

Fallow management
(1 February 2011–13
May 2011)

Knockdown herbicide
Forage sorghum grown

and slashed before
planting zucchini

Forage sorghum grown
and slashed before
planting zucchini

Forage sorghum grown and
slashed before planting

zucchini

Ground cover in bed Plastic mulch Plastic mulch Trash mulch,
capsicum residues

Rhodes grass mulch,
capsicum residues

Ground cover in
inter-row Capsicum residues Capsicum residues, Jap

millet mulch
Trash mulch,

capsicum residues
Rhodes grass mulch,
capsicum residues

Second crop
(planting date)

Zucchini
(13 May 2011)

Zucchini
(13 May 2011)

Zucchini
(13 May 2011)

Zucchini
(13 May 2011)

Cultivation No tillage No tillage No tillage No tillage
Ground cover in bed Plastic mulch Plastic mulch Forage sorghum mulch Forage sorghum mulch
Ground cover in
inter-row None Forage sorghum mulch Forage sorghum mulch Forage sorghum mulch

Fertiliser * Soil test-based Improved Soil test-based Soil test-based
N (kg/ha) 105 82 104 104
P (kg/ha) 8 13 19 19
K (kg/ha) 111 76 86 86

* Trash mulch system high fertiliser (HF), Improved system HF, Conventional system HF and Vegetable only system
HF received a common rate of nutrients to supply 161 kg N/ha, 33 kg P/ha, and 162 kg K/ha; # PCTF- Precision
Control Traffic Farming; ** The vegetable only system had a fallow phase after the zucchini crop. Again, forage
sorghum was planted on 23 October 2011 and 50 kg N/ha was top dressed to establish a good mulch before planting
the next crop. Forage sorghum was mulched on 4 January 2012. Pumpkin seedlings (var. Kent Special) were planted
on 28 February 2012 using a mechanical planter and auto steer GPS. Commercial fertiliser application (113 N, 26 P,
and 163 K) was applied through fertigation. Final harvest was conducted on 25 July 2012. The meaning of PCTF.

2.2. Management Systems

The experiment was conducted in strip plot design, with each strip subdivided into three
pseudo-replications for plant sampling and yield estimation (Figure 1). Four management systems
were monitored during the capsicum crop, and eight management systems (splitting of the original
management systems to include a common high nutrient regime in the ‘non-runoff monitoring’ part of
the field) were monitored during the zucchini crop. Management systems differed in combinations
of nutrient inputs, mulch cover, and tillage, with key features outlined in Table 1. All management
systems were assessed for yield and gross margins.

Nutrient Inputs

The nutrient inputs for the capsicum crop, as well as for the smaller sub-sections of each
management strip in the zucchini crop (120 m long, Figure 1), are outlined in Table 1, with the
Conventional systems representing the current industry practice in the region. There were suggestions
of nutrient limitations in both management systems without plastic mulch during the capsicum crop,
so a common, high nutrient input regime (designated HF in Figure 1) was instigated on the longer
sub-block (Figure 1) to test the extent to which nutrient availability may have contributed to the poor
productivity of those free-draining systems. This regime was designed to ensure that no nutrient
limitations were experienced, with nutrients added into the water supply during trickle irrigation
events (fertigation).

2.3. Yield Estimation and Economic Analysis

Three replicate yield assessment areas, each 10 m × 1.83 m, were designated in the top, middle,
and lower elevation areas in each subplot of each management system. The capsicum and zucchini
were harvested and weighed, with yields reported on a per hectare basis. A gross margin analysis was
performed on each system based on the market value of harvested produce and the production input
cost (fertiliser, tillage, and plastic mulch).
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2.4. Statistical Analysis

The yields generated for each pseudo-replicate (top, middle, and lower elevation areas of the
field) in each management unit were used to measure the uniformity of crop performance between
the treatments. Results from each management unit are presented as means with an associated
standard deviation (Figure 2 and Table 2). The relative differences between management systems
were discussed.
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Figure 2. Impact of management systems on vegetable yield (t/ha) (mean with standard deviation).

Table 2. Impact of management practices on vegetable yield (mean ± standard deviation).

Management Practices Capsicum Zucchini Zucchini Extra Fertiliser

Trash mulch 11.10 ± 3.55 11.09 ± 3.31 13.10 ± 0.86
Improved 21.05 ± 0.89 17.97 ± 1.19 21.34 ± 0.22
Conventional 25.20 ± 2.87 22.59 ± 2.18 25.18 ± 1.66
Vegetable only 14.35 ± 4.80 9.22 ± 1.10 14.08 ± 1.02

3. Results and Discussion

Despite similar or greater nutrient input (Table 1) in the ‘Trash mulch’ and ‘Vegetable only’
systems, relative to the ‘Improved’ system, both zucchini and capsicum productivity responded in a
similar way to these management systems. Capsicum fruit yields (Figure 2 and Table 2) were highest
for the ‘Conventional’ system, followed by the ‘Improved’ and ‘Trash mulch’ systems. Similarly, the
zucchini fruit yields (Figure 2 and Table 2) were highest for the ‘Conventional’ system, followed by the
‘Improved’ and ‘Trash mulch systems’ in both the soil test-based nutrient application and the high
nutrient input systems. Yields in the ‘Improved’ system were only about 80% of the yields of the
‘Conventional’ system, while yields in the ‘Trash mulch’ and ‘Vegetable only’ systems were only 43%
and 49% of the ‘Conventional’ system, respectively, for the management systems with soil test-based
nutrient applications. A pumpkin crop following the zucchini crop in the ‘Vegetable only’ system
(data not shown) also yielded only 39% of the district average productivity [11]. Gross margin analyses
for the zucchini crop suggested that the reductions in grower profitability for the ‘Trash mulch’ and
‘Vegetable only’ systems were clearly very large (>AUD$14,000/ha, or 24% of the expected gross
margin in a conventional system). Even moving to the ‘Improved’ system would result in a grower
profitability decline, although with lower magnitude (>AUD$6000/ha, or 67% of the expected gross
margin in a conventional system).
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These consistent observations of lower productivity and profitability systems without plastic
mulch for both vegetable crops suggests that such trash mulch systems may not be a viable or
sustainable system for the industry to move towards—a concern already prevailing in the GBR
catchment farming communities [16]. The observations of crops grown under plastic mulch
out-yielding those grown under vegetative mulch have also been reported in other studies [17,18].
The big differences in productivity between conventional and other management systems were unlikely
to be due to inadequate nutrient availability resulting from reduced fertiliser rates in zucchini, as
unlike the preceding capsicum crop, similar nutrients (based on pre-plant soil tests) were supplied to
zucchini in the ‘Trash mulch’, ‘Vegetable only’, and ‘Conventional systems’ (Table 1). An additional
indication of the lack of nutrient involvement in the systematic yield differences was obtained by
comparing yield results to those obtained from the high nutrient input subplots in each management
system. While yields were uniformly higher with extra fertiliser input, responses were generally small
(2–5 t/ha) and the management system relativities stayed virtually the same. Under uniformly high
nutrient inputs, yields of the ‘Trash mulch’ and ‘Vegetable only’ treatments were still only 52–54%
of those in the ‘Conventional’ system, while those in the ‘Improved’ treatment were 85% of the
‘Conventional’ system. Unlike the capsicum crop, where very wet conditions depressed yields, the
zucchini crops had high yields and net returns more in line with regional commercial expectations.

Additional nutrient inputs tended to reduce yield variability in some of the systems (Table 2),
and in the ‘Improved’ system allowed yields to approach those of the ‘Conventional’ system under
standard management (i.e., 23 t/ha vs. 21 t/ha). However, yields in the ‘Trash mulch’ and ‘Vegetable
only’ management systems with additional nutrient inputs (13 t/ha and 14 t/ha, respectively) were
still <60% of those in the standard ‘Conventional’ system. Similar trends were also observed in plant
dry biomass collected throughout the season (data not presented). This suggests that factors other
than in-crop nutrient inputs (e.g., the impacts of ground cover or plastic mulch on soil temperature,
surface soil wetting, and drying cycles, etc.) were causing the productivity differences between plastic
and trash mulch management systems.

Soils are characteristically warmer under plastic mulch [1,19,20], and data collected during the
zucchini crop were consistent with this, showing differences of 2–3 ◦C in soil temperatures between
management systems (Supplementary data, Figure S1). However, the extent and potential impact of
temperature differences will be affected by seasonal conditions. The initial capsicum crop at this site
was grown during spring to early summer under a warmer climate and, at least during the growth
period leading up to the heavy rainfall season in late December 2010 to January 2011, there was no
evidence of a consistent effect of plastic mulch on elevating soil temperatures (Supplementary data,
Figure S2). Therefore, while plastic mulch provided relatively higher productivity benefits over the
freely draining ‘open’ mulch systems in both crops (Figure 2 and Table 2), the reasons for those benefits
are likely to be quite different.

While the plastic mulch provided few consistent benefits in raising soil temperature during the
summer, the very heavy rainfall that occurred from late December to January was likely to result
in significant leaching of nutrients in the open systems [11], while the systems covered with plastic
mulch would have been much less affected. This was consistent with the observation of poor crop
nutrient status in the trash mulch systems, and led to the conclusion that the main difference in
crop performance between the management systems was related to the nutrient management inputs.
This was the reason for the elevated focus on nutrient availability as a yield-determining factor in the
subsequent zucchini crop.

However, in the late autumn-winter zucchini crop growing season, there were two important
factors that may have reduced the importance of nutrient constraints as the prime determinant of
yield differences between management systems. The first was the complete lack of any substantial in
crop rainfall that was likely to result in nutrient leaching in the open systems. There was a total in
crop rainfall of only 60 mm during the growing season, thus differences in nutrient losses would be
an unlikely explanation for the observed yield differences between open and plastic mulch systems.
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The second was the cooler temperatures experienced in the autumn-winter zucchini growing season.
Soil temperatures in the open systems during the zucchini growing season were ~10 ◦C lower than
those during the capsicum season, and the benefits of plastic mulch in elevating soil temperatures
were much more obvious (Supplementary data, Figure S1). This had a direct effect on the rates of crop
development, with a three day delay of the first zucchini harvest in the ‘Trash mulch’ and ‘Vegetable
only’ systems compared to the ‘Improved’ and ‘Conventional’ systems in the first week of harvest, in
addition to lower yields for at least the first four weeks of harvest. These obvious temperature impacts
between mulch and non-mulch systems suggest that this was the factor that provided the productivity
benefit in the zucchini crop.

It is noteworthy that the yield of the ‘Trash mulch’ and ‘Improved’ systems were similar in week 5
of picking, so it was uncertain whether an extended harvesting season in the non-plastic mulch systems
could have reduced the cumulative yield gap to some extent. Even if this were the case, an extended
commercial harvesting period would be undesirable from both practical and economic perspectives,
given the high cost of labor and irrigation on top of an already high proportion of variable costs
represented by labor in the ’Conventional’ vegetable systems.

The zucchini yield gap between ‘Improved’ and ‘Conventional’ systems (both employing plastic
mulch) could be a response to residual nutrients left after the capsicum harvest (both the amount
and distribution in the bed) as well as the rate of fertiliser applied in the zucchini crop itself, as
soil temperatures were similar in both management systems. The residual nutrients left in the soil
profile after the capsicum crop in the ‘Conventional’ system were much higher than in the ‘Improved’
system [11,21]. The yield gap of 5 t/ha between the ‘Improved’ and ‘Conventional’ systems with
fertiliser applications based on a pre-planting soil test (e.g., 82 and 105 kg N/ha, respectively) decreased
slightly to 4 t/ha when luxury fertiliser rates were applied (e.g., 161 kg N/ha). The gap between the
‘Improved’ system with the luxury fertiliser application and the ‘Conventional’ system with the soil
test-based application was only 2 t/ha (Figure 2 and Table 2).

Part of the appeal of the vegetative mulch systems to natural resource managers in Great Barrier
Reef (GBR) catchments lies in the potential of those systems to reduce runoff and associated soil
and nutrient loss compared to plastic mulch systems [13]. However, the apparent improvement in
environmental sustainability of those systems may be misleading from a number of perspectives.
From a food production standpoint, unless the productivity gap associated with those systems can be
overcome (in a way that does not negate those environmental gains, such as leading to an increase
rather than a decrease in nutrient inputs), additional area will need to be cultivated to supply a similar
volume of fresh produce to market, and the associated environmental impact needs to be taken into
account. Similarly, the reduced runoff and associated nutrient loss in these ‘open’ mulch systems may
have negligible water quality impact in the long term if the ‘improvements’ simply represent a change
in the nutrient loss pathway, from runoff to deep drainage. The latter is a major risk in well-drained
sandy loam soils in coastal catchments [21].

4. Conclusions

This study has clearly demonstrated the inability of high nutrient inputs to overcome the
productivity differential between management systems. This suggests that vegetable yield was
dominated by land management (soil tillage and mulch management) rather than nutrient availability.
These conclusions are based on the productivity of both the capsicum and zucchini test crops.
Further studies are required to maximise the environmental and economic benefits of modified
cropping systems in these sensitive coastal environments, with a systems approach needed to reduce
the productivity gap between management systems. In particular, better matching of nutrient inputs
with the rate of crop demand over time using fertigation, and possibly optimising the distribution of
nutrients (bands vs. mixing) to maximise uptake by roots of different crop species, may reduce the
productivity penalty for reducing the whole of season nutrient inputs. However, as these results have
clearly shown, additional nutrient inputs in vegetative mulch systems will still not offset the yield
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advantages obtained from plastic mulch systems. Until viable alternatives are developed, growers
cannot afford to make radical systems changes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-7524/3/3/42/s1,
Figure S1: Soil temperature recorded at 5 cm depth during the winter zucchini crop, showing the difference
between plastic mulch and trash systems; Figure S2: Soil temperature recorded at 5 cm depth from December 2010
until late January 2011 during the spring/summer capsicum crop, showing the difference between plastic mulch
and trash systems.
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