Light and High Temperature Negatively Regulate Germination Dynamics of Zephyranthes tubispatha Seeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Collection and General Germination Conditions
2.2. Germination Assays and Pharmacological Treatments
2.3. Phytohormone Measurements
2.4. Histochemical Detection of Superoxide Anion
2.5. Data Analysis and Statistical Tests
3. Results
3.1. Responses to Light Treatments
3.2. High Temperature and Light Interactions
3.3. Effect of Temperature and Light Treatments on Phytohormone Levels
3.4. Alteration of Superoxide Anion Generation in the Embryo
4. Discussion
4.1. Inhibition of Z. tubispatha Seed Germination by Light Cues May Involve a HIR Type of Response
4.2. Exposure to High Temperatures Condition Germination Responses to Light Cues
4.3. ROS Generation at the Embryonic Root Pole Is Differently Affected by Thermoinhibitory or Photoinhibitory Signals
4.4. Integration of Thermal and Light Cues Would Favor Germination of Z. tubispatha Seeds Under Optimal Conditions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roitman, G.; Hurrell, J.A. Habranthus. In Flora Rioplatense: Sistemática, Ecología y Etnobotánica de las Plantas Vasculares Rioplatenses; Hurrell, J.A., Ed.; LOLA: Buenos Aires, Argentina, 2009; pp. 115–127. (In Spanish) [Google Scholar]
- Arroyo-Leuenberger, S.C. Amaryllidaceae. In Catálogo de las Plantas Vasculares de la República Argentina I; Zuloaga, F., Morrone, O., Eds.; Monographs in Systematic Botany from Missouri Botanical Garden; Missouri Botanical Garden: St. Louis, MO, USA, 1996; Volume 60, pp. 1–332. (In Spanish) [Google Scholar]
- Sabatino, M.; Farina, J.; Maceira, N. Flores de las Sierras de Tandilia. In Guía Para el Reconocimiento de las Plantas y Sus Visitantes Florales; Ediciones INTA: Balcarce, Argentina, 2017. (In Spanish) [Google Scholar]
- Gonzalez Chavarro, C.F.; Cabezas Gutiérrez, M.; Pulido Blanco, V.C.; Celis Ruiz, X.M. Amaryllidaceae: Potential Source of Alkaloids. Biological and Pharmacological Activities. Cienc. Agric. 2020, 17, 78–94. [Google Scholar] [CrossRef]
- Sanhueza, C.; Germain, P.; Zapperi, G.; Cuevas, Y.; Damiani, M.; Piovan, M.J.; Tizón, R.; Loydi, A. Plantas Nativas de Bahía Blanca y Alrededores: Descubriendo su Historia, Belleza y Magia, 2nd ed.; Tellus: Bahía Blanca, Argentina, 2016. (In Spanish) [Google Scholar]
- Streher, N.S. Fenologia da Floração e Biologia Reprodutiva em Geófitas Subtropicais: Estudos de Caso Com Espécies Simpátricas de Amaryllidaceae. Ph.D. Thesis, Universidade Estadual de Campinas, Instituto de Biología, Campinas, Brazil, 2016. (In Portuguese) [Google Scholar] [CrossRef]
- Afroz, S.; Rahman, M.; Hassan, M. Taxonomy and reproductive biology of the genus Zephyranthes Herb. (Liliaceae) in Bangladesh. Bangladesh J. Plant Taxon. 2018, 25, 57–69. [Google Scholar] [CrossRef]
- Acosta, M.C.; Manfreda, V.T.; Alcaraz, M.L.; Alemano, S.; Causin, H.F. Germination responses in Zephyranthes tubispatha seeds exposed to different thermal conditions and the role of antioxidant metabolism and several phytohormones in their control. Seed Sci. Res. 2022, 32, 230–245. [Google Scholar] [CrossRef]
- Acosta, M.C.; Alcaraz, M.L.; Causin, H.F.; Manfreda, V.T. Aportes al conocimiento morfológico y fisiológico de la reproducción por semillas de Zephyranthes tubispatha (Amaryllidaceae). Bol. Soc. Argent. Bot. 2023, 58, 7. (In Spanish) [Google Scholar] [CrossRef]
- Flores, J.; Jurado, E.; Chapa-Vargas, L.; Ceroni-Stuva, A.; Dávila-Aranda, P.; Galíndez, G.; Gurvich, D.; León-Lobos, P.; Ordóñez, C.; Ortega-Baes, P.; et al. Seeds photoblastism and its relationship with some plant traits in 136 cacti taxa. Environ. Exp. Bot. 2011, 71, 79–88. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Mérai, Z.; Graeber, K.; Wilhelmsson, P.; Ullrich, K.K.; Arshad, W.; Grosche, C.; Tarkowská, D.; Turečková, V.; Strnad, M.; Rensing, S.A.; et al. A novel model plant to study the light control of seed germination. bioRxiv 2019. bioRxiv:470401. [Google Scholar] [CrossRef]
- Pons, T.L. Seed responses to light. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed.; Fenner, M., Ed.; CABI Publishing: Wallingford, CT, USA, 2000. [Google Scholar]
- Takaki, M. New proposal of classification of seeds based on forms of phytochrome instead of photoblastism. R. Bras. Fisiol. Veg. 2001, 13, 104–108. [Google Scholar] [CrossRef]
- Legris, M.; Nieto, C.; Sellaro, R.; Prat, S.; Casal, J.J. Perception and signalling of light and temperature cues in plants. Plant J. 2017, 90, 683–697. [Google Scholar] [CrossRef]
- Casal, J.J.; Qüesta, J.I. Light and temperature cues: Multitasking receptors and transcriptional integrators. New Phytol. 2018, 217, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Mérai, Z.; Xu, F.; Hajdu, A.; Kozma-Bognár, L.; Dolan, L. Phytochrome A is required for light-inhibited germination of Aethionema arabicum seed. New Phytol. 2025, 247, 2134–2146. [Google Scholar] [CrossRef]
- Merai, Z.; Xu, F.; Musilek, A.; Ackerl, F.; Khalil, S.; Soto-Jimenez, L.M.; Lalatovic, K.; Klose, C.; Tarkowska, D.; Tureckova, V.; et al. Phytochromes mediate germination inhibition under red, far-red, and white light in Aethionema arabicum. Plant Physiol. 2023, 192, 1584–1602. [Google Scholar] [CrossRef]
- Merai, Z.; Graeber, K.; Xu, F.; Dona, M.; Lalatovic, K.; Wilhelmsson, P.K.I.; Fernandez-Pozo, N.; Rensing, S.A.; Leubner-Metzger, G.; Mittelsten Scheid, O.; et al. Long days induce adaptive secondary dormancy in the seeds of the Mediterranean plant Aethionema arabicum. Curr. Biol. 2024, 34, 2893–2906. [Google Scholar] [CrossRef]
- Linkies, A.; Leubner-Metzger, G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep. 2012, 31, 253–270. [Google Scholar] [CrossRef]
- Corbineau, F.; Xia, Q.; Bailly, C.; El-Maarouf-Bouteau, H. Ethylene, a key factor in the regulation of seed dormancy. Front. Plant Sci. 2014, 5, 539. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Gantait, S.; Mitra, M.; Yang, Y.; Li, X. Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiol. Biochem. 2020, 151, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Corbineau, F. Ethylene, a signaling compound involved in seed germination and dormancy. Plants 2024, 13, 2674. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, G.; Finello, J.; Plaza Rojas, M.; Liberatore, F.; Robert, G.; Otaiza-Gonzalez, S.; Velez, P.; Theumer, M.; Agudelo-Romero, P.; Enet, A.; et al. Autophagy modulates growth and development in the moss Physcomitrium patens. Front. Plant Sci. 2022, 13, 1052358. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W.; InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 2018. Available online: http://www.infostat.com.ar (accessed on 28 November 2025).
- Huo, H.; Bradford, K. Molecular and hormonal regulation of thermoinhibition of seed germination. In Advances in Plant Dormancy; Anderson, J., Ed.; Springer: Cham, Switzerland, 2015; pp. 3–33. [Google Scholar] [CrossRef]
- Derakhshan, A.; Bakhshandeh, A.; Siadat, S.A.; Moradi-Telavat, M.R.; Andarzian, S.B. Quantification of thermoinhibition response of seed germination in different oilseed rape cultivars. Environ. Stress. Crop Sci. 2018, 11, 459–469. [Google Scholar] [CrossRef]
- Carta, A.; Skourti, E.; Mattana, E.; Vandelook, F.; Thanos, C.A. Photoinhibition of seed germination: Occurrence, ecology and phylogeny. Seed Sci. Res. 2017, 27, 131–153. [Google Scholar] [CrossRef]
- Gutterman, Y.; Kamenetsky, R.; Van Rooyen, M. A comparative study of seed germination of two Allium species from different habitats in the Negev Desert highlands. J. Arid. Environ. 1995, 29, 305–315. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Gutterman, Y. Germination strategies of some Allium species of the subgenus Melanocrommyum from arid zone of Central Asia. J. Arid. Environ. 2000, 45, 61–71. [Google Scholar] [CrossRef]
- Marques, I.; Draper, D. Seed germination and longevity of autumn-flowering and autumn-seed producing Mediterranean geophytes. Seed Sci. Res. 2012, 22, 299–309. [Google Scholar] [CrossRef]
- Herranz Sanz, J.M.; Copete, M.A.; Ferrandis, P. Environmental Regulation of Embryo Growth, Dormancy Breaking and Germination in Narcissus alcaracensis (Amaryllidaceae), a Threatened Endemic Iberian Daffodil. Am. Midl. Nat. 2013, 169, 147–167. [Google Scholar] [CrossRef]
- Herranz Sanz, J.M.H.; Copete Carreño, E.; Copete Carreño, M.Á.; Ferrandis Gotor, P. Germination ecology of the endemic Iberian daffodil Narcissus radinganorum (Amaryllidaceae). Dormancy induction by cold stratification or desiccation in late stages of embryo growth. For. Syst. 2015, 24, e013. [Google Scholar] [CrossRef]
- Martínez-Díaz, E.; Martínez-Sánchez, J.J.; Conesa, E.; Franco, J.A.; Vicente, M.J. Germination and morpho-phenological traits of Allium melananthum, a rare species from southeastern Spain. Flora 2018, 249, 16–23. [Google Scholar] [CrossRef]
- Vandelook, F.; Newton, R.J.; Carta, A. Photophobia in Lilioid monocots: Photoinhibition of seed germination explained by seed traits, habitat adaptation and phylogenetic inertia. Ann. Bot. 2018, 121, 405–413. [Google Scholar] [CrossRef]
- Hilton, J.R. An unusual effect of the far-red absorbing form of phytochrome: Photoinhibition of seed germination in Bromus sterilis L. Planta 1982, 155, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Soveral Dias, A.; Grenho, M.G.; Silva Dias, L. Effects of dark or of red, blue or white light on germination of subterranean clover seeds. Emir. J. Food Agric. 2016, 28, 853–864. [Google Scholar] [CrossRef]
- Barrero, J.M.; Jacobsen, J.V.; Talbot, M.J.; White, R.G.; Swain, S.M.; Garvin, D.F.; Gubler, F. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol. 2012, 193, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, J.V.; Barrero, J.M.; Hughes, T.; Julkowska, M.; Taylor, J.M.; Xu, Q.; Gubler, F. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta 2013, 238, 121–138. [Google Scholar] [CrossRef]
- Hoang, H.H.; Sechet, J.; Bailly, C.; Leymarie, J.; Corbineau, F. Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. Plant Cell Environ. 2014, 37, 1393–1403. [Google Scholar] [CrossRef]
- Derkx, M.P.M.; Vermeer, E.; Karssen, C.M. Gibberellins in seeds of Arabidopsis thaliana: Biological activities, identification and effects of light and chilling on endogenous levels. Plant Growth Regul. 1994, 15, 223–234. [Google Scholar] [CrossRef]
- Wilson, R.L.; Bakshi, A.; Binder, B.M. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. Front. Plant Sci. 2014, 5, 433. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Ponnaiah, M.; Thanikathansubramanian, K.; Corbineau, F.; Bailly, C.; Nambara, E.; El-Maarouf-Bouteau, H. Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds. Sci. Rep. 2019, 9, 4861. [Google Scholar] [CrossRef] [PubMed]
- Petruzzelli, L.; Coraggio, I.; Leubner-Metzger, G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta 2000, 211, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Kępczyńsk, I.J.; Bialecka, B.; Kępczyńska, E. Ethylene biosynthesis in Amaranthus caudatus seeds in response to methyl jasmonate. Plant Growth Regul. 1999, 28, 59–65. [Google Scholar] [CrossRef]
- Norastehnia, A.; Sajedi, R.; Nojavan-Asghari, M. Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays): Effect on α-amylase activity and ethylene production. Gen. Appl. Plant Physiol. 2007, 33, 13–23. [Google Scholar]
- Hills, P.N.; Van Staden, J. Thermoinhibition of seed germination. S. Afr. J. Bot. 2003, 69, 455–461. [Google Scholar] [CrossRef]
- Toh, S.; Imamura, A.; Watanabe, A.; Nakabayashi, K.; Okamoto, M.; Jikumaru, Y.; Hanada, A.; Aso, Y.; Ishiyama, K.; Tamura, N.; et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008, 146, 1368–1385. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Q.; Zhang, Y.; Yang, L.; Zeng, Z.; Zhou, Y.; Chen, B. Advance in the thermoinhibition of lettuce (Lactuca sativa L.) seed germination. Plants 2024, 13, 2051. [Google Scholar] [CrossRef]
- El-Keblawy, A. Germination response to light and temperature in eight annual grasses from disturbed and natural habitats of an arid Arabian desert. J. Arid. Environ. 2017, 147, 17–24. [Google Scholar] [CrossRef]
- Piskurewicz, U.; Sentandreu, M.; Iwasaki, M.; Glauser, G.; Lopez-Molina, L. The Arabidopsis endosperm is a temperature-sensing tissue that implements seed thermoinhibition through phyB. Nat. Commun. 2023, 14, 1202. [Google Scholar] [CrossRef]
- Eckhardt, J.; Vaidya, A.; Cutler, S. Chemical disruption of ABA signaling overcomes high-temperature inhibition of seed germination and enhances seed priming responses. PLoS ONE 2024, 19, e0315290. [Google Scholar] [CrossRef]
- Causin, H.F.; Roqueiro, G.; Petrillo, E.; Láinez, V.; Pena, L.B.; Marchetti, C.F.; Gallego, S.M.; Maldonado, S.B. The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings. Plant Sci. 2012, 183, 197–205. [Google Scholar] [CrossRef]
- Bailli, C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 2019, 476, 3019–3032. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Peng, J.; Li, F.; Ali, F.; Wang, Z. Regulation of seed germination: ROS, epigenetic, and hormonal aspects. J. Adv. Res. 2025, 71, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Yoong, F.Y.; O’Brien, L.K.; Truco, M.J.; Huo, H.; Sideman, R.; Hayes, R.; Bradford, K.J. Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of ethylene response factor1 (ERF1). Plant Physiol. 2016, 170, 472–488. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, M.C.; Alcaraz, M.L.; Theumer, M.G.; Mary, V.S.; Causin, H.F. Light and High Temperature Negatively Regulate Germination Dynamics of Zephyranthes tubispatha Seeds. Horticulturae 2025, 11, 1453. https://doi.org/10.3390/horticulturae11121453
Acosta MC, Alcaraz ML, Theumer MG, Mary VS, Causin HF. Light and High Temperature Negatively Regulate Germination Dynamics of Zephyranthes tubispatha Seeds. Horticulturae. 2025; 11(12):1453. https://doi.org/10.3390/horticulturae11121453
Chicago/Turabian StyleAcosta, María Cecilia, María Luciana Alcaraz, Martín Gustavo Theumer, Verónica Sofía Mary, and Humberto Fabio Causin. 2025. "Light and High Temperature Negatively Regulate Germination Dynamics of Zephyranthes tubispatha Seeds" Horticulturae 11, no. 12: 1453. https://doi.org/10.3390/horticulturae11121453
APA StyleAcosta, M. C., Alcaraz, M. L., Theumer, M. G., Mary, V. S., & Causin, H. F. (2025). Light and High Temperature Negatively Regulate Germination Dynamics of Zephyranthes tubispatha Seeds. Horticulturae, 11(12), 1453. https://doi.org/10.3390/horticulturae11121453

