Influence of Mineral Liquid Fertilization on the Plant Growth of Perennials on Sheep’s Wool–Coir–Vegetation Mats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Utilized Sheep’s Wool–Coir–Vegetation Mats and Their Properties
2.2. Experimental Conditions during Pre-Cultivation
2.3. Selection of Perennials
2.4. Pre-Cultivation and Laying the Vegetation Mats with Subsequent Completion Care and Maintenance Care
2.5. Pre-Cultivation Conditions and Conditions during Completion Care and Maintenance Care
2.6. Data Collection
2.7. Statistical Analysis
3. Results and Discussion
3.1. Nitrogen Content of the Vegetation Mats
3.2. Overall Impression of the Perennials
3.3. Plant Height of the Individual Perennials
3.4. Flower Formation of the Individual Perennials
3.5. Correlation between Dry Mass and Dry Matter of Asters
3.6. Total Nitrogen Content of the Above-Ground Dry Mass of Asters
3.7. Correlations between N Content in the Above-Ground Dry Matter and Number of Flowers in Asters
3.8. Coverage of Perennials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Facts 2020. 2020, pp. 1–4. Available online: https://www.un.org/development/desa/pd/content/policies-spatial-distribution-and-urbanization-have-broad-impacts-sustainable-development (accessed on 30 June 2024).
- Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of Urban Vegetation on Air Pollution and Noise Exposure—A Case Study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599–600, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban Green Space Cooling Effect in Cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed]
- Na, H. The Effect of Urban Green-Space on Relieving the Urban Heat Island Effect in Beijing, China. Acad. J. Environ. Earth Sci. 2023, 5, 25–41. [Google Scholar]
- Xiao, X.D.; Dong, L.; Yan, H.; Yang, N.; Xiong, Y. The Influence of the Spatial Characteristics of Urban Green Space on the Urban Heat Island Effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Rau, G.C.; Ekström, M.; O’Carroll, D.M.; Bates, A.J. Global Climate-Driven Trade-Offs between the Water Retention and Cooling Benefits of Urban Greening. Nat. Commun. 2022, 13, 518. [Google Scholar] [CrossRef] [PubMed]
- Masson, V.; Lemonsu, A.; Hidalgo, J.; Voogt, J. Urban Climates and Climate Change. Annu. Rev. Environ. Resour. 2020, 45, 411–444. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- García Sánchez, F.; Solecki, W.D.; Ribalaygua Batalla, C. Climate Change Adaptation in Europe and the United States: A Comparative Approach to Urban Green Spaces in Bilbao and New York City. Land Use Policy 2018, 79, 164–173. [Google Scholar] [CrossRef]
- Govindarajulu, D. Urban Green Space Planning for Climate Adaptation in Indian Cities. Urban Clim. 2014, 10, 35–41. [Google Scholar] [CrossRef]
- Byrne, J.; Yang, J. Can Urban Greenspace Combat Climate Change? Towards a Subtropical Cities Research Agenda. Aust. Plan. 2009, 46, 36–43. [Google Scholar] [CrossRef]
- Belčáková, I.; Slámová, M.; Demovičová, Z. Importance of Urban Green Areas in the Context of Current and Future Global Changes: Lessons Learned from a Case Study in Bratislava (Slovakia). Sustainability 2022, 14, 14740. [Google Scholar] [CrossRef]
- Gaffin, S.R.; Rosenzweig, C.; Kong, A.Y.Y. Adapting to Climate Change through Urban Green Infrastructure. Nat. Clim. Chang. 2012, 2, 704. [Google Scholar] [CrossRef]
- Mabon, L.; Kondo, K.; Kanekiyo, H.; Hayabuchi, Y.; Yamaguchi, A. Fukuoka: Adapting to Climate Change through Urban Green Space and the Built Environment? Cities 2019, 93, 273–285. [Google Scholar] [CrossRef]
- Hansen, R.; Stahl, F.; Duthweiler, S. Die Stauden und Ihre Lebensbereiche; Eugen Ulmer: Stuttgart, Germany, 2016; p. 43. [Google Scholar]
- Diller, C.; Hebecker, J. Klimawandel in Deutschland: STANDORT-Z Angew Geogr; Springer: Berlin/Heidelberg, Germany, 2008; Volume 32, pp. 62–70. [Google Scholar]
- Herfort, S.; Pflanz, K.; Larsen, M.S.; Mertschun, T.; Grüneberg, H. Influence of Sheep’s Wool Vegetation Mats on the Plant Growth of Perennials. Horticulturae 2023, 9, 384. [Google Scholar] [CrossRef]
- Lan, T.; Guo, S.W.; Han, J.W.; Yang, Y.L.; Zhang, K.; Zhang, Q.; Yang, W.; Li, P.F. Evaluation of Physical Properties of Typical Urban Green Space Soils in Binhai Area, Tianjin, China. Urban For. Urban Green. 2019, 44, 126430. [Google Scholar] [CrossRef]
- Chenot, J.; Gaget, E.; Moinardeau, C.; Jaunatre, R.; Buisson, E.; Dutoit, T. Substrate Composition and Depth Affect Soil Moisture Behavior and Plant-Soil Relationship on Mediterranean Extensive Green Roofs. Water 2017, 9, 817. [Google Scholar] [CrossRef]
- Vannucchi, F.; Bibbiani, C.; Caudai, C.; Bretzel, F. Mediterranean Extensive Green Roof Self-Sustainability Mediated by Substrate Composition and Plant Strategy. Horticulturae 2023, 9, 1117. [Google Scholar] [CrossRef]
- Kisvarga, S.; Horotán, K.; Wani, M.A.; Orlóci, L. Plant Responses to Global Climate Change and Urbanization: Implications for Sustainable Urban Landscapes. Horticulturae 2023, 9, 1051. [Google Scholar] [CrossRef]
- Schulte, S.A.; Eppel-Hotz, A.; Hüttenmoser, B.; Jaugstetter, B.; Schmidt, C.; Felger, D.; Murer, E.; Krause, G.; Veser, J.; Marzini, K.; et al. Pflegereduzierte Grünflächen: Attraktive und Wirtschaftliche Lösungen mit Stauden und Ansaaten; Forum Verlag Herkert GmbH: Merching, Germany, 2016; p. 12. [Google Scholar]
- Schmidt, C. Attraktive Staudenpflanzungen im Öffentlichen Grün—Möglichkeiten, Etablierung und Pflege; Andernach, Germany, 2013. [Google Scholar]
- Brack, F.; Hagenbuch, R.; Wildhaber, T.; Henle, C.; Sadlo, F. Mehr Als Grün: Praxishandbuch Naturnahe Pflege; Grün Stadt Zürich: Zürich, Germany, 2019. [Google Scholar]
- Kühn, N. Neue Staudenverwendung; Verlag Eugen Ulmer: Stuttgart, Germany, 2011; pp. 44–70. [Google Scholar]
- Schwingesbauer, S. Möglichkeiten und Grenzen der Staudenverwendung im Niederösterreichischen Gemeindefreiraum; Diss. Universität für Bodenkultur Wien: Wien, Austria, 2012. [Google Scholar]
- Gruppe, F.; Pütz, G.; Kleyhauer, G.; Backhaus, A.; Bauermeister, T. Handbuch Gute Pflege Pflegestandards Für Die Berliner Grün-Und Freiflächen; Senate Department for the Environment, Transport and Climate Protection, Division Nature Conservation, Landscape Planning and Forestry and Division Open Space Planning and Urban Greenery of Berlin: Berlin, Germany, 2016; Volume 227. [Google Scholar]
- Bund Deutscher Staudengärtner im Zentralverband Gartenbau e.V. (ZVG). Mischungen. 2023. Available online: https://www.bund-deutscher-staudengaertner.de/mischpflanzungen.html (accessed on 30 June 2024).
- Europäische Kommission. Verordnung (EU) Nr. 142/2011 Der Kommission Vom 25. February 2011. 2011, L54/1-254. Available online: https://eur-lex.europa.eu/eli/reg/2011/142/oj (accessed on 30 June 2024).
- VDLUFA. VDLUFA Methodenbuch II; VDLUFA: Darmstadt, Germany, 2000. [Google Scholar]
- Chmielewski, F. Climate Data in Berlin-Dahlem; Humboldt-Universität zu Berlin: Berlin, Germany, 2019. [Google Scholar]
- FLL—Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V. Gütebestimmungen Für Stauden. Bonn, Germany, 2015; p. 9. Available online: https://shop.fll.de/de/guetebestimmungen-fuer-stauden-2015-broschuere.html (accessed on 30 June 2024).
- Götz, H.; Häussermann, M.; Sieber, J. Die Stauden-DVD. 5., aktual. Stuttgart, Germany 2011. Available online: https://www.bund-deutscher-staudengaertner.de/die-stauden-dvd.html (accessed on 30 June 2024).
- FLL—Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V. Bewässerungsrichtlinien: Richtlinien Für Die Planung, Installation Und Instandhaltung von Bewässerungsanlagen in Vegetationsflächen; FLL—Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V.: Bonn, Germany, 2015; p. 36. [Google Scholar]
- Wilbois, K.-P.; Schwab, A.; Fischer, H.; Bachinger, J.; Palme, S.; Peters, H.; Dongus, S. Leitfaden Für Praxisversuche. FiBL Deutschland. e.V.: Frankfurt am Main, Germany, 2004. Available online: https://orgprints.org/id/eprint/15190/1/15190-02OE606-fibl-wilbois-2004-leitfaden_praxisversuche.pdf (accessed on 30 June 2024).
- DIN EN 16169:2012-11; Deutsches Institut für Normung e.V. Sludge, Treated Biowaste and Soil—Determination of Kjeldahl Nitrogen. Beuth Verlag: Berlin, Germany, 2012.
- Glaz, B.; Yeater, K.M. Applied Statistics in Agricultural, Biological, and Environmental Sciences; Agricultural Research Service: Madison, WI, USA, 2018; p. 95. [Google Scholar]
- Röber, R.; Schacht, H. Pflanzenernährung Im Gartenbau; 4. Aufl.; Verlag Eugen Ulmer: Stuttgart, Germany, 2008; p. 373. [Google Scholar]
- Fischer, J.L.; Albrecht, A.; Kämpfer, P. Mikrobiologie Der Kompostierung von Abfällen. In Biologische Behandlung Organischer Abfälle; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–43. [Google Scholar]
- Broda, J.; Kobiela-Mendrek, K.; Rom, M.; Grzybowska-Pietras, J.; Przybylo, S.; Laszczak, R. Biodegradation of Wool Used for the Production of Innovative Geotextiles Designed to Erosion Control. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications: From Science to Market; Springer: Dordrecht, The Netherlands, 2016; pp. 351–361. [Google Scholar]
- Broda, J.; Grzybowska-Pietras, J.; Gawłowski, A.; Rom, M.; Przybylo, S.; Laszczak, R. Application of Wool Geotextiles for the Protection of Steep Slopes. Procedia Eng. 2017, 200, 112–119. [Google Scholar] [CrossRef]
- Rice, G. Stauden: Die Große Enzyklopädie/The Royal Horticultural Society; Dorley Kindersley: München, Germany, 2015; p. 101. [Google Scholar]
- Böhme, M.; Pinker, I.; Grüneberg, H.; Herfort, S. Sheep Wool as Fertiliser for Vegetables and Flowers in Organic Farming. Acta Hortic. 2012, 933, 195–202. [Google Scholar] [CrossRef]
- Bouillon, J.M. Handbuch der Staudenverwendung; Eugen Ulmer: Stuttgart, Germany, 2013; p. 205. [Google Scholar]
- Rünger, W. Blütenbildung und Blütenentwicklung: Grundlagen des Gärtnerischen Pflanzenbaues/von W. Rünger Unter Mitarb. von G.A. Kamerbeek; Paul Parey Verlag: Berlin/Hamburg, Germany, 1971; p. 24. [Google Scholar]
- Abdallah, A.; Ugolini, F.; Baronti, S.; Maienza, A.; Camilli, F.; Bonora, L.; Martelli, F.; Primicerio, J.; Ungaro, F. The Potential of Recycling Wool Residues as an Amendment for Enhancing the Physical and Hydraulic Properties of a Sandy Loam Soil. Int. J. Recycl. Org. Waste Agric. 2019, 8, 131–143. [Google Scholar] [CrossRef]
- Vončina, A.; Mihelič, R. Sheep Wool and Leather Waste as Fertilizers in Organic Production of Asparagus (Asparagus officinalis L.). Acta Agric. Slov. 2013, 101, 191–200. [Google Scholar] [CrossRef]
- Komorowska, M.; Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Findura, P.; Gurgulu, H.; Stuglik, J.; Chowaniak, M.; Atılgan, A. Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan. Energies 2022, 15, 6358. [Google Scholar] [CrossRef]
- Böhme, M.; Schevchenko, J.; Pinker, I.; Herfort, S. Cucumber Grown in Sheepwool Slabs Treated with Biostimulator Compared to Other Organic and Mineral Substrates. Acta Hortic. 2008, 779, 299–306. [Google Scholar] [CrossRef]
- Helix Pflanzen GmbH. Bodendecker am Laufenden Meter® Standardmatte; Helix Pflanzen GmbH: Kornwestheim, Germany, 2023. [Google Scholar]
Botanical Name | Plant Height (m) | Flowering Time | Nutrient Requirements | Special Requirements |
---|---|---|---|---|
Achillea clypeolata ‘Moonshine’ | 0.40–0.60 | June–July | high, nutritious, medium, normal, balanced | heat-loving |
Anemone sylvestris L. | 0.20–0.30 | May–June | medium, normal, balanced | adaptable |
Aster dumosus ‘Augenweide’ | 0.25–0.30 | August–October | high, nutritious | adaptable |
Aster dumosus ‘Silberball’ | 0.30–0.40 | September–October | high, nutritious | adaptable |
Buphthalmum salicifolium L. | 0.40–0.50 | June–August | medium, normal, balanced to low, low in nutrients | adaptable |
Festuca glauca Vill. | 0.20–0.30 | June–July | low, low in nutrients | heat-loving |
Fragaria vesca L. | 0.15–0.20 | May–June | high, nutritious | adaptable |
Heuchera micrantha ‘Palace Purple’ | 0.40–0.50 | July–August | high, nutritious to medium, normal, balanced | adaptable |
Mat Variant | Total Weight of Mixed Fibers (kg/m2) | Total N of Mixed Fibers (g/m2) | Total N of Additional Liquid Fertilizer (g/m2) | Total N of Mixed Fibers and Additional Liquid Fertilizer (g/m2) |
---|---|---|---|---|
V1: 50% sheep’s wool and 50% coir Treatment with liquid fertilizer during pre-cultivation | 4.478 ± 0.107 | 241.8 ± 5.8 | 8.7 ± 0.0 | 250.5 ± 5.8 |
V2: 50% sheep’s wool and 50% coir Treatment without liquid fertilizer during pre-cultivation | 4.547 ± 0.070 | 245.5 ± 3.8 | 0.0 ± 0.0 | 245.5 ± 3.8 |
Botanical Name | Score [a] (Median) of V1 | Score [a] (Median) of V2 |
Achillea clypeolata ‘Moonshine’ | 7 | 7 |
Anemone sylvestris L. | 7 | 7 |
Aster dumosus ‘Augenweide’ | 7 | 7 |
Aster dumosus ‘Silberball’ | 9 | 7 |
Buphthalmum salicifolium L. | 5 | 3 |
Festuca glauca Vill. | 9 | 7 |
Fragaria vesca L. | 7 | 7 |
Heuchera micrantha ‘Palace Purple’ | 7 | 7 |
All plants (Median) | 7 | 7 |
Botanical Name | Score [a] (Median) of V1 | Score [a] (Median) of V2 |
---|---|---|
Achillea clypeolata ‘Moonshine’ | 5 | 5 |
Anemone sylvestris L. | 9 | 5 |
Aster dumosus ‘Augenweide’ | 7 | 7 |
Aster dumosus ‘Silberball’ | 9 | 9 |
Buphthalmum salicifolium L. | 7 | 7 |
Festuca glauca Vill. | 7 | 5 |
Fragaria vesca L. | 7 | 7 |
Heuchera micrantha ‘Palace Purple’ | 7 | 6 |
All plants (Median) | 7 | 7 |
Botanical Name | Average Plant Height (cm) of V1 | Average Plant Height (cm) of V2 |
---|---|---|
Achillea clypeolata ‘Moonshine’ | 20.3 ± 1.0 a (n = 19) | 16.2 ± 0.5 b (n = 17) |
Anemone sylvestris L. | 9.0 ± 1.1 a | 7.2 ± 1.0 a |
Aster dumosus ‘Augenweide’ | 20.6 ± 0.9 a | 20.5 ± 0.8 a |
Aster dumosus ‘Silberball’ | 33.4 ± 0.5 a | 33.2 ± 0.8 a |
Buphthalmum salicifolium L. | 7.7 ± 1.8 (n = 16) a | 5.2 ± 0.8 (n = 21) a |
Festuca glauca Vill. | 16.5 ± 0.7 a | 12.6 ± 0.6 b |
Fragaria vesca L. | 13.4 ± 0.4 a | 14.0 ± 0.6 a |
Heuchera micrantha ‘Palace Purple’ | 28.4 ± 1.0 a | 27.2 ± 1.0 a |
Botanical Name | Average Plant Height (cm) of V1 | Average Plant Height (cm) of V2 |
---|---|---|
Achillea clypeolata ‘Moonshine’ | 37.1 ± 2.4 a (n = 17) | 42.0 ± 2.7 a (n = 16) |
Anemone sylvestris L. | 30.5 ± 1.4 a (n = 23) | 23.7 ± 1.4 b (n = 23) |
Aster dumosus ‘Augenweide’ | 33.7 ± 1.7 a | 29.5 ± 1.4 a |
Aster dumosus ‘Silberball’ | 56.8 ± 0.9 a | 55.0 ± 0.8 a |
Buphthalmum salicifolium L. | 46.2 ± 3.2 a (n = 19) | 45.4 ± 2.7 a (n = 18) |
Festuca glauca Vill. | 46.8 ± 1.2 a | 41.7 ± 1.2 b (n = 23) |
Fragaria vesca L. | n.d. | n.d. |
Heuchera micrantha ‘Palace Purple’ | 23.9 ± 1.4 a | 22.2 ± 1.0 a |
Mat Variant | Dry Mass per Plant (g) of V1 | Dry Mass per Plant (g) of V2 | Dry Matter per Plant (%) of V1 | Dry Matter per Plant (%) of V2 |
---|---|---|---|---|
Aster dumosus ‘Augenweide’ (11 October 2018) | 18.72 ± 1.33 a | 13.86 ± 1.11 b | 25.2 ± 0.8 a | 28.4 ± 0.8 b |
Aster dumosus ‘Augenweide’ (9 October 2019) | 48.05 ± 8.32 a | 34.93 ± 7.16 a | 42.4 ± 2.5 a | 45.2 ± 2.7 a |
Aster dumosus ‘Silberball’ (11 October 2018) | 12.51 ± 0.77 a | 8.04 ± 0.64 b | 35.2 ± 0.7 a | 38.4 ± 0.7 b |
Aster dumosus ‘Silberball’ (9 October 2019) | 94.97 ± 4.81 a | 87.25 ± 6.96 a | 49.9 ± 1.1 a | 50.5 ± 1.3 a |
2018 | 2019 | |
---|---|---|
Aster dumosus ‘Augenweide’ Sig. (2-tailed) | −0.426 ** 0.003 | −0.502 ** <0.001 |
Aster dumosus ‘Silberball’ Sig. (2-tailed) | −0.590 ** <0.001 | - |
Perennial | Average Total N Content per Plant (%) of V1 | Average Total N Content per Plant (%) of V2 |
---|---|---|
Aster dumosus ‘Augenweide’ (11 October 18) | 2.2 ± 0.0 a | 1.8 ± 0.0 b |
Aster dumosus ‘Augenweide’ (9 October 19) | 2.2 ± 0.0 a | 2.1 ± 0.1 a |
Aster dumosus ‘Silberball’ (11 October 18) | 1.7 ± 0.0 a | 1.4 ± 0.0 b |
Aster dumosus ‘Silberball’ (9 October 19) | 2.1 ± 0.0 a | 2.1 ± 0.0 a |
2018 | 2019 | |
---|---|---|
Aster dumosus ‘Augenweide’ Sig. (2-tailed) | 0.755 ** <0.001 | 0.864 ** <0.001 |
Aster dumosus ‘Silberball’ Sig. (2-tailed) | 0.778 ** <0.001 | 0.516 ** <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herfort, S.; Maß, V.; Hüneburg, A.; Grüneberg, H. Influence of Mineral Liquid Fertilization on the Plant Growth of Perennials on Sheep’s Wool–Coir–Vegetation Mats. Horticulturae 2024, 10, 773. https://doi.org/10.3390/horticulturae10080773
Herfort S, Maß V, Hüneburg A, Grüneberg H. Influence of Mineral Liquid Fertilization on the Plant Growth of Perennials on Sheep’s Wool–Coir–Vegetation Mats. Horticulturae. 2024; 10(8):773. https://doi.org/10.3390/horticulturae10080773
Chicago/Turabian StyleHerfort, Susanne, Virginia Maß, Amelie Hüneburg, and Heiner Grüneberg. 2024. "Influence of Mineral Liquid Fertilization on the Plant Growth of Perennials on Sheep’s Wool–Coir–Vegetation Mats" Horticulturae 10, no. 8: 773. https://doi.org/10.3390/horticulturae10080773
APA StyleHerfort, S., Maß, V., Hüneburg, A., & Grüneberg, H. (2024). Influence of Mineral Liquid Fertilization on the Plant Growth of Perennials on Sheep’s Wool–Coir–Vegetation Mats. Horticulturae, 10(8), 773. https://doi.org/10.3390/horticulturae10080773