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Abstract: Stem blight and dieback rank among the most relevant diseases affecting blueberry produc-
tion worldwide. In Northern Italy, Neofusicoccum parvum, Diaporthe rudis, Cadophora luteo-olivacea and
Peroneutypa scoparia have been reported to cause stem blight and dieback in blueberry. Considering
that the incidence and severity of these diseases are on the rise in Northern Italy, two of the main
aims of the present study were a—to compare the in vitro growth rate of the four fungi at different
temperatures and b—to assess the aggressiveness of the same fungi on four commercial blueberry
cultivars. Neofusicoccum parvum had the fastest growth rate and was the most aggressive pathogen. A
possible effect of temperature on host colonization by N. parvum and disease expression was postu-
lated and tested as a third aim. In planta trials were performed to model and predict the influence of
temperature on the severity of blueberry stem blight and dieback caused by N. parvum. Increasing
temperatures boosted the aggressiveness of the pathogen, causing higher disease severity and host
mortality. Our findings suggest that temperature plays a relevant role in the severity of blueberry
stem blight and dieback caused by N. parvum. Given the predictions of a warmer climate, this disease
may become increasingly more significant and should be actively managed.

Keywords: epidemiology; generalized analytis beta model; global warming; Vaccinium corymbosum

1. Introduction

Stem blight and dieback are common diseases that are seriously compromising the
fruit quality and yield of blueberry (Vaccinium corymbosum) orchards worldwide [1]. Sev-
eral fungal species have been reported as putative causal agents of these diseases [2].
The species most frequently isolated from symptomatic blueberry plants belong to the
Botryosphaeriaceae family or to the genus Diaporthe [2]. Neofusicoccum arbuti, N. australe, N.
parvum, N. nonquaesitum and Diaporthe spp. have been isolated from symptomatic blueberry
plants in Chile, often in the same or in contiguous orchards [3]. Lasiodiplodia species associ-
ated with blueberry dieback have been isolated in Peru [4], while Botryosphaeria corticis has
been reported in New Jersey and Noth Carolina (USA) [5]. Neofusicoccum and Diplodia spp.
have been detected in farms and nurseries in New Zealand [6], and eight species in the
genera Botryosphaeria, Lasiodiplodia and Neofusicoccum have been reported in Australia [7].
Botryosphaeria dothidea, Neofusicoccum parvum and Lasiodiplodia theobromae have been iso-
lated from diseased blueberry plants in China [8], where several new Lasiodiplodia species,
including L. vaccinii, have been identified in association with cankers or wilting of blue-
berry branches [9]. In Europe, Diaporthe eres has been reported in association with dieback,
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twig and stem blight and cankers of blueberry in Croatia [10] and the Netherlands [11].
Additionally, D. viticola (=D. rudis) from the Netherlands and D. baccae and D. sterilis from
Italy are newly described species isolated from symptomatic blueberries [11]. Neofusic-
occum parvum and N. australe have been reported as causal agents of blueberry canker
and dieback in Spain [12], while the same diseases in highbush blueberry were related to
species of the genus Lasiodiplodia in Spain [13] and the Czech Republic [14]. Finally, four
Botryosphaeriaceae species (Botryosphaeria dothidea, Neofusicoccum parvum, N. australe and
N. eucalyptorum) and six Diaporthe spp. have been reported as pathogens in blueberry in
Portugal [15,16]. In Italy, the adoption of new agricultural practices and cultivars (cvs.), the
intensification of cultural systems along with the movement of plant material on a large
scale have all contributed to a consistent increase in blueberry production, followed by the
emergence of various diseases [17,18]. Recently, stem blight and dieback symptoms have
been on the rise and are of growing concern for producers in some areas of Italy. In the
northwest of Italy, four different fungal species, namely Neofusicoccum parvum, Diaporthe
rudis, Cadophora luteo-olivacea and Peroneutypa scoparia, have been confirmed to be pathogens
of blueberries, with N. parvum and D. rudis being the dominant and most virulent ones [18].
It should be noted that Northwestern Italy contributes significantly to the overall Italian
blueberry production, with Piedmont including 46.2% of the total blueberry cultivation in
the country [19].

Many species in the order Diaporthales and Botryosphaeriales are known for their
ability to survive as endophytes or as latent pathogens, until the onsite of conditions
favorable to their growth triggers their switch to a pathogenic phase [20,21]. Thus, abiotic
factors can play a major role in disease development by affecting plant physiology, which, in
turn, may create a favorable environment for latent pathogens. The shift from endophytism
to pathogenicity is regulated by the intimate interaction between host physiology and
fungal physiology, with each one of these variables, in turn, being strongly influenced
by the climate and/or by the presence of other organisms [22,23]. Climate change and
global warming are strongly involved in modulating fungal disease incidence and impact
woody hosts by directly affecting the fungus and the plant host independently [2,24].
For instance, variations in temperature combined with increasing drought can influence
pathogen adaptation, development and spread [25]. Temperature can cause a severe impact
on agricultural ecosystems, not only influencing plant physiology, but also the survival,
reproduction, transmission and evolution of pathogens [26,27].

Climate change models are predicting a significant rise in summer air temperatures
in the Mediterranean area, resulting in drought stress on many fruit crops, which, in turn,
may increase their susceptibility [28,29]. Considering the key role of warming temperatures
on pathogens, hosts and their interactions, agricultural crops will be likely challenged by
global warming in the near future [30]. Disentangling the direct (e.g., directly affecting the
pathogen) vs. the indirect (e.g., affecting the pathogen through changes in the host) effects
of climate change is a pivotal task for the prediction and management of plant diseases in
areas experiencing climate change.

The aims of the present study were as follows:

(i) To compare the average in vitro growth rate of the four confirmed blueberry stem
blight and dieback pathogens in Northwestern Italy at different temperatures (i.e., Ne-
ofusicoccum parvum, Diaporthe rudis, Cadophora luteo-olivacea and Peroneutypa scoparia);

(ii) To evaluate the susceptibility of different northern highbush blueberry cvs. to these
four pathogens;

(iii) To model the in vitro effect of temperature on the mycelial growth rate of Neofusicoc-
cum parvum;

(iv) To assess and model the in planta effect of temperature on the severity of blueberry
stem blight and dieback caused by Neofusicoccum parvum, the most virulent of the
four pathogens studied here.
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2. Materials and Methods
2.1. Fungal Species and Strain Selection

The fungal species investigated here were Neofusicoccum parvum, Diaporthe rudis,
Cadophora luteo-olivacea and Peroneutypa scoparia. All four are confirmed pathogens of
blueberry [18]. One representative strain of each fungal species (CVG444—N. parvum,
CVG561—P. scoparia, CVG651—C. luteo-olivacea, CVG658—D. rudis) was selected for this
study. The identity of each strain was confirmed thanks to a multi locus phylogenetic
analysis based on the nuclear ribosomal internal transcribed spacer (ITS), the β-tubulin
(tub2) and translation elongation factor-1α (tef1). All strains were collected from wilted
blueberry twigs and cankered branches in 2019 and kept at −80 ◦C in the University of
Torino culture collection area, Torino, Italy. Their pathogenicity was previously assessed
thanks to inoculations performed on blueberry plants of the cv. Duke [18]. The most
aggressive species in the pathogenicity study was N. parvum [18]. Fungal strains were
grown on potato dextrose agar (PDA, VWR Chemicals, Leuven, Belgium) amended with
25 mg/L of streptomycin sulphate (PDA-S, AppliChem GmbH, Darmstadt, Germany)
at 25 ± 1 ◦C for 7 days in the dark. Mycelial plugs were cut with a cork borer (4 mm
diam) from the margin of actively grown colonies and used for the inoculation of plates
and plants.

2.2. Plant Material

The northern highbush blueberry cvs. ‘Blue Ribbon’, ‘Cargo’, ‘Last Call’ and ‘Top Shelf’
were selected to compare the virulence of the four fungal strains. The cvs. Blue Ribbon,
Last Call and Top Shelf were selected because the fungal strains used in this study were
originally isolated from such cultivars. ‘Cargo’ was included due to its increased popularity
associated with the demand for varieties with different ripening times [31]. Plants of the cv.
Duke were additionally used to assess the in planta effect of temperature on the colonization
rate and branch mortality caused by N. parvum. This cv. was selected for the in planta
portion of the study given that it is currently the most widely cultivated worldwide.

2.3. Comparison of In Vitro Growth Rates of Cadophora luteo-olivacea, Diaporthe rudis,
Neofusicoccum parvum and Peroneutypa scoparia

Mycelial plugs (6 mm diam.) of the four selected strains were placed onto the center of
new PDA-S plates and incubated at 5, 10, 15, 20, 25, 30 and 35 ◦C in the dark. Seven replicate
Petri dishes per strain and temperature combinations were considered in a completely
randomized design. Two perpendicular diameters of the colonies were measured with a
scale ruler once daily for 4 to 7 days post inoculation. Mean data were converted to radial
growth rate (mm/day). Average in vitro growth rates (IGR, mm/day) were calculated
for each of the four fungal species along with their 95% bias-corrected and accelerated
confidence intervals (95%BCaCI) [32]. Bounds of confidence intervals were obtained from
104 bootstrap resamplings as described in the study by Lione et al. [33]. Average IGRs
were compared among fungal species by fitting an unbiased recursive partitioning tree
model based on conditional inference [34,35], whose algorithm was initialized as reported
by Lione et al. [36].

2.4. Varietal Susceptibility Test

Potted 1-year-old healthy northern highbush blueberry plants were used. Seven ‘Blue
Ribbon’, ‘Cargo’ and ‘Top Shelf’ plants and five ‘Last Call’ plants were considered for
each selected fungal strain to conduct the inoculation trials. Each plant was inoculated
on four branches with a single fungal strain. The inoculation point of each branch was
surface disinfected with 70% ethanol solution. A piece of bark was cut with a sterile scalpel
to expose the cambium. Mycelium-colonized agar plugs (4 mm diam.) were placed on
the wound with the mycelium in contact with the cambium. Each inoculation point was
wrapped with Parafilm® (American National Can, Chicago, IL, USA). The same number of
plants per cv. and branches per plant was treated with sterile PDA-S discs as inoculation
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controls. The plants were placed in a growth chamber at 24 ◦C with 12 h light per day and
monitored daily for external necrosis and dead branch development. Mortality of branches
was assessed at two and four weeks post inoculation. After seven weeks, a destructive
assessment was conducted. The Parafilm® was removed, and the external lesion length
was measured. Moreover, the internal lesion length was recorded after bark removal. Small
pieces (5 mm) of symptomatic tissue from the margins of the lesions were plated onto PDA
to re-isolate the inoculated fungal species to fulfil Koch’s postulates. Pathogen identity was
confirmed through morphology and DNA sequencing of partial regions of the β-tubulin
(tub2) locus for N. parvum, D. rudis and P. scoparia and of the translation elongation factor-1α
(tef1) locus for C. luteo-olivacea. Varietal susceptibility of blueberry cultivars to the pathogens
was assessed by fitting three different unbiased recursive partitioning tree models [34–36].
Models differed for the selected response variable, namely the length of the external or
internal necrosis measured for each inoculated plant (quantitative continuous variables, in
mm) or the mortality scored at the end of the trial (binary categorical variable set to 1 or
0 for the living or dead plants, respectively). All models included three categorical input
variables, with each one characterized by a different number of levels [37]. Input variables
were as follows:

• Inoculation treatment (2 levels: “plants inoculated with isolates of the target fungal
pathogens” and “control plants mock-inoculated with plugs of sterile PDA-S”);

• Blueberry cultivar (4 levels: ‘Blue Ribbon’, ‘Cargo’, ‘Last Call’ and ‘Top Shelf’);
• Target pathogen species (5 levels: “C. luteo-olivacea”, “D. rudis”, “N. parvum”,

“P. scoparia” and “none” for control plants).

By applying the p-value criterion to the c-statistics with a significance threshold set
to 5%, tree models were used to detect significant input variables and to define clusters
of blueberry cultivars based on their susceptibility to the pathogens [38–40]. Hence, each
terminal node of the tree model graphs included a cluster of blueberry cultivars equally
susceptible to one, or more, of the inoculated fungal pathogens (p > 0.05). Conversely,
different terminal nodes hosted clusters of cultivars displaying different levels of suscepti-
bility (p < 0.05) to the above pathogens. The unique combination of input variable levels
leading to any single terminal node of the tree model was obtained by (I) identifying the
paths connecting the root, intermediate and terminal nodes of the graph, accounting for
all significant splits (p < 0.05); (II) listing the categorical variable levels associated with
the sequence of edges connecting nodes along the path; and (III) removing the redundant
duplicates of the same level from the list [35,41]. For plants clustering within each terminal
node, the average of external and internal necrosis was calculated, along with the corre-
sponding 95%BCaCI. The ratio between dead plants and total number of plants (mortality
rate, in %) was calculated with its associated 95% exact confidence interval (95%ECI) for
terminal nodes of the mortality tree model. Upper and lower bounds of the confidence
interval were derived as described by Blaker [42].

The fungus N. parvum was selected for the in planta temperature trial given its greatest
growth rate in vitro and its highest pathogenicity in planta.

2.5. Modeling the Effect of Temperature on the Mycelial Growth Rate of Neofusicoccum parvum
In Vitro

The mycelial growth rate of Neofusicoccum parvum was modeled as a function of
temperature by fitting the generalized Analytis Beta Model to data obtained in vitro through
the following equations [43]:

Y = d·(T − Tmin)
a·(Tmax − T)b (1)

Topt =
a·Tmax + b·Tmin

(a + b)
(2)

In Equation (1), Y is the radial growth rate of the fungal colonies (mm/day), Tmin and
Tmax are the minimum and maximum growth temperatures set to conduct the experiment
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(i.e., 5 and 35 ◦C, respectively) and T is the temperature level (◦C) of each replication
of the trial (i.e., 5, 10, 15, 20, 25, 30 and 35 ◦C). In Equation (2), Topt is the optimum
temperature, corresponding to the maximal mycelial growth rate of N. parvum in vitro. For
both equations, a, b and d are unknown parameters. Equation (1) was fitted to data through
nonlinear regression based on the Levenberg–Marquardt algorithm [44–46]. The algorithm
was initialized by setting the starting values at a = 2, b = 2 and d = 2 using the data reported
in the study by López-Moral et al. [43] as reference. The performance of the generalized
Analytis Beta Model resulting from the algorithm convergence was assessed as described
by Lione et al. [39] by fitting a linear regression model between the observed and predicted
growth rate values (OP-regression) [47] and calculating the Theil’s UII coefficient [48].

2.6. In Planta Effect of Temperature on Colonization Rate and Branch Mortality of N. parvum

Based on the results obtained from the in vitro assay, temperatures of 18, 22, 26 and
30 ◦C were selected to assess the in planta effect of temperature on the colonization rate
and branch mortality of N. parvum. Strain CVG444 of Neofusicoccum parvum was inocu-
lated into potted 1-year-old healthy northern highbush blueberry plants of the cv. Duke.
Inoculations were performed as described above on one branch of each of the thirty plants
per temperature. Twenty plants per each temperature were mock-inoculated using sterile
PDA-S discs. Plants were incubated in four different growth chambers and constantly mon-
itored for symptoms and signs of development. After two weeks, a destructive assessment
was conducted due to the high visual presence of symptoms. Parafilm® was removed,
plants were carefully inspected for signs of the pathogen and external lesion lengths were
measured. Internal lesion lengths were measured after bark removal. Branches’ mortality
was recorded.

2.7. Modeling the Effect of Temperature on the Severity of Neofusicoccum parvum in Planta

To model the effects of temperature on the severity of N. parvum in planta, the data
obtained from the inoculation trials were analyzed by using the same unbiased recursive
partitioning tree models and response variables reported in the section describing the
blueberry varietal susceptibility test. Categorical input variables were set as follows:

• Inoculation treatment (2 levels: “plants inoculated with the selected isolate of
N. parvum” and “control plants mock-inoculated with plugs of sterile PDA-S”);

• Temperature (4 levels: “18 ◦C”, “22 ◦C”, “27 ◦C” and “30 ◦C”).

For each blueberry plant, the average increase in the necrosis severity (AINS, mm/day)
was calculated as the ratio between the internal or external necrosis lengths at the end of the
trial and the number of days since inoculation. AINS values were transformed into a series
of binary variables by applying a threshold (X), with levels coded as 1 for AINS > X, as 0 for
AINS ≤ X [49]. Thresholds were set based on increasing severity levels at X = 2, X = 5, X = 10,
X = 15 and X = 20 mm/days. Hence, binary logistic regressions [49] were fitted to model
the probability of observing AINS values larger than the above threshold as a function of
increasing temperatures. The fulfillment of the models’ adequacy conditions was assessed
as reported by Lione et al. [36] through a—the application of the Wald’s test to the β and β0
coefficients [49,50]; b—the comparison of the fitted model to the corresponding null-model
M0, assessing the overall regression significance with the likelihood ratio test [49,50]; and,
c—the comparison of the Akaike information criterion (AIC) and AIC weight (AICw)
values between the non-null and the null models [51,52]. Mortality rates were calculated
along with their 95%ECI values and analyzed as described by Garbelotto et al. [53] by using
the Fisher’s Exact test to compare the blueberry plants inoculated with the selected isolate
of N. parvum and the control plants at each temperature level. A binary logistic regression
equation was fitted and assessed as previously described to model the probability of death
of the inoculated plants as a function of temperature.
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3. Results
3.1. Comparison of In Vitro Growth Rates of Cadophora luteo-olivacea, Diaporthe rudis,
Neofusicoccum parvum and Peroneutypa scoparia

All of the strains were able to grow on PDA-S in the 10 to 30 ◦C range of temperatures.
Weak mycelial growth was observed at 5 ◦C for the C. luteo-olivacea and D. rudis strains,
while N. parvum and P. scoparia showed weak mycelial growth at 35 ◦C. The unbiased
recursive partitioning tree model showed that N. parvum was the fungal species that dis-
played the highest average values regarding the in vitro growth rate (IGV = 2.49 mm/day,
1.97–3.01 95%BCaCI), followed by D. rudis (2.04 mm/day, 1.44–2.73 95%BCaCI), P. scoparia
(1.12 mm/day, 0.83–1.49 95%BCaCI) and C. luteo-olivacea (0.49 mm/day, 0.38–0.59 95%BCaCI),
respectively. The difference detected among the average IGRs were significant (p < 0.05) for
all fungal species, except for that between N. parvum and D. rudis (Figure 1).
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3.2. Varietal Susceptibility Test

The four pathogens caused different levels of disease severity when inoculated on the
four cvs. of northern highbush blueberry. The analyses grouped pathogens and cultivars
with similar interactions based on decreasing levels of the observed symptoms severity. The
unbiased recursive partitioning tree model employing the length of the external necrosis
as a response variable resulted in a graph leading to eight clusters (i.e., terminal nodes)
derived from seven significant splits (p < 0.05) associated with all input variables (i.e.,
blueberry cultivar, inoculation treatment and fungal species) (Figure S1). The susceptibility
levels based on the external necrosis length were variable, depending on the combination
of fungal species inoculated and on the host blueberry cultivar. The cluster displaying the
highest severity level (p < 0.05) grouped all blueberry plants inoculated with N. parvum,
regardless of the cultivar. The average length of the external necrosis caused by N. parvum
was 25.17 mm (21.45–30.22 95%BCaCI), while the other clusters, including other fungi, had
an average external necrosis below 8.20 mm (7.40–8.85 95%BCa CI). All fungal pathogens
inoculated in blueberry plants induced necroses greater (p < 0.05) than those in the mock-
inoculated plants, with the exception of D. rudis on ‘Last Call’ (Figure 2).
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cultivar acronyms are defined as follows: br, ‘Blue Ribbon’; ca, ‘Cargo’; lc, ‘Last Call’ and ts, ‘Top Shelf’.
The pathogens’ acronyms are Clo, Cadophora luteo-olivacea; Dr, Diaporthe rudis; Np, Neofusicoccum
parvum and Ps, Peroneutypa scoparia. The acronym C represents control plants that were mock-
inoculated with plugs of sterile agar medium. Different letters indicate that the associated cluster
bars display significantly different average values of the external necrosis length (p < 0.05). The error
whiskers refer to the 95% bias-corrected and accelerated confidence interval bounds.

Similar results were obtained from the unbiased recursive partitioning tree model
employing the length of the internal necrosis as a response variable (Figure S2). The tree
model graph showed nine significant clusters (p < 0.05), and the highest severity score
(p < 0.05) was found for plants inoculated with N. parvum, with an average length of the
internal necrosis equaling 28.61 mm (24.11–33.45 95%BCaCI). As previously observed for
the analysis of the external necrosis, all plants of the four blueberry cultivars inoculated
with N. parvum were grouped within the same cluster, displaying comparable levels of
susceptibility to the pathogen (p > 0.05). Internal necroses by the other pathogens were
variable, and the average values ranged between 0.96 mm (0.43–1.68 95%BCaCI) for ‘Cargo’
plants inoculated with P. scoparia and 11.58 mm (10.50–12.78 95%BCaCI) for the cluster
grouping ‘Blue Ribbon’ and ‘Top Shelf’ plants inoculated with C. luteo-olivacea and D. rudis.
Hence, C. luteo-olivacea, D. rudis and P. scoparia induced internal necrosis with average
lengths that were 2.5- to 30-fold lower than those caused by N. parvum (Figure 3). All
average internal necrosis lengths were significantly larger (p < 0.05) on blueberry plants
inoculated with the pathogens than on the mock-inoculated controls, with the exception of
the ‘Cargo’ plants inoculated with P. scoparia.

The unbiased recursive partitioning tree model analyzing mortality rates showed that
only the inoculation treatment and inoculated fungal species were significant explanatory
variables (p < 0.05), while the blueberry cultivar did not have any significant effect on plant
mortality (p > 0.05) (Figure S3). Regardless of the cultivar, blueberry plants inoculated with
N. parvum reached an average mortality rate of 82.7% (74.2–89.3 95%ECI), while the control
plants and plants inoculated with the other pathogens attained a lower value (p < 0.05)
of 4.0% (2.3–6.2 95%ECI) (Figure 4). All of the inoculated fungi were re-isolated from the
plants on which they had been inoculated, and their identities were confirmed through
morphology and molecular features, thus fulfilling Koch’s postulates.
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Figure 3. A comparison of the average length of the internal necrosis (in mm, on the y-axis) among
clusters of blueberry plants identified by the unbiased recursive partitioning tree model. Each bar
represents a cluster of blueberry cultivars (listed within round brackets) that are equally susceptible
(p > 0.05) to one or more of the inoculated fungal pathogens [listed within squared brackets]. The
cultivar acronyms are defined as follows: br, ‘Blue Ribbon’; ca, ‘Cargo’; lc, ‘Last Call’ and ts, ‘Top Shelf’.
The pathogens’ acronyms are Clo, Cadophora luteo-olivacea; Dr, Diaporthe rudis; Np, Neofusicoccum
parvum and Ps, Peroneutypa scoparia. The acronym C represents control plants that were mock-
inoculated with plugs of sterile agar medium. Different letters indicate that the associated cluster
bars display significantly different average values of the internal necrosis length (p < 0.05). The error
whiskers refer to the 95% bias-corrected and accelerated confidence interval bounds.
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Figure 4. A comparison of the mortality rate (in %, on the y-axis) among clusters of blueberry plants
identified by the unbiased recursive partitioning tree model. Each bar represents a cluster of blueberry
cultivars (listed within round brackets) that are equally susceptible (p > 0.05) to one or more of the
inoculated fungal pathogens [listed within squared brackets]. The cultivar acronyms are defined as
follows: br, ‘Blue Ribbon’; ca, ‘Cargo’; lc, ‘Last Call’ and ts, ‘Top Shelf’. The pathogens acronyms
are Clo, Cadophora luteo-olivacea; Dr, Diaporthe rudis; Np, Neofusicoccum parvum and Ps, Peroneutypa
scoparia. The acronym C represents control plants that were mock-inoculated with plugs of sterile
agar medium. Different letters indicate that the associated cluster bars display significantly different
mortality rate values (p < 0.05). The error whiskers refer to the 95% exact confidence interval bounds.
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3.3. Modeling the Effect of Temperature on the Mycelial Growth Rate of Neofusicoccum parvum
In Vitro

The algorithm run to define the three coefficients of the generalized Analytis Beta
Model expressing the mycelial growth rate of Neofusicoccum parvum as a function of tem-
perature converged on values that are significantly different from 0 (p < 0.05): a = 1.096,
b = 0.226 and d = 0.100 (Figure 5). The resulting optimal temperature was 29.9 ◦C, cor-
responding to a maximum radial growth rate of approximately 5 mm/day. The model
performance was scored as adequate since the OP regression slope (m = 0.967) and intercept
(q = 0.129) were not significantly different from 1 and 0, respectively (p > 0.05); R2 = 0.974
was close to 1, and Theil’s coefficient (UII = 0.0997) was close to 0.
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Figure 5. The curve of the generalized Analytis Beta Model expressing the mycelial growth rate of
Neofusicoccum parvum as a function of temperature. The black dots interpolated by the curve (in red)
show the average radial growth rate displayed by the isolates grown in vitro at different temperatures.
The whiskers indicate the standard deviation. The dashed lines mark the optimal temperature with
the corresponding peak of the radial growth rate.

3.4. Modeling the Effect of Temperature on the Severity of Neofusicoccum parvum in Planta

Neofusicoccum parvum induced different levels of disease severity on the inoculated
plants depending on the temperature. The unbiased recursive partitioning tree models
showed that both internal (Figure S4) and external (Figure S5) necrosis induced by N. parvum
on plants of blueberry displayed average lengths that were larger (p < 0.05) than those of the
control plants that were mock-inoculated with plugs of sterile agar medium (Figure 6). The
above difference remained significant (p < 0.05) at all temperatures employed in this study.
The average lengths of necrosis among the control plants were not significantly different
(p > 0.05) regardless of the temperature and type of necrosis considered. The average
lesion lengths in the controls ranged between 0.40 mm (0.10–0.80 95%BCaCI) and 1.30 mm
(0.70–2.20 95%BCaCI) for internal necrosis and between 0.20 mm (0.00–0.30 95%BCaCI) and
1.60 mm (0.60–2.70 95%BCaCI) for the external one.

Conversely, on average, both the internal and external necrosis lengths increased
(p < 0.05) with the increasing temperature levels. For instance, the inoculations of N. parvum
conducted at 30 ◦C led to an average internal necrosis length of 278.00 mm
(235.30–323.80 95%BCaCI), which is higher (p < 0.05) than that found in blueberry plants
inoculated at 18 ◦C (87.60 mm, 76.00–98.1095%BCaCI). Similarly, while at 18 ◦C, the aver-
age external necrosis length was 32.00 mm (25.50–41.50 95%BCaCI), the blueberry plants
inoculated at 30 ◦C developed an external lesion with an average length of 230.70 mm
(190.00–276.70 95%BCaCI).
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Figure 6. Comparisons of the average lengths of internal (a) and external (b) necrosis (in mm, on
the x-axis) among the blueberry plants inoculated with Neofusicoccum parvum (I) and the control
plants (C) that were mock-inoculated with plugs of sterile agar medium at different temperature
levels (in ◦C, on the y-axis). Different letters in the dot chart indicate that the associated averages are
significantly different (p < 0.05). The error whiskers refer to the 95% bias-corrected and accelerated
confidence interval bounds.

Consistent results were obtained from the binary logistic regressions modeling the
average increase in the necrosis severity (AINS). In brief, the logistic curves showed that
the necrosis caused by N. parvum grew significantly faster with warming temperatures
(p < 0.05) (Figure 7). In fact, rising temperatures led to a higher frequency of symptoms of a
given severity level, as evidenced by the ascending trend of each logistic curve. Moreover,
increasing temperatures caused more severe symptoms, as evidenced by the left-to-right
shift in the curves associated with augmented threshold levels (i.e., shifting from blue to
red in Figure 7). Technically, all logistic equations, except one, displayed a—a significant
and positive β coefficient for temperature (p < 0.05); b—a significant overall likelihood
ratio test (p < 0.05); and c—lower AIC and higher AICW values than each associated
null model, thus fulfilling the whole set of adequacy conditions. Details on regressions
modeling the AINS calculated on the internal and external necrosis lengths are reported in
Tables S1 and S2, respectively.

The analysis of the mortality rates showed that while there was no mortality in the
control plants, regardless of the temperature level, a variable proportion of dead plants
was present among those inoculated with N. parvum (Figure 8).
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Figure 7. The binary logistic regression curves modeling the probability (Pr, in %) of observing an
average increase in the necrosis severity (AINS, mm/day) larger than a given threshold X (set to 2, 5,
10, 15 and X = 20 mm/days) at different temperatures (◦C). Curves resulting from the models fitted to
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contours above and below the curves delimits the 95% confidence interval of the modeled probability.

The percentage of mortality increased with increasing temperature levels, ranging from
0% (0–10.6 95%ECI) at 18 ◦C to 36.7% (20.9–55.1 95%ECI) at 30 ◦C, although the Fisher’s Exact
test comparing the mortality rates was only significant (p < 0.05) at the highest temperature.
A significant binary logistic regression model (p < 0.05) showed that the probability of
death in blueberry plants inoculated with N. parvum rose with increasing temperature
levels (Figure 9). The model fulfilled the adequacy conditions required (Table S3).
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Figure 8. Comparisons of mortality rates (in %, on the y-axis) among blueberry plants inoculated with
Neofusicoccum parvum (I) and control plants (C) mock-inoculated with plugs of sterile agar medium
at different temperature levels (◦C). Different letters in the bar chart indicate that the associated
averages are significantly different (p < 0.05). The error whiskers refer to the 95% exact confidence
interval bounds.
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4. Discussion

Global warming represents one of the most important and difficult challenges for
agriculture [54]. An elevated air temperature is a serious problem for several crops, as it
affects the physiology of plants and may enhance their susceptibility to pathogens [25].
Moreover, rising temperatures influence the development of fungal pathogens, modulating
the expression of toxic compounds, influencing the infection processes and favoring spore
germination and mycelial growth, thus resulting in the emergence of diseases caused
by thermophilic fungi [26,55]. In the present study, we first assessed the in vitro effect
of temperature on the mycelial growth of four pathogens causing blueberry stem blight
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and dieback. The experiment showed that mycelial growth was variable depending on
the species. The comparison of in vitro growth rates among the four target pathogens
suggests that N. parvum is the species which colonizes host plant tissues at the fastest rate.
Nonetheless, the growth rate of D. rudis was statistically undistinguishable from that of
N. parvum. Species within the Botryosphaeriaceae are well known to be fast-growing [56],
while Diaporthe rudis is described as relatively slow-growing [57], so our results regarding
D. rudis are somewhat unexpected. Further research is needed to confirm that faster growth
rates among Botryosphaeriales and Diaporthales always equate to greater disease severity.

The varietal susceptibility test showed that disease severity, expressed as the length
of necroses, was highest when the plants were inoculated with N. parvum. At the same
time, N. parvum caused the highest mortality rates regardless of the blueberry cultivar.
Conversely, not only did the other tested pathogens display lower levels of virulence, but
virulence varied depending on the cultivar. In spite of its good growth in vitro, D. rudis dis-
played mild virulence in planta, causing lesions that, in some cases, were undistinguishable
from those observed in the control plants. The superiority of N. parvum as a pathogen was
well exemplified by the clustering of mortality rates, which indicated that the proportion of
dead plants was approximately 20-fold higher when the plants were inoculated with N.
parvum than the proportion of dead plants that were inoculated with the other three fungi
or mock-inoculated. All of the above results strongly support the selection of N. parvum as
an ideal species to test and model the effects of increasing temperature levels on the growth
rate and virulence of a fungal plant pathogen.

The generalized Analytis Beta Model resulted in an inverse U-shaped and highly
asymmetric curve, displaying a mildly increasing pattern of growth rates between 5 ◦C
and 29.9 ◦C (optimal temperature), followed by a steep drop in growth between 29.9 ◦C
and 35 ◦C. Based on this theoretical model, any positive discrete variation in temperature
(∆t > 0) occurring between 5 ◦C and 29.9 − ∆t ◦C leads to a corresponding positive incre-
ment in the substrate colonization ability of N. parvum (∆c > 0). If this model developed
in vitro held true in planta, it might be argued that the severity of the symptoms observed
in the host plants infected by N. parvum should increase with increasing temperature levels.
This hypothesis was strongly supported by the results of the inoculations of N. parvum in
plants of blueberry grown in an environment where the temperature was controlled. In
these trials, the air temperature increased by ∆t = 4 ◦C, starting at 18 ◦C and ending at
30 ◦C, leading to a corresponding significant and positive increment in symptom severity
(i.e., internal and external necrosis lengths). Probabilistic models based on binary logistic
regression not only show that warming temperatures are positively correlated with a higher
probability of observing larger lesions, but also that lesion sizes at higher temperatures
may be substantially larger. Similarly, the mortality rates of blueberry plants inoculated
with N. parvum also increased with increasing temperatures. Interestingly, but not sur-
prisingly, the peak of mortality was observed at 30 ◦C, which corresponds to the optimal
temperature for the mycelial growth of N. parvum in the Analytis Beta Model developed
from in vitro observations. The logistic equations predict that warming temperatures lead
to an increasing probability of death in plants infected by N. parvum. This probability
calculation may be a proxy to estimate yield losses in different climate change scenarios.
Incidentally, the pathogen was also able to produce visible oozing pycnidia on plants at
30 ◦C, which is in line with what was reported in previous studies conducted on blueberry
and grapevine [58,59]. This aspect suggests that high temperatures, even for a prolonged
period, may not only increase disease severity in the field, but may also lead to sporulation,
thus providing an additional inoculum source for further infections.

Based on the results of this study, we predict that outbreaks by N. parvum will worsen
in warmer summers, possibly thanks to the direct effect of temperature on the growth of
the pathogen. However, we note that the magnitude of the increase in in vitro growth
rates with an increase of 12 ◦C in temperature was 1.65-fold (Figure 5). That increase value
is much lower than the 3.5- and 7.6-fold increases in the internal and external in planta
lesion sizes, respectively, which were observed with a similar 12 ◦C increase in temperature
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(Figure 6). We posit that the stronger in planta effect may be due to the effects of warmer
temperatures on plant physiology or on plant–pathogen interactions, which, in turn, will
affect disease severity. In conclusion, our data suggest that temperature affects disease
severity through multiple pathways and not solely through affecting fungal growth.

The climatic data from the blueberry production fields currently experiencing the emer-
gence of stem blight and dieback show a prolonged trend of increasing temperatures [60].
In the Piedmont region of Italy, blueberry cultivation consisted of 1461 ha, with 9693 tons of
berries produced in 2022, and it is constantly expanding [17]. The results of this study sug-
gest that disease may be curtailed by the selection of growing sites that may be cooler in the
summer or may be more resilient to increases in temperature. It should also be considered
that in the past decade, blueberry cultivation has expanded into warmer sites with a lower
altitude, and blueberry cultural systems have been intensified [61]. Warmer temperatures
combined with a high plant density can alter the agro-ecological balance of a plantation as
well as the physiology of blueberry plants. The same is true for wounding associated with
the mechanization of harvesting given that wounds have been associated with increased
infection by fungi in the Botryosphaeriaceae [20,56]. If the changes caused by intensive
plantations result in increased wounding and plant stress, we know that infection rates and
the virulence of latent pathogens such as N. parvum will also increase. Physiological stress
will thus trigger disease expression by N. parvum, and warmer temperatures, which are
ideal for N. parvum, will increase the severity of the disease caused by this pathogen [62,63].

We suggest that the productivity of blueberry orchards may be maintained by a mix
of strategies that include, but are not limited to, avoiding the introduction of N. parvum or
similar pathogens, planting in sites selected for a future optimal climate based on climatic
predictions, shading the orchard, avoiding excessive wounding and minimizing physio-
logical stress in the host. Assessing the role that each variable above may have on disease
may help to further fine-tune disease management strategies. Additional insights may
come from studies conducted to investigate the presence of N. parvum in asymptomatic
plant tissues and commodities other than blueberry and to further understand the biol-
ogy of this pathogen, which is reported as one of the most widespread causal agents of
fungal trunk disease (FTD) due to its broad host range [2,64]. In light of warming trends,
generalist pathogens, such as N. parvum, truly present a challenge. The enhanced spread
and development of this species with rising temperatures could seriously compromise
several fruit crops [65]. Thus, further investigations focused on different fruit crops and the
genetic structures of both N. parvum and host populations should be performed to better
our understanding of the ecology and evolution of this pathogen and to improve current
management strategies.
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