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Abstract: Anthocyanins play a crucial role in imparting red coloration to pear fruits. However, the
specific number and expression patterns of each member within the anthocyanin biosynthesis-related
gene families in pears require systematic exploration. In this study, based on the pear genome we
identified 15 gene families involved in the anthocyanin biosynthesis pathway using the BLASTP and
Hidden Markov Model search methods, comprising a total of 94 enzyme genes. Through phylogenetic
analysis, conserved domains, motif, and gene structure analysis, these gene families were further
categorized into eight distinct lineages. Subsequent collinearity analysis revealed that the expansion
of anthocyanin synthesis-related gene families primarily originated from segmental duplications.
Analysis of cis-element in the promoter regions of genes related to anthocyanin synthesis unveiled
the presence of light-responsive elements and various hormone-responsive elements. This suggests
that changes in light stimulation and hormone levels may influence anthocyanin synthesis. RNA-Seq
and qRT-PCR analyses indicated differential expression of anthocyanin biosynthesis-related genes
between the peel and flesh tissues. During the accumulation of anthocyanins in red-fleshed pears,
upstream genes in the anthocyanin biosynthesis pathway such as PbrPAL2, PbrC4H2, PbrC4H3,
Pbr4CL2, Pbr4CL17, PbrF3H5, and PbrF3H6 exhibited high expression levels, likely contributing
significantly to the red coloration of pear flesh. In summary, we have identified the number of gene
family members involved in pear anthocyanin biosynthesis and analyzed the expression patterns of
the genes related to pear anthocyanin biosynthesis. These findings provide a solid foundation for
further research on the regulatory mechanisms underlying pear anthocyanin biosynthesis and the
breeding of red pear varieties.

Keywords: pear; anthocyanin; gene family; light; gene expression

1. Introduction

Pear (Pyrus spp.), one of the most economically significant temperate fruit tree species,
belongs to the subtribe Malinae of the Amygdaloideae subfamily within Rosaceae [1]. Fruit
color serves as a crucial aesthetic quality of pears [2], and in recent years, the rare red pear
has increasing gained favor among consumers [3]. Presently, red European pears enjoy
global acceptance and cultivation, while green/yellow Asian pears continue to dominate
the market in terms of production [4]. Unlike European pears, which readily redden, Asian
pears pose challenges in attaining red hues, particularly in warmer regions of China [5].
Consequently, understanding the coloring mechanism of pear fruit has emerged as a pivotal
aspect in breeding endeavors.

The reddening of pear fruit is attributed to the accumulation of anthocyanins [6]. An-
thocyanins represent a significant secondary metabolite within the flavonoid metabolism
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pathway [7]. They facilitate the dispersal of plant pollen and seeds [8,9], while also serving
vital roles in plant disease resistance and protection against ultraviolet radiation [10–12].
Additionally, the antioxidant properties of anthocyanins enable them to prevent human car-
diovascular diseases, thus promoting human health [13–16]. The anthocyanin biosynthesis
pathway initiates from the phenylpropanoid pathway and progresses through the flavonoid
pathway [17–19] (Figure 1). The phenylpropanoid pathway mainly includes the following
processes: phenylalanine is catalyzed by phenylalanine ammonia-lyase (PAL), cinnamic
acid 4-hydroxylase (C4H), and 4-coumaroyl-CoA ligase (4CL) to generate p-coumaroyl-
CoA. In the flavonoid biosynthetic pathway, two types of related structural genes are dis-
tinguished: early biosynthetic genes (EBGs) and late biosynthetic genes (LBGs) [20]. EBGs,
including chalcone synthase (CHS), chalcone isomerase (CHI), flavonoid 3-hydroxylase
(F3H), flavonoid 3′-hydroxylase (F3′H), and flavonoid 3′,5′-hydroxylase (F3′5′H), catalyze
the conversion of acetyl-CoA and p-coumaroyl-CoA into dihydrokaempferol, dihydro-
quercetin, and dihydromyricetin. LBGs comprising dihydroflavonol 4-reductase (DFR),
anthocyanidin synthase/leucoanthocyanidin dioxygenase (ANS/LDOX), and UDP-glucose
flavonoid glucosyltransferase (UFGT) further convert these compounds into anthocyanins.
The phenylpropanoid pathway genes and EBGs are upstream genes, while LBGs are
downstream genes in the anthocyanin biosynthetic pathway [20,21]. Moreover, the three
dihydroflavonols can be transformed into three flavonols (kaempferol, quercetin, and
myricetin) by flavonol synthase (FLS). Leucoanthocyanidins undergo catalysis by leucoan-
thocyanidin reductase (LAR) to yield catechins, whereas anthocyanidin reductase (ANR)
can catalyze anthocyanidins to produce epicatechins. The combination of catechin and
epicatechin results in the formation of proanthocyanidins [22].

Anthocyanins synthesis is predominantly regulated by two classes of genes: structural
genes involved in anthocyanin biosynthesis, and regulatory genes [23]. Recent research
highlights MdNAC1’s role in promoting anthocyanin synthesis in apple (Malus domestica)
by enhancing gene expression by directly binding to the MdUFGT promoter [24]. Similarly,
in pear (Pyrus communis), PcERF5 can activate the transcription of flavonoid biosynthetic
genes (PcDFR, PcANS, and PcUFGT), along with two key transcription factors, PcMYB10
and PcMYB114 [25]. Transcriptional repressors also play a role in the regulation of an-
thocyanin synthesis. In tomato (Solanum lycopersicum L.), SlMYB7 has been identified to
suppress the expression of SlANS [26]. In pear (Pyrus spp.), PpERF9 can directly inhibit
the expression of the MYB transcription factor PpMYB114 by binding to its promoter,
thereby inhibiting anthocyanin synthesis [27]. Alterations in the expression levels of struc-
tural genes implicated in anthocyanin biosynthesis directly impact anthocyanin content.
Hence, a methodical exploration of genes associated with anthocyanin biosynthesis bears
considerable significance.
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Figure 1. The anthocyanin biosynthesis pathway in Chinese white pear. The construction of the an-
thocyanin biosynthesis pathway diagram in pears references prior reports [28,29], with  further re-
finement for clarity. The purple box represents enzyme genes upstream of the anthocyanin biosyn-
thesis pathway; the green box represents enzyme genes downstream of the anthocyanin biosynthe-
sis pathway; the gray box represents other enzyme genes in the anthocyanin biosynthesis pathway; 
yellow boxes represent proanthocyanidins; blue boxes represent flavonoids; red boxes represent 
anthocyanins. The enzyme names were abbreviated as follows: PAL, phenylalanine ammonia lyase; 
C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI, 
chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, fla-
vanone 3′,5′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocy-
anidin synthase; LDOX, leucoanthocyanidin dioxygenase; LAR, leucoanthocyanidin reductase; 
ANR, anthocyanidin reductase; UFGT, UDP-glucose flavonoid 3-O-glucosyltransferase. 

Previous studies have revealed the pear PAL and 4CL gene families [30,31], while 
other researchers have utilized cDNA end rapid amplification of cDNA end (RACE) tech-
nology to clone the pear genes associated with anthocyanin biosynthesis, such as PpPAL2, 
PpCHS2, PpCHS3, PpCHS4, PpCHI2, PpDFR2, and PpUFGT2 [32]. However, the exact 
number of genes involved in the pear anthocyanin biosynthesis pathway remains unclear, 
significantly impeding understanding of the anthocyanin biosynthesis mechanism. 
Hence, a systematic investigation of the structural genes implicated in anthocyanin bio-
synthesis is imperative. Fortunately, the genome of Chinese white pear has been fully se-
quenced [33], offering an opportunity for a comprehensive analysis of pear anthocyanin 
biosynthesis-related genes. We conducted an in-depth examination of these genes, encom-
passing genome-wide identification, phylogenetic relationships, chromosome distribu-
tion, genomic structure, and expression patterns. Our research holds promise for 

Figure 1. The anthocyanin biosynthesis pathway in Chinese white pear. The construction of the
anthocyanin biosynthesis pathway diagram in pears references prior reports [28,29], with further
refinement for clarity. The purple box represents enzyme genes upstream of the anthocyanin biosyn-
thesis pathway; the green box represents enzyme genes downstream of the anthocyanin biosynthesis
pathway; the gray box represents other enzyme genes in the anthocyanin biosynthesis pathway;
yellow boxes represent proanthocyanidins; blue boxes represent flavonoids; red boxes represent
anthocyanins. The enzyme names were abbreviated as follows: PAL, phenylalanine ammonia lyase;
C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI,
chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, flavanone
3′,5′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin
synthase; LDOX, leucoanthocyanidin dioxygenase; LAR, leucoanthocyanidin reductase; ANR, antho-
cyanidin reductase; UFGT, UDP-glucose flavonoid 3-O-glucosyltransferase.

Previous studies have revealed the pear PAL and 4CL gene families [30,31], while other
researchers have utilized cDNA end rapid amplification of cDNA end (RACE) technology
to clone the pear genes associated with anthocyanin biosynthesis, such as PpPAL2, PpCHS2,
PpCHS3, PpCHS4, PpCHI2, PpDFR2, and PpUFGT2 [32]. However, the exact number of
genes involved in the pear anthocyanin biosynthesis pathway remains unclear, significantly
impeding understanding of the anthocyanin biosynthesis mechanism. Hence, a systematic
investigation of the structural genes implicated in anthocyanin biosynthesis is imperative.
Fortunately, the genome of Chinese white pear has been fully sequenced [33], offering
an opportunity for a comprehensive analysis of pear anthocyanin biosynthesis-related
genes. We conducted an in-depth examination of these genes, encompassing genome-wide
identification, phylogenetic relationships, chromosome distribution, genomic structure,
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and expression patterns. Our research holds promise for enhancing comprehension of the
molecular mechanisms governing anthocyanin synthesis and regulation in pears, thereby
laying the groundwork for the breeding of red pear varieties.

2. Materials and Methods
2.1. Whole-Genome Identification of the Anthocyanin Biosynthesis-Related Genes

The genome of ‘Dangshansuli’ (Pyrus bretschneideri Rehd.) was obtained from the Pear
Genome Project (http://peargenome.njau.edu.cn/, accessed on 13 September 2023) [33], and
the Arabidopsis-related protein sequences were retrieved from the TAIR10 database (https://
www.arabidopsis.org/, accessed on 13 September 2023). Given that the F3′5′H and LAR genes
are unavailable in Arabidopsis thaliana [34], the sequences of Glycine max GmF3′5′H, GmLAR1,
and GmLAR2 were downloaded from the National Center for Biotechnology Information
database (https://www.ncbi.nlm.nih.gov/, accessed on 13 September 2023). Anthocyanin
biosynthesis-related genes proteins of Malus domestica, including MdPAL, MdC4H, Md4CL,
MdCHS, MdCHI, MdF3H, MdF3′H, MdF3′5′H, MdFLS, MdDFR, MdLAR, MdANR, MdLDOX,
MdANS, and MdUFGT were obtained from the Phytozome v13 database (https://phytozome-
next.jgi.doe.gov/, accessed on 13 September 2023). To identify the genes of the anthocyanin
biosynthesis pathway-related gene family, two different methods were employed. Initially, all
pear protein sequences underwent BLASTP (version 2.14.0+) [35] scanning using Arabidopsis
anthocyanin biosynthesis pathway-related protein sequences as queries. Subsequently, a
Hidden Markov Model search (HMM search) software (version 3.3.2) [36] was conducted
for the pear protein database using the HMM profile with the anthocyanin biosynthesis
pathway-related protein domain. The overlapping results obtained from both methods were
utilized for further analysis The HMM protein file was downloaded from InterProScan (https:
//www.ebi.ac.uk/interpro/search/text/, accessed on 13 September 2023). To ensure the
completeness of the anthocyanin biosynthesis pathway-related protein domain and conduct
functional analysis of the corresponding protein sequence, we utilized the CDD tool (https:
//www.ncbi.nlm.nih.gov/cdd/, accessed on 13 September 2023), SMART tool (http://smart.
emblheidelberg.de/, accessed on 13 September 2023), and InterProScan tool (http://www.ebi.
ac.uk/Tools/pfa/iprscan/, accessed on 13 September 2023). Furthermore, protein molecular
weights (Mw) and isoelectric points (PI) for the anthocyanin biosynthesis pathway-related
proteins were predicted using the Expasy tool (https://www.expasy.org/, accessed on 13
September 2023). Subcellular localizations were determined through the WoLFPSORT server
(https://wolfpsort.hgc.jp/, accessed on 13 September 2023).

2.2. Multiple-Sequence Alignment and Phylogenetic Tree Analysis

The amino acid sequences of anthocyanin biosynthesis pathway-related proteins from
Pyrus bretschneideri, Arabidopsis thaliana and Malus domestica were utilized to construct a
phylogenetic tree. Initially, all sequences underwent alignment using the multiple align-
ment tool, MAFFT software (version 7.520) [37]. Subsequently, the MAFFT software output
was submitted to the IQ-TREE (version 1.6.12) webserver [38] to estimate the phylogenetic
relationships of the anthocyanin biosynthesis pathway-related proteins employing the
maximum likelihood (ML) method with 1000 bootstrap replicates. Finally, the phylogenetic
tree of the anthocyanin biosynthesis pathway-related proteins was generated using the
interactive tree of life (iTOL version 5) tool [39].

2.3. Analysis of the Gene Structure, Conserved Motifs, and Conserved Domain of Anthocyanin
Biosynthesis-Related Family Proteins

The gene structural information for anthocyanin biosynthesis-related genes was ob-
tained from the pear genome database (http://peargenome.njau.edu.cn/, accessed on
13 September 2023) [33]. The conservation of structural domains was analyzed using
the CDD search function of NCBI (https://www.ncbi.nlm.nih.gov/cdd/, accessed on
19 September 2023). The MEME tool (Multiple Em for Motif Elicitation) (https://meme-
suite.org/meme/tools/meme/, accessed on 23 September 2023) was employed to identify
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conserved motifs, with parameters set as follows: distribution, any number; number of dif-
ferent motifs, 20; minimum motif width, 6; and maximum motif width, 100. Subsequently,
the gene structure, conserved motifs, and conserved domain were visualized using the
Gene Structure View (Advanced) function in TBtools software (version 1.098) [40].

2.4. Chromosomal Location and Synteny Analysis

The duplication events of pear anthocyanin biosynthesis-related genes were analyzed
using the MCScanX software (version 1.1.11) [41]. The synteny analysis and visualization
of genes related to anthocyanin biosynthesis pathways in Pyrus bretschneideri, as well as
two representative species, Arabidopsis thaliana and Malus domestica, were conducted using
TBtools software. Additionally, the chromosomal localization information for genes related
to the pear anthocyanin biosynthesis pathway was visualized using TBtools software.

2.5. Cis-Regulatory Element Analysis of Putative Promoters

First, we utilized the ‘Gtf/Gff3 Sequences Extract’ function in TBtools to extract a
2000 bp sequence upstream of the transcription start site for all genes related to the antho-
cyanin biosynthesis pathway, considering them as putative promoter regions. Subsequently,
we employed PlantCARE (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 8 October 2023) to predict the cis-regulatory elements within the promoter region
of the anthocyanin biosynthesis pathway-related genes. Finally, we visualized the extracted
sequences using TBtools software’s ‘Simple BioSequence Viewer’ function.

2.6. Expression Analysis Based on RNA-Seq

Transcriptome data for both bagged and unbagged stages of the Chinese sand pear
variety ‘Yunhongyihao’ [42], as well as transcriptome data for red-fleshed and white-
fleshed pears were downloaded [25]. For the ‘Yunhongyihao’, variety. Young fruits were
covered with double-layer yellow–black paper bags after 35 days of flowering for the
bagging treatment. Ten days prior to commercial maturity, 30 fruits were randomly selected
for bag removal and exposure to sunlight, while the remaining fruits continued to be
bagged. Peel samples were collected on the fourth (D1), eighth (D2), and tenth (D3) days
after bag removal. Bagged fruits (B1, B2, and B3) were sampled at corresponding times.
Approximately 5–6 pear fruits were collected for each time point and treatment. To analyze
the expression levels of the pathway-related genes, the RPKM value (Reads Per Kilobase
Per Million Mapped Reads) was calculated, and log2(RPKM + 1) values were obtained.
Subsequently, a heatmap was generated using the “pheatmap” function in R to visualize
the expression patterns of these genes.

2.7. Quantitative Real-Time PCR Analysis (qRT-PCR)

For quantitative reverse-transcription PCR (qRT-PCR) analysis, fruit peel tissue samples
were collected from bagged (B1, B2, B3) and unbagged (D1, D2, D3) ‘Yunhongyihao’ pears, as
well as from six different varieties of red-skinned and green-skinned pears. The RNA was
extracted and reverse-transcribed to synthesize cDNA (TransGen Biotech Co. Ltd., Beijing,
China); primers were designed using the NCBI website (https://www.ncbi.nlm.nih.gov/
tools/primer-blast/index.cgi, accessed on 10 October 2023) (Table S1). SYBR Green I
Mastermix (Roche, Madison, WI, USA) was utilized for qRT-PCR analysis. The composition
of the PCR reaction system was as follows: 1 µL (10 µmol L−1) of each primer, 10 µL of
480 SYBR GREEN I Master, 1 µL of cDNA template, and 7 µL of RNase-free water. The
qRT-PCR protocol consisted of an initial denaturation step at 95 ◦C for 10 min, followed by
denaturation at 95 ◦C for 3 s, annealing at 60 ◦C for 10 s, and extension at 72 ◦C for 30 s,
repeated for 45 cycles. A final extension step at 72 ◦C for 30 s concluded the amplification
process. The 2−∆∆Ct method was employed to calculate the relative gene expression levels
in different samples [43], selecting the sample with the highest Ct value in each group as
the reference and comparing other samples to it. The pear gene PbrGAPDH (Table S1) was
used as an internal control [44].
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3. Results
3.1. Identification and Characterization Anthocyanin Biosynthesis Pathway Genes in Chinese
White Pear

In this study, we identified a total of 94 genes associated with anthocyanin biosynthesis
in the Chinese pear genome (Tables 1 and S2). These 94 genes are categorized into 15 gene
families, comprising 2 PAL, 3 C4H, 18 4CL, 14 CHS, 8 CHI, 9 F3H, 6 F3′H, 2 F3′5′H, 4
FLS, 8 DFR, 4 ANS, 3 ANR, 2 LAR, 3 LDOX, and 8 UFGT. To distinguish members of
the anthocyanin biosynthesis-related gene families, we have renamed all relevant genes
based on the chromosomal locations. These 94 genes are unevenly distributed across
all 17 chromosomes of the pear, with some genes also present on unanchored scaffolds.
The number of genes on each chromosome ranges from 1 to 12. Notably, chromosome
15 harbors the highest number of genes (12), followed by chromosome 7 (9), whereas
chromosomes 8, 12, and 16 each contain only 1 gene (Figure S1, Table S3).

Table 1. Summary of anthocyanin biosynthesis gene properties in the Chinese white pear. For
detailed information, please refer to Table S3.

Gene Family Number of Genes Protein Length MW1

(KDa) pI2 Subcellular Prediction

PAL 2 715–720 77.83–78.15 5.79–6.29 E.R.3; chlo4

C4H 3 504–529 57.58–57.69 9.06–9.36 plas5

4CL 18 544–831 59.14–92.05 5.36–8.66 chlo; mito6; pero7; plas; vacu8

CHS 14 388–396 42.41–43.21 5.50–6.48 cyto9; cysk10

CHI 8 219–466 23.35–49.76 4.99–7.65 cyto; chlo
F3H 9 328–456 37.22–52.55 5.01–6.75 chlo; cysk; cyto; nucl11

F3′H 6 392–514 44.32–58.71 6.59–9.16 chlo; nucl
F3′5′H 2 496–518 56.53–59.16 7.98–8.04 plas

FLS 4 308–359 35.47–39.91 5.49–5.85 cysk; nucl; cyto
DFR 8 300–1016 33.01–110.42 5.35–6.16 chlo; cyto
ANS 4 347–361 38.39–40.56 5.23–5.85 cyto; cysk
ANR 3 312–339 34.08–36.93 5.00–5.63 chlo; cyto
LAR 2 352 38.70–38.74 5.58–7.11 chlo; cyto

LDOX 3 348 39.29 5.84 cyto
UFGT 8 370–493 51.53–54.18 5.33–5.93 chlo; cyto; vacu

MW1, molecular weight of the gene products; pI2, theoretical isoelectric point: the Ph at which a protein
or molecule carries no net electrical charge; E.R.3, endoplasmic reticulum; chlo4, chloroplast; plas5, plasma
membrane; mito6, mitochondrion; pero7, peroxisome; vacu8, vacuole; cyto9, cytoplasm; cysk10, cytoskeleton;
nucl11, nucleus.

In this study, the basic information of 94 anthocyanins biosynthesis-related genes
was analyzed, including protein sequence lengths, relative molecular weights (MW), and
isoelectric point (pI). The length of the anthocyanin biosynthesis-related protein sequences
ranged from 219 to 1016 amino acids, while the protein mass ranged from 23.35 kDa
to 110.42 kDa. Additionally, the protein pIs ranged from 4.99 to 9.36 (Tables 1 and S3).
Subcellular localization prediction results indicated that the majority of genes were localized
in the chloroplast (30/94) and cytoplasm (30/94), followed by the cytoskeleton (10/94).
Additionally, nine genes were localized in the peroxisome, eight in the plasma membrane,
three in the cell nucleus, and two in the vacuole. Genes localized in the endoplasmic
reticulum and mitochondria had the fewest representatives, with only one gene each.

3.2. Phylogenetic Analysis of Anthocyanin Biosynthesis-Related Gene Family in Pear and
Other Species

To better elucidate the evolutionary relationships of the anthocyanin biosynthesis-related
gene family, a phylogenetic three was constructed for 245 members of this family across three
different species: Arabidopsis thaliana (24), Malus domestica (127), and Pyrus bretschneideri (94)
(Figure 2). According to the phylogenetic tree, anthocyanin biosynthesis-related gene family
members can be classified into eight groups. The number of genes varies unevenly among
different groups, with group VIII containing the highest number, totaling 62 genes. Within this
group there are 9 PbrF3H, 4 PbrFLS, 4 PbrANS, 3 PbrLDOX, 17 MdF3H, 12 MdFLS, 4 MdANS,
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1 AtF3H, 6 AtFLS, 1 AtANS, and 1 AtLDOX gene. Conversely, group I comprises the fewest
number of genes, totaling 10 genes. This group includes 2 PbrPAL, 4 MdPAL, and 4 AtPAL
genes. It is noteworthy that PbrPAL1, AtPAL1, and AtPAL2 form separate branches, suggesting
potential divergence during evolution, indicating differences in gene structure or function
compared to the other seven genes. Observing the clustering results, we note that the PAL
gene, 4CL gene, CHS gene, CHI gene, and UFGT gene each form individual clusters. Similarly,
the F3H, FLS, LDOX, and ANS genes, as well as C4H, F3′H, and F3′5′H, and DFR, ANR, and
LAR genes, each form separate lineage groups.

3.3. Conserved Domains and Motif and Gene Structure Analysis of Anthocyanin
Biosynthesis-Related Genes

The gene structures and motif compositions were found to be highly conserved within
the same lineages, although some variations were observed in the number and length
of gene structures and motif composition in certain cases. Domains, which represent
independent stable structural regions composed of various secondary structures and su-
per secondary structures in proteins, serve as functional units of proteins, with different
domains often associated with different functions. In our study of conserved functional
domains of anthocyanin biosynthesis-related genes (Figure 3), the PAL gene possesses the
Lyase_aromatic domain, while the AMP-binding or AMP-binding_C domains are con-
served in 4CL genes. The Chal_sti_synt_N and Chal_sti_synt_C domains are present in all
CHS genes, and the chalcone and GT1_Gtf-like conserved domains were identified in the
CHI and UFGT genes, respectively. Additionally, some structural domains are not specific
to any particular family. For example, the CHS, F3′H, and F3′5′H genes all contain the
cytochrome_P450 domain, belonging to the cytochrome P450-dependent monooxygenase
(CYP450) superfamily. Similarly, the F3H, FLS, LDOX, and ANS genes contain the 2OG-
FeII_Oxy or DIOX_N domain, belonging to the 2-oxoglutarate-dependent dioxygenase
(2-ODD) superfamily. The adh_short or Epimerase or 3Beta_HSD domains were present
in the DFR, ANR, and LAR genes, all of which are part of the short-chain dehydroge-
nase/reductase (SDR) superfamily. Regarding the exon and intron arrangement within
the same gene family, it was generally observed to be similar and relatively conserved,
although some differences were noted. For instance, two PAL genes exhibited structural
similarity, each containing two exons and one intron. However, PbrPAL2 had two untrans-
lated regions (UTR) at both ends, differing from the others. These findings indicate that
gene structures within the same lineage are highly conserved.

Based on evolutionary analysis and conserved structural domains, we classified the
94 genes related to anthocyanin biosynthesis into eight groups. Using the MEME tool,
we identified 10 conserved motifs for each group, ensuring that each gene contains at
least one conserved motif (Figure S2). Genes sharing a common conserved domain exhibit
significant similarities in their gene architecture and motif composition. For instance, in
the 2OGD gene family, F3H, FLS, ANS, and LDOX all contain motif1, motif2, and motif4,
while only the genes PbrF3H5, PbrF3H6, PbrF3H7, and PbrF3H8 have motif9. Similarly,
all 18 4CL genes share two common motifs: motif2 and motif4. Within the SDR family,
PbrDFR2 possesses repeated motifs including motif5, motif1, motif6, motif2, motif4, and
motif7, consistent with the structural domain analysis results. Among the 14 CHS genes,
all contain motif2, motif3, and motif4. The variation lies in motif3 and motif4; specifically,
PbrCHS1, PbrCHS2, PbrCHS3, PbrCHS12, and PbrCHS13 contain motif7, while PbrCHS4,
PbrCHS5, PbrCHS7, PbrCHS8, PbrCHS9, PbrCHS10, and PbrCHS14 have motif5. In the P450
gene family, F3′H, F3′5′H, and CHS all contain motif2, motif4, and motif5, whereas only
the CHS gene has motifs 6 and 9. Similarly, the eight CHI genes share motif1 and motif3
as common motifs. In contrast to PbrPAL1, PbrPAL2 has two additional motifs: motif10.
Among the eight UFGT genes, shared motifs include motif1, motif2, and motif6, with only
PbrUFGT3 lacking motif5. These differences in motifs within the same gene family may
contribute to functional variations among the genes.
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Figure 2. The phylogenetic analysis of anthocyanin biosynthesis-related gene families in three differ-
ent species, including Arabidopsis thaliana, Malus domestica, and Pyrus bretschneideri, was constructed
using the maximum likelihood method. In the resulting phylogenetic tree, different colored back-
grounds are used to indicate distinct groups, while different colored shapes represent the different
species involved in the analysis.
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Figure 3. Phylogenetic tree: (A) conserved domains (B) and exon/intron structure (C) of the 94 genes
involved in the Chinese white pear anthocyanin biosynthesis pathway. (A) The evolutionary tree was
built using the maximum likelihood (ML) method with 1000 bootstrap replicates for the 94 members
of the anthocyanin biosynthesis gene family using the IQ-TREE software, version 1.6.12. Differ-
ent colored boxes represent different domains present in the genes or proteins. (B,C) The width
of the boxes represents the relative length of the genes or proteins. Differently colored boxes in
(B,C) represent different domains, respectively. The green and yellow boxes, and the grey lines in
(C) represent the exons, UTRs, and introns, respectively.
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3.4. Synteny Analysis of Anthocyanin Biosynthesis-Related Genes in Pear and Other Species

We conducted synteny analysis on Pyrus bretschneideri, Arabidopsis thaliana, and Malus
domestica (Figure 4A). Our results revealed 23 pairs of collinear genes between pear and
Arabidopsis. These genes are distributed across pear chromosomes 1, 3, 5, 6, 7, 9, 10, 11,
13, 14, 15, and 17, with the highest number of genes (6) found on chromosome 7 (Pbr4CL5,
PbrCHI2, PbrCHI4, PbrCHI5, PbrANS3, PbrUFGT2). Chromosomes 1, 3, 5, 6, 9, 10, 11, and 14
each have one collinear gene (PbrF3H1), 3 (PbrC4H1), 5 (PbrANR1), 6 (PbrANS2), 9 (Pbr4CL7),
10 (Pbr4CL10), 11 (PbrC4H3), and 14 (PbrF3′H4, respectively). Pear and apple exhibit 56
pairs of collinear genes, distributed unevenly across pear chromosomes 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, and 17. Among them, chromosome 7 contains the highest number
of collinear genes (8), including Pbr4CL4, Pbr4CL5, PbrCHI2, PbrCHI4, PbrCHI5, PbrDFR4,
PbrANS3, and PbrUFGT2. Chromosomes 4, 6, and 8 each have only one collinear gene
(PbrCHS1, PbrANS2, and PbrFLS2, respectively). In the collinearity analysis between these
three species, we observed that pear and apple share a greater number of collinear genes,
indicating a closer genetic relationship between pear and apple.

Through collinearity analysis of Chinese white pear, we identified a total of 16 duplicated
events among 94 genes associated with anthocyanin biosynthesis. Out of these, 14 pairs resulted
from segmental duplications, while 2 pairs arose from tandem duplications (Figure 4B). Further-
more, these duplicated events were found exclusively within six gene families (PAL, 4CL, C4H,
CHI, DFR, LAR). Among them, the 4CL gene family has six pairs (Pbr4CL1-Pbr4CL5, Pbr4CL11-
Pbr4CL8, Pbr4CL12-Pbr4CL17, Pbr4CL15-Pbr4CL6, Pbr4CL15-Pbr4CL7, Pbr4CL16-Pbr4CL9) of seg-
mental duplications; the CHI gene family had four pairs (PbrCHI2-PbrCHI7, PbrCHI4-PbrCHI7,
PbrCHI5-PbrCHI8, PbrCHI6-PbrCHI1) of segmental duplications and one pair (PbrCHI2-PbrCHI4)
of tandem duplications; while the PAL, C4H, and LAR gene families each possessed one pair
(PbrPAL2-PbrPAL1, PbrC4H3-PbrC4H1, PbrLAR2-PbrLAR1) of segmental duplications; and the
DFR gene family had one pair (PbrDFR3-PbrDFR4) of segmental duplications and one pair
(PbrDFR6-PbrDFR7) of tandem duplications. These findings indicate notable variation in both
the quality and kinds of duplication patterns within gene families associated with anthocyanin
biosynthesis. Such diversity may suggest distinct expansion mechanisms for these genes
throughout long-term evolutionary processes.

3.5. Cis-Element Analysis of Anthocyanin Biosynthesis-Related Genes

Various types of cis-regulatory elements exert influence on gene function and expression.
Exploring cis-regulatory elements serves as an effective strategy for predicting gene function.
Therefore, to comprehend the involvement of genes associated with the anthocyanin pathway
in pear anthocyanin synthesis, we extracted cis-regulatory elements from the upstream 2000 bp
sequences of the genes related to the anthocyanin pathway. This enabled us to investigate the
potential functions of different genes within the anthocyanin synthesis pathway. We identified
a total of 15,164 cis-acting elements within the promoters of 94 anthocyanin biosynthesis-
related genes promoters in the Chinese white pear. Among these, we specifically selected and
grouped 13 significant cis-acting elements for further analysis (Figure 5): cis-acting regulatory
elements involved in MeJA-responsiveness (282), abscisic acid responsiveness (305), salicylic acid
responsiveness (51), gibberellin-responsiveness (16), gibberellin-responsive elements (72), auxin-
responsive elements (39), cis-acting regulatory element involved in auxin responsiveness (11),
segments of light-responsive element (413), light-responsive element (165), MYBHv1 binding
sites (44), MYB binding sites involved in light responsiveness (42), MYB binding sites involved
in flavonoid biosynthetic genes regulation (7), and MYB binding sites involved in drought-
inducibility (80). Moreover, these various cis-regulatory elements demonstrate discrepancies in
their distribution across different gene families. For instance, all 15 gene families contain cis-
acting elements involved in abscisic acid responsiveness, segments of light-responsive elements,
light-responsive elements, and MYB binding sites involved in drought inducibility. However,
auxin-responsive elements are present in only six gene families (4CL, ANR, CHS, DFR, LAR,
UFGT), while MYB binding sites involved in flavonoid biosynthetic genes regulations are
present in six gene families (PAL, C4H, CHI, CHS, DFR, F3′H) as well.
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Figure 4. Synteny analysis in Chinese white pear. (A) The distribution and collinearity relationships
of genes related to the anthocyanin biosynthesis pathway on each chromosome of Pyrus bretschneideri,
Arabidopsis thaliana, and Malus domestica. The chromosomes of different species are shown in different
colors. The numbers represent chromosome identifiers. (B) Identification of the 94 genes associated
with the anthocyanin biosynthesis pathway in Chinese white pear using the MCScanX software. The
circular plot was generated using the TBtools software. Segmental duplication events are represented
with redlines and tandem duplication events with blue lines.
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PbrF3H4, PbrFLS2, PbrDFR7, PbrANS2, and PbrUFGT4) exhibited higher expression levels 
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Figure 5. Cis-acting element structures in promoter regions of anthocyanin biosynthesis-related genes.
(A) The evolutionary tree was built using the maximum likelihood (ML) method with 1000 bootstrap
replicates for the 94 members of the anthocyanin biosynthesis-related gene family using the IQ-TREE
software, version 1.6.12. (B) The distribution of cis-elements in the 2000 bp upstream promoter region of
anthocyanin biosynthesis-related genes. Different cis-elements are represented by the different colors.
(C) The number of cis-acting elements on putative promoters of anthocyanin biosynthesis-related genes.

3.6. Expression Analysis of Anthocyanin Biosynthesis-Related Genes in Different Pear Varieties

For exploring the expression of genes related to anthocyanin biosynthesis in the skin
of various pear varieties, we conducted further analysis on the expression levels of these
genes in three green-skinned varieties (‘Cuiguan’, ‘Shinseiki’, ‘Binxiang’) and three red-
skinned varieties (‘RedBartlett’, ‘Starkrimson’, ‘Yunhongyihao’) using qRT-PCR. The results
(Figure 6) revealed that nine genes (PbrCHS1, PbrCHS12, PbrCHI1, PbrCHI8, PbrF3H4, PbrFLS2,
PbrDFR7, PbrANS2, and PbrUFGT4) exhibited higher expression levels in red-skinned varieties
compared to green-skinned varieties, indicating their potential crucial roles in the anthocyanin
synthesis process. Moreover, it is notable that the expression level of PbrC4H2 was significantly
elevated in the three sand pears (‘Cuiguan’, ‘Shinseiki’, ‘Yunhongyihao’) compared to the
three European pears (‘Binxiang’, ‘RedBartlett’, ‘Starkrimson’).
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Figure 6. qRT-PCR analysis of 15 anthocyanin biosynthesis-related genes in different pear cultivars. 
‘Cuiguan’, ‘Shinseiki’ and ‘Binxiang’ represent green-skinned pears, while ‘RedBartlett’, ‘Starkrim-
son’, and ‘Yunhongyihao’ represent red-skinned pears. In addition, ‘Cuiguan’, ‘Shinseiki’, and 

Figure 6. qRT-PCR analysis of 15 anthocyanin biosynthesis-related genes in different pear cultivars.
‘Cuiguan’, ‘Shinseiki’ and ‘Binxiang’ represent green-skinned pears, while ‘RedBartlett’, ‘Starkrimson’,
and ‘Yunhongyihao’ represent red-skinned pears. In addition, ‘Cuiguan’, ‘Shinseiki’, and ‘Yunhongy-
ihao’ belong to the sand pear variety, and ‘Binxiang’, ‘RedBartlett’, and ‘Starkrimson’ belong to the
European pear variety. The error bars indicate the mean ± SD (n = 3).
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To explore the expression patterns of the genes associated with anthocyanin biosyn-
thesis in the flesh of various pear varieties, we conducted transcriptome analysis on two
white-fleshed varieties ‘Bartlett’ (B) and ‘RedBartlett’ (RB) and one red-fleshed variety ‘Sum-
mer Blood Birne’ (SB). Our observations revealed that, with the exception of eight genes that
showed no expression across any sample (Figure S3), the majority of genes were expressed
in all samples. Among them, significant differences in expression levels were observed
for genes such as PbrPAL2, PbrC4H2, PbrC4H3, Pbr4CL2, Pbr4CL17, PbrF3H5, PbrF3H6,
PbrDFR8, and PbrUFGT5 between white-fleshed and red-fleshed samples (Figure 7). For
instance, at the same time point, the expression level of Pbr4CL17 in red-fleshed samples
was 66.5 times higher than in the white-fleshed sample ‘Bartlett’ (B-S1), and 55.7 times
higher than in the white-fleshed sample ‘Red Bartlett’ (RB-S1).
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Figure 7. Transcriptome analysis of genes related to the anthocyanin biosynthesis pathway in red- and
white-fleshed pear. RPKM (reads per kilobase per million) values represent the expression levels of
these genes. ‘Bartlett’ (B-S1), ‘RedBartlett’ (RB-S1), and red-fleshed pear ‘Summer Blood Birne’ (SB) at
different stages of fruit collection. S1, semi-mature fruit; S2, mature fruit. The error bars indicate the
mean ± SD (n = 3). The different letters above the bars indicate significantly different values (p < 0.05)
calculated using a one-way analysis of variance (ANOVA) followed by Tukey’s multiple range test.
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3.7. Expression Analysis of Anthocyanin Biosynthesis-Related Genes in Pears under Dark and
Light Conditions

Prior research has highlighted the significance of light as a crucial environmental
factor influencing anthocyanin synthesis. Therefore, we utilized previous transcriptome
data from the bagging/debagging Sand pear variety ‘Yunhongyihao’ to scrutinize the
expression patterns of genes associated with anthocyanin synthesis [42]. Analysis of the
transcriptome data revealed that, out of the 94 anthocyanins biosynthesis-related genes,
only 13 were not expressed (Figure 8A). Subsequently, we conducted differential analysis
on the remaining 81 expressed genes within the anthocyanin biosynthesis pathway. Twelve
genes, displaying varying expression levels across three time points, were selected for qRT-
PCR analysis (Figure 8B). The results unveiled that, at identical time points, the expression
levels of all genes in the debagging group were significantly higher compared to those in the
bagging group, underscoring the crucial role of these genes in the anthocyanin biosynthesis
process. Nonetheless, there were divergences in the expression patterns among different
genes. For instance, while the expression levels of PbrDFR6 and PbrDFR7 exhibited a
continuous increase over time in the debagging group, they showed only slight increments
in the bagging group. Conversely, PbrANS2 demonstrated contrasting results, with its
highest expression level on day 4 in the debagging group, followed by a decrease over time.
Additionally, as time elapsed, the expression of PbrUFGT4 continued to increase steadily
in the debagging group, while decreasing in the bagging group. Such variations may be
attributed to the differential responses of genes to light. Moreover, correlation analysis
between the qRT-PCR data and the RPKM results from the RNA-seq experiments yielded
r values ranging from 0.85 (PbrDFR7) to 0.99 (PbrFLS2) (Figure 8C). This underscores the
support provided by the qRT-PCR analysis for the reliability of the RNA-seq data pertaining
to the selected genes.
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Figure 8. Expression pattern analysis of anthocyanin biosynthesis-related genes in bagged and
debagged ‘Yunhongyihao’ pear. (A) D1, D2, and D3 represent the fruits sampled at 4, 8, and 10 days
after removal from the bags, respectively. B1, B2, and B3 fruits were bagged at the same time as
the controls. The color scale represents the expression values. (B) qRT-PCR analysis of anthocyanin
biosynthesis-related genes. The error bars indicate the mean ± SD (n = 3). (C) Correlation analysis of
RNA-seq and qRT-PCR data for anthocyanin biosynthesis-related genes.
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4. Discussion
4.1. The Number of Genes Related to Anthocyanin Biosynthesis

In this study, we identified 24, 94, and 127 genes related to the anthocyanin biosynthetic
pathway in Arabidopsis thaliana, Pyrus bretschneideri, and Malus domestica, respectively. The
number of genes associated with anthocyanin biosynthesis in pear is notably higher than in
Arabidopsis thaliana but lower than in apple. Specifically, the copy numbers of the F3H, DFR,
and UFGT gene family members in apples are respectively 8, 9, and 9 more than those in
pears. This disparity in gene copy numbers may play a significant role in the comparatively
easier coloration of apples compared to pears. Additionally, our analysis identified two
F3’5’H and two LAR genes in pear, which are absent in Arabidopsis thaliana, aligning with
the findings in Ginkgo biloba [34]. Anthocyanins, crucial flavonoids, are widespread in
plants [45]. Notably, 68 anthocyanin pathway synthesis-related genes have been identified
in Ginkgo biloba, 35 in Salvia miltiorrhiza, and 85 in Oryza sativa L. [34,46,47]. These findings
underscore significant differences in the copy numbers of anthocyanin synthesis-related
genes across various species. The higher abundance of anthocyanin synthesis-related
genes in pears and apples may be linked to whole-genome duplication events during the
evolutionary processes of these fruits.

4.2. The Chromosomal Distribution and Collinearity Analysis of Genes Involved in
Anthocyanin Biosynthesis

Upon examining the distribution of 94 pear anthocyanin biosynthesis-related genes
across the 17 pear chromosomes, we observed an uneven distribution pattern. Notably,
chromosomes 3, 5, 7, 10, and 15 collectively harbor 42 anthocyanin biosynthesis-related
genes, representing approximately 44.68% of the total gene count. Furthermore, within
the same gene family, genes with high sequence similarity tend to cluster on the same
chromosome in close proximity, forming gene clusters. For instance, on chromosome 2,
there exists a gene cluster comprising PbrDFR1, PbrDFR2, and PbrDFR3, while chromosome
4 hosts a gene cluster containing PbrCHS1, PbrCHS2, and PbrCHS3. Similarly, chromo-
some 7 and chromosome 15 each contain gene clusters consisting of PbrCHI2, PbrCHI3,
PbrCHI4, PbrCHI5, and PbrCHS7, PbrCHS8, PbrCHS9, PbrCHS10, PbrCHS11, respectively.
The pear genome has undergone at least two rounds of genome-wide replication events
in its evolutionary history, which may be responsible for the formation of gene clusters
on chromosomes [33,48]. Additionally, previous studies have indicated that the metabolic
process from phenylalanine to flavonoids is facilitated by multi-enzyme complexes [49,50].
It is noteworthy that members of different gene families tend to cluster on the same chro-
mosome in close proximity, forming gene clusters. This observation leads us to speculate
that the close physical or spatial proximity of these genes on the pear genome may facilitate
the formation of large molecular complexes during the biosynthesis of pear anthocyanins.

Early studies have established that both segmental duplication and tandem duplication
are pivotal mechanisms contributing to the expansion of protein superfamilies [51,52]. In
our investigation, of the amplification mechanisms of 94 pear anthocyanin-related genes,
we discovered that 42 genes (42/94) are situated in duplicated regions of the pear genome,
encompassing 14 pairs of segmental duplications and 2 pairs of tandem duplications.
Notably, these duplication events are confined to only six gene families (PAL, 4CL, C4H,
CHI, DFR, LAR), with tandem duplication events occurring solely within the CHI and DFR
families. Therefore, it becomes evident that segmental duplication serves as the primary
driving force behind the expansion of the anthocyanin biosynthesis-related gene families
in pear, with significant variations observed in the expansion mechanisms among different
gene families. A noteworthy observation is that, within the 4CL gene family in pear, only
segmental duplications are present with no instances of tandem duplications. This finding
aligns with the results reported by Cao et al. [31]. However, in the study of G. hirsutum,
two pairs of tandem duplications were discovered [53]. These findings underscore the
differences in the expansion mechanisms of the same gene family across different species.
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4.3. Cis-Acting Element Analysis of Anthocyanin Biosynthesis-Related Genes

Cis-regulatory elements serve as essential molecular switches in the transcriptional reg-
ulation of gene expression, exerting significant influence on gene function [54,55]. In the pro-
moters of pear anthocyanin biosynthesis-related genes, we identified 15,164 cis-regulatory
elements. Among the 13 specific cis-regulatory elements for analysis, light-responsive ele-
ments exhibited the highest frequency. Additionally, various hormone-responsive elements
and MYB-binding elements were observed (Figure 5). The study elucidates that light can
enhance the expression of structural genes in the anthocyanin biosynthesis pathway. For
instance, in Arabidopsis, strong light promotes the expression of structural genes (AtCHS,
AtF3H, AtDFR and AtLDOX) involved in anthocyanin synthesis, facilitating the synthesis
and accumulation of anthocyanins in plants [56]. Similarly, in grapes, high expression of
VvF3’H under light stimulation promotes the accumulation of anthocyanins [57]. Addi-
tionally, during the mid-stage of fruit development, sweet cherry fruits treated with NAA
exhibit significant upregulation of six anthocyanin biosynthesis genes (PaPAL, PaCHS1,
PaCHS3, PaDFR, PaLDOX, and PaUFGT) [58]. In apple, abscisic acid (ABA) inhibits the
expression of anthocyanin structural genes, with downstream structural genes MdDFR,
MdF3H, MdLDOX, and MdUFGT being particularly sensitive to ABA. Methyl jasmonate
(MeJA) counteracts the inhibitory effect of ABA by reducing its expression. MeJA induces
the expression of MdMYB11 and MdMYB16, increasing the expression of anthocyanin
regulatory genes MdMYB3, MdMYB9, and MdMYB10, as well as structural genes MdCHS,
MdDFR, MdF3H, and MdUFGT, thereby promoting anthocyanin synthesis [59]. The MYB-
bHLH-WDR complex directly regulates the expression of anthocyanin biosynthesis-related
structural genes during the anthocyanin biosynthesis process, with R2R3-MYB transcription
factors playing a crucial role in this process [60,61]. In summary, cis-regulatory elements in
the promoter regions of anthocyanin biosynthesis-related genes play a crucial role in the
anthocyanin biosynthesis process.

4.4. Analysis of the Expression Patterns of Genes Related to Anthocyanin Synthesis

Through qRT-PCR analysis of different pear varieties, we observed significantly higher
expression levels of downstream genes in anthocyanin synthesis in red-skinned pears com-
pared to green-skinned pears, consistent with previous studies [32]. However, we noted
that the expression pattern of PbrC4H2 did not follow this trend of higher expression in
red-skinned pears and lower expression in green-skinned pears (Figure 6). Upon further
analysis of these six varieties, we found that the three varieties exhibiting high expres-
sion levels belong to the sand pear group, while the three with low expression levels are
European pear varieties. Previous research has highlighted that anthocyanin and lignin
metabolism represent important branches of the phenylalanine metabolic pathway, with
cinnamate 4-hydroxylase (C4H) participating in both metabolic pathways [62]. Moreover,
pear stone cells are formed through the deposition of lignin and cellulose [63], with the con-
centration of stone cells typically higher in sand pears compared to European pear [64,65].
Based on these observations, we speculate that the elevated expression of PbrC4H2 in sand
pears may be linked to the formation of stone cells.

In the transcriptome analysis of red and white-fleshed pears, downstream genes in
the anthocyanin biosynthesis pathway (PbrDFR8, PbrUFGT5) demonstrated significantly
higher expression levels in the red-fleshed samples compared to the white-fleshed samples
(Figure 7), consistent with the findings of Chang et al. [25]. However, Chang et al.’s study
did not investigate the expression of genes such as PAL, C4H, and 4CL. In our study, we
found that the expression levels of upstream genes in the anthocyanin biosynthesis pathway,
such as PbrPAL2, PbrC4H2, PbrC4H3, Pbr4CL2, and Pbr4CL17, were significantly higher in
red-fleshed samples compared to white-fleshed samples (Figure 7). Therefore, we speculate
that the elevated expression levels of these upstream genes in the anthocyanin biosynthesis
pathway may provide a substantial substrate foundation for anthocyanin synthesis, thereby
facilitating the synthesis of anthocyanins in pear fruit flesh.
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Abundant evidence suggests that among environmental factors, light stands out as
one of the most potent regulatory factors in the anthocyanin biosynthetic pathway [66,67].
Light not only plays a crucial role in the growth and development of plants, but also poses
a risk when plants are exposed to excessive high-energy ultraviolet radiation, which can
lead to cellular damage [68]. The accumulation of anthocyanin in plants serves a protective
role by enhancing resistance to ultraviolet stress [69]. To delve into the expression patterns
of genes involved in anthocyanin biosynthesis under shaded and exposed conditions, we
conducted an examination of the expression profiles of 94 anthocyanin biosynthesis-related
genes in ‘Yunhongyihao’ pear samples subjected to bagging and debagging treatments
(Figure 8). Our analysis revealed that, during the same period, the expression levels of an-
thocyanin biosynthesis-related genes in the debagged group were notably higher compared
to those in the bagged group. Furthermore, downstream genes in the anthocyanin biosyn-
thesis pathway (PbrDFR6, PbrDFR7, PbrANS2, PbrUFGT4) exhibited significantly higher
expression levels in the debagged group. Previous studies across various species have
demonstrated that genes such as PAL, CHS, CHI, DFR, ANS, and UFGT are upregulated in
response to light stimulation, which aligns with our analytical results [70–72].

By comparing the expression of anthocyanin biosynthesis-related genes in pear peel
tissues across different varieties and light conditions, we have discerned that a high expres-
sion of downstream genes (PbrDFR7, PbrANS2, PbrUFGT4) in the anthocyanin biosynthesis
pathway significantly contributes to anthocyanin accumulation in pear peel. Notably, in
red-fleshed pear tissues, besides the heightened expression of downstream genes (PbrDFR8,
PbrUFGT5) in the anthocyanin biosynthesis pathway, we also observed elevated expression
of upstream genes (PbrPAL2, PbrC4H2, PbrC4H3, Pbr4CL17). Based on these findings, we
speculate that the elevated expression of upstream genes in the anthocyanin biosynthesis
pathway may furnish a substantial substrate pool for anthocyanin biosynthesis, thereby
promoting the accumulation of anthocyanins in pear fruit flesh. In conclusion, the analysis
of differential expression patterns of genes involved in pear anthocyanin biosynthesis in
this study lays a robust foundation for further research on anthocyanins in pears.

5. Conclusions

In this study, we identified 94 genes belonging to 15 gene families, associated with the
anthocyanin biosynthesis pathway in Pyrus bretschneideri. Through phylogenetic analysis,
motif analysis, and consideration of structural features, we classified 94 genes related to
anthocyanin synthesis into 8 distinct lineages. Among these genes, a total of 16 repetitive
events were identified, with 14 pairs originating from segmental duplications and 2 pairs
from tandem duplications. Our findings highlight that segmental duplication serves as the
primary driving force for the expansion of gene families related to anthocyanin biosynthesis.
Furthermore, our analysis of the promoter regions of genes related to anthocyanin synthe-
sis revealed a significant presence of light-responsive elements and hormone-responsive
elements. This suggests that changes in light stimulation and hormone levels may exert in-
fluence on anthocyanin accumulation. Through comprehensive analysis of gene expression
patterns, we have uncovered the significant role played by upstream genes in the antho-
cyanin biosynthesis pathway (PbrPAL2, PbrC4H2, PbrC4H3, Pbr4CL2, Pbr4CL17, PbrF3H5,
PbrF3H6) in the accumulation of anthocyanins in pear fruit flesh. These results collectively
provide insights into the characteristics of the 15 gene families related to anthocyanin
biosynthesis in pears, laying a solid foundation for further investigation into the molecular
mechanisms governing fruit coloration through anthocyanin biosynthesis-related genes.
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