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Abstract: GATA transcription factors are widespread in plants, exerting crucial functions in multiple
processes such as flower development, photoperiod regulation, and light signal transduction. The
GATA gene family has a key role in the regulation of medicinal plant adaptation to environmental
stress. However, since the publication of the Ginseng (Panax ginseng C.A. Meyer) genome-wide data,
there has never been an analysis of the whole GATA gene family. To understand the function of
the GATA gene family more broadly, the GATA gene family members in P. ginseng were predicted
using an in silico bioinformatics approach. A comprehensive and systematic analysis encompassing
chromosome scaffold, expression pattern, gene structure, and phylogeny was conducted. The results
showed that a total of 52 GATA gene family members were recognized in P. ginseng, distributed
across 51 scaffolds. Each member encoded a diverse number of amino acid residues, extending
from 138 to 1064. Moreover, the expression levels of PgGATA genes were significantly altered by
nitrogen (N) and phosphorus (P) stresses. The expression levels of PgGATA6, PgGATA11, PgGATA27,
PgGATA32, PgGATA37, PgGATA39, PgGATA40, and PgGATA50 exhibited significant elevation under N
deficiency, whereas PgGATA15, PgGATA18, PgGATA34, PgGATA38, PgGATA41, and PgGATA44 genes
showed substantial upregulation under P deficiency. In addition, PgGATA3, PgGATA4, PgGATA14,
PgGATA19, and PgGATA28 were substantially upregulated under both N and P deficiency. This
research establishes a theoretical foundation for the thorough examination of the functions of the
PgGATA gene family and its regulation by N and P fertilization during P. ginseng cultivation.

Keywords: gene structure; phylogeny; bioinformatics; nitrogen; phosphorus

1. Introduction

Medicinal plants have adapted to their habitats during evolution; however, they
face environmental stress conditions, such as drought, intense light, high temperature,
nutrient deficiency, diseases, and insect pests that can hinder their optimal growth and
development. Medicinal plants respond to environmental stresses through the essential
involvement of transcription factors (TFs). These TFs selectively bind to the promoter
regions of downstream genes, regulating gene expression levels and thereby influencing
various key biological processes. These processes include cell morphogenesis, environmen-
tal stress response, and signal transduction [1,2]. Recently, a wide range of TFs governing
the regulation of adaptation to drought, cold, hormone signaling, diseases, and growth
and development have been predicted from medicinal plants, for instance, bHLH [3],
YABBY [4], MYB [5], bZIP [6], and MADS-box [7].

GATA TFs, transcriptional regulatory proteins, are comprised of a downstream con-
served region and a typical type IV zinc finger DNA binding domain (CX2CX17~20CX2C).
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Specific members of this zinc finger TF class bind to the DNA sequence (A/T) GATA(A/G)
within the promoter regulatory region of genes, thereby regulating their transcription
levels [8]. Most plant GATA TFs typically feature only one zinc finger domain with
18 or 20 residues (C-X2-C-X18-C-X2-C or C-X2-C-X20-C-X2-C). However, several GATA
TF members with two zinc finger domains have also been predicted [9]. GATA TFs are
recognized as crucial regulatory proteins involved in a diverse range of biological processes.
The prediction of the first GATA TF in plants, NTL1, was achieved through the cloning of
tobacco [10]. This discovery underscores the presence of GATA TFs in higher plants and
its involvement in nitrogen (N) metabolic pathways [11]. The plant GATA TFs regulate
plant growth and development by binding to WGATAR sequences on promoters, thereby
initiating or inhibiting transcription processes [8]. They affect different biological processes,
encompassing the regulation of flower development [12], seed germination [13], nitro-
gen metabolism, glucose signaling [14], chlorophyll biosynthesis [15], cell elongation [16],
plant hormone synthesis [17,18], and stress resistance [19]. Currently, Arabidopsis thaliana
and Oryza sativa have 30 and 29 members, respectively, in the GATA gene family [8]. In
A. thaliana, AtGATA2 is involved in photomorphogenesis regulation, regulated by light and
Brassinosteroid (BR) [20]. The Cytokinin-Responsive GATA Factor1 (CGA1) and GATA,
Nitrate-inducible, Carbon-metabolism-involved (GNC) affect chlorophyll content [15].
Overexpression of the Inflorescence Meristem (ZIM) gene, which encodes a zinc finger
protein, results in the elongation of hypocotyl and leaf stalk [16]. In O. sativa, CGA1 is
involved in regulating chloroplast development and plant morphotype [21], while Neck
Leaf 1 (NL1) regulates organ development during reproductive growth [22].

Ginseng (Panax ginseng C.A. Meyer) is known to be tetraploid (2n = 4× = 48), with an
estimated genome size of approximately 3.6 Gbp [23]. Its primary active ingredients, gin-
senosides, exhibit notable properties in controlling inflammation during immune responses,
regulating metabolism, and influencing tumor control. In addition, P. ginseng serves as a
medicinal substance utilized for both medicine and culinary purposes. It is also utilized as
an ingredient in processed Chinese medicinal products or pharmaceutical raw materials. It
is extensively utilized in health-promoting food products, serving as a beverage, flavoring
agent, spice, cosmetics, and various other processed products [24]. Thus, the key to the
development of the ginseng industry in production practices lies in ensuring high-quality
ginseng resources through scientific cultivation control. The GATA gene family has a crucial
role in the regulation of plant development and growth and adaptation to environmental
stress [15,25,26]. Hence, the GATA gene family emerges as a potential target for regulating
the “quality” of P. ginseng. However, the properties and functions of the GATA TFs in
P. ginseng remain unexplored.

In this study, 52 candidate PgGATA genes were predicted through the bioinformatic
analysis of the P. ginseng transcriptome obtained through RNA sequencing. A compre-
hensive genome-wide analysis was conducted on P. ginseng GATA genes, encompassing
their chromosomal distribution, gene structures, phylogeny, and the presence of conserved
motifs. Finally, this study acquired expression profiles of GATA genes in P. ginseng after
nitrogen (N) and phosphorus (P) treatments, assessing their regulation under different
fertilization schemes.

2. Methodology
2.1. Plant Materials, Cultivation and Stress Treatments

P. ginseng seeds (P. ginseng seeds were collected and preserved in the P. ginseng planting
base of Baishan City, Jilin Province, China) were germinated on wet Whatman filter paper
in a rectangular culture tray (34 × 25 cm) in the darkness for 3 days at 25 ◦C. Germinated
seeds were transferred to a hydroponic tank supplemented with pure water for 3 days at
70% relative humidity and 22–25 ◦C ambient temperature. The seedlings were then cul-
tured for 5 days in Hoagland’s solution [27]. Subsequently, 40 uniform seedlings were
selected and transplanted into each hydroponic tank, and the nutrient solution in the
hydroponic tank was composed of 5 mmol L−1 Ca(NO3)2·4H2O, 5 mmol L−1 KNO3,
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1 mmol L−1 NH4NO3, 2.5 mmol L−1 MgSO4 ·7H2O, 2 mmol L−1 KH2PO4, 0.4 mmol L−1

Fe-Na-EDTA, and 5 mL trace elements [27]. The pH of the solution was adjusted to 5.8.
For the N and P treatments, the N content was set to 0 mmol L−1 for the N deficiency
stress treatment, and the P content was set to 0 mmol L−1 for the P stress treatment. The
corresponding concentrations of KH2PO4, Ca(NO3)2, KNO3, and NH4NO3 were adjusted
to 0%, respectively. CaCl2 and KCl were separately supplied to complement Ca2+ and K+

concentrations under N and P deficient conditions. At the same time, the remaining compo-
nents of Hoagland’s solution remained unchanged [28]. The nutrient solution was replaced
every 2 days. After 72 h, 20 seedlings were randomly selected from each hydroponic tank,
and their root organs were collected, rapidly frozen in liquid nitrogen, and preserved at
−80 ◦C for subsequent analyses. Each treatment had three biological replicates.

2.2. Identifying PgGATA genes in P. ginseng

The reference GATA gene and protein sequences from A. thaliana and O. sativa were re-
trieved from the Ensemble Plants database (http://plants.ensembl.org. accessed on 22 July
2023) [29], and P. ginseng GATA gene and protein sequences were based on transcriptome
sequencing data (NCBI accession number PRJNA1014183). A total of 59 reference GATA
gene and protein sequences were used for the analysis, with 30 from A. thaliana and 29 from
O. sativa. Then, the HMMER 3.0 software was utilized for the construction of a Hidden
Markov Model (HMM) based on the obtained sequences of the known GATA protein fam-
ily [30]. This model was used to search for all encoded protein sequences of P. ginseng and
identify all potential GATA family sequences in P. ginseng. Using blastp (version: ncbi-blast-
v2.10.1+) [31], the potential P. ginseng GATA family sequences were obtained after compari-
son with a reference GATA sequence, employing an e-value threshold of 1 × 10−5. For the
acquired candidate sequences, domain annotation for the target sequences was conducted
utilizing the Pfam A database (version: v33.1) [32]. The sequences containing the PF00320
domain were then determined as the final GATA sequences, resulting in the prediction
of 52 sequences. Moreover, the ExPASy tool (http://www.expasy.ch/tools/pi_tool.html.
accessed on 22 July 2023) was utilized to calculate the amino acid number, isoelectric point
(pI), and molecular weight (MW) of each GATA protein [33].

2.3. Phylogenetic Analysis of PgGATAs

The neighbor-joining (NJ) tree was developed using the sequences of the GATA protein
families from P. ginseng, A. thaliana, and O. sativa. The MEGA10 software was used to
construct the NJ tree [34]. The following parameters were set for tree construction: a Poisson
model was employed, a cutoff of 50% was established, and the bootstrap repetitions were
set to 1000. The bootstrap value is a self-expanding indicator used to validate the calculated
branch confidence of the evolutionary tree. The evolution tree was annotated utilizing the
software iTOL v6 (https://itol.embl.de/. accessed on 22 July 2023) [35].

2.4. Chromosomal Scaffold and Gene Duplications

The MG2C tool (http://mg2c.iask.in/mg2c_v2.1/. accessed on 22 July 2023) was em-
ployed to generate the physical map illustrating the localization of the GATA gene family
members on P. ginseng chromosomes, utilizing their obtained genomic position. The MC-
ScanX software was utilized to analyze the syntenic relationships of the orthologous GATA
genes between P. ginseng and other species, such as A. thaliana, O. sativa, and P. ginseng [36].
Subsequently, the KaKs_Calculator 2.0 was employed to assess the synonymous (Ks) and
non-synonymous (Ka) substitution rates for every duplicated PgGATA gene. The formula
T = Ks/2R was applied to assess divergence time, with R representing 1.5 × W10–8 Ks per
site per year [37].

http://plants.ensembl.org
http://www.expasy.ch/tools/pi_tool.html
https://itol.embl.de/
http://mg2c.iask.in/mg2c_v2.1/
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2.5. Gene Structures and Protein Motif Analyses

The Gene Structure Display Server (GSDS) tool (http://gsds.cbi.pku.edu.cn/. accessed
on 23 July 2023) was utilized to determine the exon-intron organization of P. ginseng GATA
genes [38]. The conserved motifs within the P. ginseng GATA family proteins were analyzed
with the MEME software (version v5.0.5, http://meme-suite.org/. accessed on 23 July
2023) [39]. The search parameter for motif numbers was set to 15. The exon-intron structure
and conserved motifs of PgGATA, derived from the transcriptome sequencing data, were
analyzed using TBtools and the GFF3 database [40].

2.6. Cis-Elements in the Promoter Regions of PgGATA Genes

The promoter regulatory sequence was defined as the upstream 2000 bp region of
every single gene. The PlantCARE software (version 2000, http://bioinformatics.psb.
ugent.be/webtools/plantcare/html/. accessed on 23 July 2023) was utilized to analyze
cis-elements within the promoter region [41]. Visual analysis was performed utilizing the
TBtools software (version 2.037) [40,42].

2.7. Gene Expression Analysis

The subcellular localization of PgGATA proteins was analyzed by the WolfPsort tool
(https://wolfpsort.hgc.jp/. accessed on 23 July 2023). Hierarchical clustering analysis
was executed based on gene expression patterns to identify similarities and clustering in
gene expression profiles. The gene expression values were quantified using the transcript
per kilobase of exon per million reads mapped (TPM) values. To identify the GATA gene
expression patterns in each tissue, the average expression level of three biological replicates
was calculated. The data underwent normalization based on the expression level in roots.
The genes with log2 ratio ≤ −0.5 and log2 ratio ≥ 0.5 were classified as differentially
expressed genes (DEGs). A heatmap, depicting the expression pattern profiles on a log2
(TPM+1) and log2fold change scale, was generated using TBtools [40].

3. Results
3.1. Identifying PgGATAs in P. ginseng

A total of 52 GATA gene family members, sequentially named PgGATA1 to PgGATA52,
were recognized in P. ginseng. Detailed information regarding the proteins and genes is pro-
vided in Supplemental Table S1. Table 1 presents the gene identifier in the genome database,
chromosomal scaffold, and some basic genetic properties. For example, the amino acid (aa)
length of the 52 PgGATA proteins ranged from 138 to 1064. PgGATA25 was recognized
as the smallest protein, comprising 138 aa, while the largest was PgGATA40, containing
1064 aa. The isoelectric points (pI) ranged between 4.96 and 9.98, and the molecular weight
(MW) varied from 15.77091 to 117.47788 kDa, with PgGATA42 having the lowest and
PgGATA49 having the highest pIs, respectively. All PgGATA proteins were predicted to
contain a GATA domain, and each had a single transcript. Additional analyses revealed
that the PgGATA proteins lack transmembrane regions (TMRs), except for PgGATA17 and
PgGATA28, which were predicted to possess 1 TMR each (Table 1 and Figure S1).

Additionally, the subcellular localization of the majority of PgGATA proteins was
predicted to be in the nucleus. However, PgGATA2 and PgGATA30 were predicted to be
localized in the chloroplasts, PgGATA28 and PgGATA37 in the plasma membrane, and
PgGATA17 in the vacuole membrane. The physical mapping of PgGATA genes to the chro-
mosomes was conducted as per the genome data (Figure 1). These 52 PgGATAs were ran-
domly distributed across 51 scaffolds. Only PgGATA49/50 was located on Pg_scaffold8143,
and its proximity to Pg_scaffold8143 suggests that these two genes form a pair of tandemly
duplicated genes.

http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://wolfpsort.hgc.jp/
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Table 1. Detailed information on the GATA genes in P. ginseng.

Gene
Name Gene ID Pfam ID Chromosomes

Protein Position of
GATA Domain

Amino
Acids

MW
(kDa) pI From To

PgGATA1 Pg_S0002.19 PF00320.28 Pg_scaffold0002:1288028-
1295063 555 60.85929 7.86 1 35

PgGATA2 Pg_S0151.6 PF00320.28 Pg_scaffold0151:654526-
655644 297 32.88809 8.61 1 35

PgGATA3 Pg_S0247.64 PF00320.28 Pg_scaffold0247:1040767-
1046648 393 44.42883 8.93 1 35

PgGATA4 Pg_S0370.2 PF00320.28 Pg_scaffold0370:163245-
164909 323 35.79844 5.95 1 34

PgGATA5 Pg_S0399.28 PF00320.28 Pg_scaffold0399:340107-
347611 552 61.40093 7.91 1 35

PgGATA6 Pg_S0401.2 PF00320.28 Pg_scaffold0401:29144-
30122 255 28.86266 6.45 1 34

PgGATA7 Pg_S0422.4 PF00320.28 Pg_scaffold0422:1034667-
1051922 373 40.82508 5.67 1 35

PgGATA8 Pg_S0452.1 PF00320.28 Pg_scaffold0452:329642-
343566 372 40.66498 5.52 1 35

PgGATA9 Pg_S0524.1 PF00320.28 Pg_scaffold0524:33560-
42945 257 28.11685 6.17 1 33

PgGATA10 Pg_S0724.42 PF00320.28 Pg_scaffold0724:481073-
482279 325 36.24711 6.01 1 34

PgGATA11 Pg_S0743.16 PF00320.28 Pg_scaffold0743:662369-
664059 342 38.09921 5.9 1 34

PgGATA12 Pg_S0747.56 PF00320.28 Pg_scaffold0747:329359-
340222 328 35.28915 5.46 1 35

PgGATA13 Pg_S0833.16 PF00320.28 Pg_scaffold0833:332798-
335429 296 33.44801 8.9 1 35

PgGATA14 Pg_S0901.25 PF00320.28 Pg_scaffold0901:668023-
669233 326 36.11471 5.35 1 34

PgGATA15 Pg_S0992.10 PF00320.28 Pg_scaffold0992:111377-
112445 329 36.29037 5.58 1 34

PgGATA16 Pg_S1105.5 PF00320.28 Pg_scaffold1105:191951-
193930 347 38.21527 6.46 1 34

PgGATA17 Pg_S1135.23 PF00320.28 Pg_scaffold1135:457378-
476922 906 10.274274 8.83 1 35

PgGATA18 Pg_S1255.7 PF00320.28 Pg_scaffold1255:388046-
396740 615 68.22211 8.62 1 35

PgGATA19 Pg_S1398.1 PF00320.28 Pg_scaffold1398:8780-
10376 306 34.09219 9.35 1 34

PgGATA20 Pg_S1637.11 PF00320.28 Pg_scaffold1637:158676-
159794 342 38.15677 5.42 1 34

PgGATA21 Pg_S1715.1 PF00320.28 Pg_scaffold1715:48429-
49542 331 36.3334 6.72 1 35

PgGATA22 Pg_S1758.8 PF00320.28 Pg_scaffold1758:102416-
103992 307 34.26337 9.45 1 34

PgGATA23 Pg_S1973.5 PF00320.28 Pg_scaffold1973:85000-
86103 329 36.08194 5.13 1 35

PgGATA24 Pg_S2014.30 PF00320.28 Pg_scaffold2014:381887-
382955 329 36.30244 5.74 1 34

PgGATA25 Pg_S2238.19 PF00320.28 Pg_scaffold2238:317522-
317938 138 15.77091 9.25 1 35

PgGATA26 Pg_S2819.19 PF00320.28 Pg_scaffold2819:309794-
311405 359 39.95244 6.08 1 34

PgGATA27 Pg_S2827.1 PF00320.28 Pg_scaffold2827:98960-
100941 347 38.11916 6.71 1 34

PgGATA28 Pg_S2844.7 PF00320.28 Pg_scaffold2844:230542-
246053 798 90.19806 8.66 1 35

PgGATA29 Pg_S3015.2 PF00320.28 Pg_scaffold3015:102177-
104654 334 36.69519 6.56 1 34

PgGATA30 Pg_S3615.15 PF00320.28 Pg_scaffold3615:147233-
153273 327 35.2272 5.38 1 35

PgGATA31 Pg_S3639.1 PF00320.28 Pg_scaffold3639:5840-8320 336 36.80338 6.71 1 34
PgGATA32 Pg_S3645.1 PF00320.28 Pg_scaffold3645:5740-6522 190 21.18405 9.27 1 34

PgGATA33 Pg_S3789.4 PF00320.28 Pg_scaffold3789:234760-
235726 255 28.87458 6.5 1 34
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Table 1. Cont.

Gene
Name Gene ID Pfam ID Chromosomes

Protein Position of
GATA Domain

Amino
Acids

MW
(kDa) pI From To

PgGATA34 Pg_S3843.20 PF00320.28 Pg_scaffold3843:179679-
180972 160 17.32369 9.86 1 35

PgGATA35 Pg_S4030.1 PF00320.28 Pg_scaffold4030:8653-9897 310 34.27078 5.33 1 34

PgGATA36 Pg_S4129.5 PF00320.28 Pg_scaffold4129:153794-
154568 188 21.09301 9.45 1 34

PgGATA37 Pg_S4286.18 PF00320.28 Pg_scaffold4286:165564-
175546 648 71.9843 6 1 35

PgGATA38 Pg_S4390.1 PF00320.28 Pg_scaffold4390:25504-
28673 203 21.98218 9.41 1 35

PgGATA39 Pg_S4510.13 PF00320.28 Pg_scaffold4510:75064-
76371 162 17.51885 9.71 1 35

PgGATA40 Pg_S4710.5 PF00320.28 Pg_scaffold4710:72488-
98579 1064 117.47788 6.42 1 35

PgGATA41 Pg_S5092.5 PF00320.28 Pg_scaffold5092:121295-
140056 427 47.29692 7.51 1 34

PgGATA42 Pg_S5334.7 PF00320.28 Pg_scaffold5334:138662-
139775 332 36.51437 4.96 1 35

PgGATA43 Pg_S5340.2 PF00320.28 Pg_scaffold5340:76449-
82649 546 60.08213 6.94 1 35

PgGATA44 Pg_S5887.5 PF00320.28 Pg_scaffold5887:88824-
90214 382 41.96394 6.6 1 35

PgGATA45 Pg_S5997.3 PF00320.28 Pg_scaffold5997:103747-
105336 255 28.66512 6.95 1 34

PgGATA46 Pg_S6363.2 PF00320.28 Pg_scaffold6363:10458-
12732 204 22.31168 9.93 1 35

PgGATA47 Pg_S6376.1 PF00320.28 Pg_scaffold6376:16784-
18465 262 29.36977 6.95 1 34

PgGATA48 Pg_S8057.2 PF00320.28 Pg_scaffold8057:31367-
32128 253 28.25107 9.19 1 35

PgGATA49 Pg_S8143.1 PF00320.28 Pg_scaffold8143:10176-
10763 195 21.86161 9.98 1 34

PgGATA50 Pg_S8143.2 PF00320.28 Pg_scaffold8143:14520-
15815 318 35.28189 5.34 1 34

PgGATA51 Pg_S8173.3 PF00320.28 Pg_scaffold8173:21446-
23055 358 39.67611 6.08 1 34

PgGATA52 Pg_S8212.2 PF00320.28 Pg_scaffold8212:3522-6309 241 26.38869 9.91 1 35

3.2. Gene Classification and Structural Analysis of PgGATAs

The exon-intron organization of all predicted PgGATA genes was analyzed to enhance
understanding of the gene structure and evolution of the PgGATA family in P. ginseng. The
findings demonstrated that various PgGATA genes exhibited significant differences in their
exon-intron structures, ranging from 1 to 28 exons (Figure 2). Among these, the PgGATA25,
PgGATA48, and PgGATA49 genes contained only one exon.

Multiple alignments of the amino acid sequences of PgGATA proteins were conducted
to identify conserved protein motifs (Figure 3). In general, 15 conserved motifs were
predicted in PgGATA proteins. Comprehensive information regarding the conserved
motifs is available in Table S2. In total, all PgGATAs contain motif 1, while 30 out of
52 PgGATAs contain motif 2. Moreover, 21 PgGATAs contain motif 3, 20 contain motif
4, 7 contain motif 5, 24 contain motif 6, 6 contain motif 7, and 14 contain motif 8. Addition-
ally, 10 PgGATAs contain motif 9, 6 contain motif 10, 4 contain motif 11, 4 contain motif
12, 4 contain motif 13, 4 contain motif 14, and 4 contain motif 15. Notably, motifs 7 and
10 were grouped together, and motifs 11 to 15 were grouped together. Furthermore, the
GATA domain analysis depicted that its typical amino acid sites displayed high conserva-
tion (LCNACG residues) (Figure S2).
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In order to investigate the potential functions of the PgGATA genes, Plant-CARE
was utilized to recognize the cis-elements in the gene promoters. Various cis-elements
were predicted, such as ABRE, Box 4, ERE, CAAT-box, G-box, MYB, MYC, STRE, and
TATA-box. These elements were involved in ABA responses [43], anaerobic induction [44],
auxin responses [45], circadian control [46], defense and stress responses [47], drought
responses [48], flavonoid biosynthetic genes regulation [49], light responses [50], low-
temperature responses [51], jasmonic acid (JA) responses [52], meristem expression [53],
root-specific expression [54], salicylic acid (SA) responses [55], seed-specific regulation [56],
transcription initiation [57], and zein metabolism regulation [58] (Figures 4 and S3). In
general, TATA-box and CAAT-box were the predominant cis-elements in the 52 PgGATA
genes. Overall, the analysis of cis-elements suggested that a large portion of PgGATA genes
are likely to be regulated at the transcriptional level.
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3.3. Phylogenetic Analysis of the PgGATA Proteins

To identify the phylogenetic relationships between the GATA proteins, an evolution-
ary tree was constructed using the alignment of 52 P. ginseng PgGATAs, 30 A. thaliana
AtGATAs, and 29 O. sativa OsGATAs (Figure 5). Based on previous analyses, the 30 At-
GATA proteins and 29 OsGATA proteins could be categorized into four clusters and six
clusters, respectively [8]. Similarly, the P. ginseng GATA proteins were classified into four
groups. Groups A, B, C, and D consisted of 31, 11, 6, and 4 PgGATA proteins, respectively.
Among them, Group A contained the largest number of AtGATA, OsGATA, and PgGATA
proteins, with 14, 12, and 31 of these proteins, respectively. Group D contained the lowest
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number of AtGATA, OsGATA, and PgGATA proteins, with two, one, and four of these
proteins, respectively.
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Figure 5. Phylogenetic tree of full-length PgGATA, AtGATA, and OsGATA proteins. The different-
colored arcs indicate subfamilies of the GATA proteins. The tree was constructed using identified
52 PgGATAs (asterisks) in P. ginseng, 30 AtGATAs (triangle), and 29 OsGATAs (circle) from A. thaliana
and O. sativa, respectively. The unrooted neighbor-joining phylogenetic tree was constructed us-
ing MEGA10 with full-length amino acid sequences, and the bootstrap test replicate was set to
1000 times. The green triangle represents A. thaliana, the blue circle represents O. sativa, and the red
star represents P. ginseng.

3.4. Collinearity and Ka/Ks Analyses of the PgGATA Family Members

Gene duplication is a fundamental process in the evolution of gene families, playing
a pivotal function in species diversity and differentiation. A collinearity analysis was
conducted among the 52 predicted PgGATAs, revealing collinearity relationships between
certain PgGATA genes, including PgGATA4 and PgGATA11, PgGATA12 and PgGATA30,
PgGATA13 and PgGATA3, and PgGATA1 and PgGATA18 (Figure 6). This indicates that gene
duplication facilitated the generation of specific PgGATA genes, with partial duplication
events emerging as a primary driver in the evolution of the PgGATA gene family. Further,
the collinearity between PgGATA gene pairs in A. thaliana, P. ginseng, and O. sativa was as-
sessed. The findings showed that one in six PgGATA genes depicted a syntenic relationship
with OsGATA and AtGATA genes, respectively (Figure 7).
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Ka/Ks represents the ratio of Ka to Ks between two protein-coding genes. If the Ka/Ks
value is equal to one, the gene has mainly undergone neutral selection after duplication.
If the Ka/Ks value is greater than one, the gene has mainly undergone positive selection
after duplication. If the Ka/Ks value is less than one, it indicates that the gene has mainly
undergone purifying selection after duplication. The majority of the duplicated PgGATA
gene pairs exhibited Ka/Ks ratios less than 1, while PgGATA11-14 showed ratios exceeding
one. The findings revealed that the PgGATA family likely underwent strong purifying
selection during evolution (Tables 2 and S3).

3.5. Gene Expression Analysis under N and P Deficiency

Using the P. ginseng transcriptome data, the expression levels of PgGATA genes were as-
sessed under N and P deficiency. Overall, the expression levels of the PgGATA genes exhib-
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ited substantial changes under N and P stresses (Figure 8). Multiple PgGATA genes, specifi-
cally PgGATA6, PgGATA11, PgGATA27, PgGATA32, PgGATA37, PgGATA39, PgGATA40, and
PgGATA50, exhibited upregulation under N deficiency. Meanwhile, some PgGATA genes,
including PgGATA15, PgGATA18, PgGATA34, PgGATA38, PgGATA41, and PgGATA44, ex-
hibited a significant increase in expression under P deficiency. In addition, several genes,
such as PgGATA3, PgGATA4, PgGATA14, PgGATA19, and PgGATA28, were upregulated
significantly under both N and P deficiency conditions.

Table 2. Characteristics of PgGATA11-14 genes in P. ginseng.

Sequence Method Ka Ks Ka/Ks p-Value (Fisher) Length

PgGATA1-PgGATA11 MA 0.921489 1.275 1.18348 1.49 × 10−12 1026
PgGATA1-PgGATA12 MA 0.89025 1.40254 1.07002 7.05 × 10−24 984
PgGATA1-PgGATA13 MA 0.889125 1.48231 1.05362 4.50 × 10−27 888
PgGATA1-PgGATA14 MA 0.903851 1.34656 1.02993 2.90 × 10−16 978
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4. Discussion

Among the TF families, MYB, ERF, bHLH, and WRKY are the most commonly studied.
By increasing or decreasing the expression of related enzyme genes, these TFs partic-
ipate in multiple biological processes, including environmental stress responses, plant
development and growth, and saponin synthesis [59–62]. The GATA family has been ex-
tensively characterized in several plant species, encompassing A. thaliana [8], O. sativa [8],
Zea mays L. [63], Setaria italica [64], Triticum aestivum L. [65], and Arachis hypogaea L. [66].
However, a genome-wide analysis of the GATA family genes in P. ginseng has not yet been
conducted previously. This research predicted 52 PgGATA gene family members in the
P. ginseng genome, annotated as PgGATA1 to PgGATA52 based on their chromosome scaffold.
PgGATAs are categorized into four subfamilies, showing distinct variations in expression
patterns and genetic structures. This study offers crucial insights for the forthcoming GATA
gene functional characterization. It contributes to improving the quality properties and
stress tolerance of P. ginseng through gene expression regulation.

PgGATA proteins were predicted to localize in the chloroplasts, nucleus, plasma
membrane, and vacuole membrane. These observations align with previous research on
GATA in potatoes [67], suggesting that PgGATA proteins may have widespread localiza-
tion and potentially diverse functions. However, the subcellular localization of most of
the PgGATA proteins was predicted in the nucleus. Therefore, PgGATAs probably act
primarily as TFs to regulate transcription. The P. ginseng PgGATA gene family encodes
proteins of 138–1064 amino acids. Their protein relative MW ranged between 15.77091 and
117.47788 kDa, and the theoretical pI fell within the range of 4.96–9.98. The gene coding
sequence length, the number of introns and exons, the number and the type of conserved
motifs, the transmembrane domains, and the signal peptides were significantly conserved,
which may be the reason why the GATAs of P. ginseng exhibited a high degree of con-
servation. In this study, the observation through physical mapping revealed that the
52 PgGATA gene family members were evenly distributed on 51 scaffolds, with multiple
pairs exhibiting gene collinearity, possibly resulting from gene duplications. Gene duplica-
tion events can result in the formation of numerous duplicate genes in the plant genome.
The existence of duplicate genes can facilitate the evolution of new gene functions and
increase the adaptive ability of plants toward environmental changes [68].

Phylogenetic analysis indicated that the GATA proteins from P. ginseng, A. thaliana,
and O. sativa were classified into A, B, C, and D groups. This classification is consistent with
the grouping of GATA proteins in Setaria italica [64], A. hypogaea L. [66], Populus alba [69],
Sorghum bicolor [70], Zea mays L. [71], and Fagopyrum tataricum [72]. Specifically, sub-
group A had the highest number of GATAs, and members within the same subgroups
exhibited higher sequence similarity. The conserved domain analysis depicted that the
motif 11–15 domains were exclusively present in PgGATA1, PgGATA3, PgGATA5, and
PgGATA18. The gene structure analysis revealed that introns ranged from 1 to 27, while the
exons ranged from 1 to 28. These obtained exons and introns were significantly higher than
those observed in GATA proteins in other plants, such as S. italica [64], A. hypogaea L. [66],
Populus alba [69], and S. bicolor [70]. This suggests that GATA genes may undergo gain
or loss of exons or introns throughout the process of chromosomal rearrangements in
different species.

GATA TFs are commonly found in plants. They were critically involved in the regula-
tion of various aspects of plant physiology. These functions include the control of flower de-
velopment, light signal transduction, leaf extension and growth, plant flowering time, and
photoperiod, all of which are tightly linked to plant growth and development [8,21,25,73,74].
The first GATA factor discovered possessed light and circadian clock-related cis-elements
in its promoter [74]. Additionally, the involvement of A. thaliana GATA factors AtGATA1,
AtGATA2, and AtGATA4 have been reported in light regulation of gene expression and pho-
tomorphogenesis [20,74]. Certainly, the existence of specific cis-elements in the promoter
region of the GATA TFs can provide valuable insights into predicting their functions. The
analysis of the promoters in the PgGATA family members revealed the presence of many im-
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portant regulatory cis-elements involved in light responsiveness, circadian control, palisade
mesophyll cell differentiation, phytohormone responsiveness, and root-specific expression.
These elements are intricately linked to regulating plant growth. Thus, PgGATAs may regu-
late plant growth through these cis-elements, affecting their gene expression and thereby
precisely regulating downstream gene expression. Recent research has demonstrated that
the GATA transcription factor AreA plays a dual role in regulating ganoderic acid (GA)
biosynthesis in Ganoderma lucidum. AreA acts as a transcription factor by directly binding
to the promoter of the fps gene, which encodes farnesyl-diphosphate synthase involved in
GA biosynthesis, leading to the activation of gene expression. Additionally, AreA promotes
the transcription of the N metabolism gene (NR), enhancing the uptake and utilization
of N sources, resulting in the generation of nitric oxide (NO) that negatively impacts GA
biosynthesis [75]. The fps gene is crucial in the biosynthetic pathway of ginsenosides in
ginseng. Consequently, variations in GATA expression levels in ginseng may influence
the expression of triterpenoid biosynthetic genes like mevalonate-5-pyrophosphate decar-
boxylase (MVD), farnesyl pyrophosphate synthase (FPS), squalene synthase (SOS), and
lanosterol synthase (LS) under N and P deficiency conditions. In this context, cis-elements
play a pivotal role, particularly the unique microtubule-binding domain and conserved
zinc finger DNA binding domain of the AreA coding gene, likely binding specifically to
the sequence (ATC)GATA(AG) in its C-terminal region [75].

N and P are vital nutrients essential for plant growth and development. Inadequate
levels of N and P in soil serve as primary limiting factors for plant growth, impacting both
crop yield and quality. When cultivating medicinal plants, emphasis should be placed
on optimizing both yield and quality [76,77]. Hence, effective management of N and P
nutrients is critical in ginseng cultivation. Phosphorus plays a crucial role in enhancing the
growth of ginseng fibrous roots and boosting root biomass [77]. Elevated levels of nitrogen
may lead to direct effects from the nutrient itself or indirect alterations in soil and plant
characteristics, potentially influencing soil fungal communities associated with ginseng and
consequently affecting plant growth [78,79]. A recent study observed that the synergistic
effects of moderate N and potassium (K) levels in low P soil significantly promoted ginseng
root development, while the application of N and P fertilizers markedly increased both gin-
seng yield and ginsenoside contents [77]. The involvement of GATA TFs in the regulation
of N metabolism in plants is evident. Prior research has demonstrated the involvement of
certain GATA TFs in nitrate metabolism [14,15]. For instance, nitrate triggers the expression
of AtCGA1 and AtGNC genes. These genes, in turn, have been predicted as regulators of N
assimilation gene expression, including glutamate synthase (GLU1/Fd-GOGAT), a key fac-
tor in the regulation of N metabolism in green tissues of plants [15,79]. Under N deficiency
stress, the chlorophyll content of A. thaliana overexpressing the Populus alba PdGATA19
was 26.12% higher than that of the wild type. PdGNC overexpression also increased the
photosynthetic capacity and nitrate utilization efficiency in transgenic A. thaliana at low N
levels [80]. The DNA binding domain of GATA TFs consists of an IV-type zinc finger motif
(C-X2-C-X17-20-C-X2-C) succeeded by a basic region [81]. Research has demonstrated that
this zinc finger motif can be significantly upregulated under P deficiency conditions [82].
However, there is a lack of direct evidence elucidating the specific regulatory function of
GATA TFs in relation to phosphorus. Consequently, the regulatory capacity of GATA TFs
in phosphorus signaling remains an area with substantial research prospects.

In this study, transcriptome analysis of P. ginseng under N and P deficiency stresses
depicted significant alterations in the expression levels of PgGATA genes. However, among
them, some genes did not exhibit upregulation under N induction. It is important to
emphasize that the absence of upregulation does not preclude their involvement in the
regulation of N metabolism, given the intricate interconnection of nutrient elements within
plants. Research indicates a synergistic regulatory interplay between N and P, aimed at
achieving a harmonized balance of diverse nutrients in plants [83]. For instance, in O. sativa,
the nitrogen sensor NRT1.1B has been observed to interact with the phosphorus sensor
SPX4, facilitating the degradation of the SPX4 protein. This degradation releases the nitrate
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signal core transcription factor NLP3 into the nucleus, thereby activating downstream
gene expression and initiating the nitrate response. SPX4, serving as a phosphorus sensor,
modulates the nucleocytoplasmic translocation of the phosphorus signal core transcription
factor PHR2 based on cytoplasmic phosphorus concentrations. The nitrate-triggered degra-
dation of SPX4 protein mediated by NRT1.1B leads to the nuclear translocation of PHR2,
subsequently inducing the expression of genes associated with phosphorus deficiency
responses. Consequently, nitrate, functioning as a signaling molecule, orchestrates the
synergistic activation of genes responsive to nitrate and phosphorus deficiency via the
NRT1.1B-SPX4-NBIP1 pathway, thereby ensuring the equilibrium of nitrogen and phospho-
rus, two pivotal plant nutrients [83,84]. In this study, we found that some genes, namely
PgGATA2, PgGATA4, PgGATA14, and PgGATA33 from group A, exhibited heightened ex-
pression levels exclusively under concurrent N and P deficiency conditions. Analogous to
the transcription factors NLP3 and PHR2, these PgGATA genes may be jointly activated
in response to simultaneous N and P deficiency scenarios to regulate the nutritional equi-
librium between N and P. Although further experimental validation is warranted, these
findings suggest a substantial role for these genes in modulating the cross-talk between N
and P signaling and assimilation under conditions of N and P deficiency.

In brief, this research conducted a comprehensive characterization of the P. ginseng
GATA family members concerning their annotation, chromosome location, expression
profiles, gene structure, and phylogeny. The members mainly responsive to N and P
stresses were screened out. These findings establish a theoretical foundation for subsequent
studies of the function of the PgGATA gene family.

5. Conclusions

This research explored the biological functions of the P. ginseng GATA gene family
in development, growth, and stress. Moreover, bioinformatics was utilized to identify
52 PgGATA gene family members in the P. ginseng genome. A thorough and systematic
examination was conducted from the aspects of chromosome scaffold, expression analysis,
gene structure, and phylogeny. The findings demonstrated that the 52 PgGATA gene
family members were distributed on 51 scaffolds, with the number of amino acid residues
encoded by each member varying from 138 to 1064. The protein MW ranged between
15.77091 and 117.47788 kDa, with the majority of proteins located in the nucleus, followed
by the chloroplast, plasma membrane, and vacuole membrane. The exon-intron structures
of various PgGATA genes exhibited noticeable variations, encompassing a range of 1 to
28 exons. Under N and P deficiency conditions, the expression levels of PgGATA genes
exhibited significant alterations. The expressions of PgGATA6, PgGATA11, PgGATA27,
PgGATA32, PgGATA37, PgGATA39, PgGATA40, and PgGATA50 were upregulated under N
deficiency, while PgGATA15, PgGATA18, PgGATA34, PgGATA38, PgGATA41, and PgGATA44
genes exhibited upregulation under P deficiency. Notably, PgGATA3, PgGATA4, PgGATA14,
PgGATA19, and PgGATA28 were upregulated under both N and P deficiency. These findings
establish a theoretical foundation for a thorough analysis of the contributions of the PgGATA
gene family.
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