
Citation: Česnik, U.; Martelanc, M.;

Øvsthus, I.; Radovanović Vukajlović,
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Abstract: Saccharomyces cerevisiae is commonly used for the production of alcoholic beverages, in-
cluding cider. In this study, we examined indigenous S. cerevisiae and S. uvarum strains, both species
commonly found in cider from Hardanger (Norway), for their strain-specific abilities to produce
volatile and non-volatile compounds. Small-scale fermentation of apple juice with 20 Saccharomyces
strains was performed to evaluate their aroma-producing potential as a function of amino acids (AAs)
and other physicochemical parameters under the same experimental conditions. After fermentation,
sugars, organic acids, AAs, and biogenic amines (BAs) were quantified using the HPLC–UV/RI
system. A new analytical method was developed for the simultaneous determination of nineteen AAs
and four BAs in a single run using HPLC–UV with prior sample derivatization. Volatile compounds
were determined using HS-SPME-GC-MS. Based on 54 parameters and after the removal of outliers,
the nineteen strains were classified into four groups. In addition, we used PLS regression to establish
a relationship between aroma compounds and predictor variables (AAs, BAs, organic acids, sugars,
hydrogen sulfide (H2S) production, CO2 release) of all 19 strains tested. The results of the VIP show
that the main predictor variables affecting the aroma compounds produced by the selected yeasts are
16, belonging mainly to AAs.

Keywords: Saccharomyces; Hardanger; characterization; fermentation; cider; non-volatile compounds;
volatile organic compounds; partial least squares (PLS) regression

1. Introduction

Norwegian cider is becoming more and more popular in Norway in recent years
among producers and consumers. Especially in the Southwest part of Norway, in the
Hardanger region, there is a long tradition of producing ciders. Available data show that
traditional cider from Hardanger is very different from French, English, or Spanish ciders
in terms of sensory characteristics, apple cultivars, and fermentation process. A recent
comparison of the aromatic component composition of different French and Norwegian
ciders, including ciders from Hardanger, has confirmed that Norwegian ciders contain more
aromas, which are behind fruity and fresh sensory sensations [1]. Cider from Hardanger is
mostly made from desert apples, which have different chemical compositions in comparison
to cider apples [2,3]. Ciders in Hardanger were traditionally produced by employing long
spontaneous fermentation, even over winter, at low temperatures, often with the addition
of sucrose and nothing else to increase the alcoholic strength [2]. Nowadays, spontaneous
fermentation is more and more replaced by inoculated commercial yeasts. In our previous
study of yeast ecology from ciders produced in the Hardanger area, we had seen that
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in ciders, apart from the presence of non-Saccharomyces species at the early stages of
fermentation, the most predominant species isolated during fermentation were S. cerevisiae
and S. uvarum [4].

S. uvarum is a cryotolerant yeast and belongs to the Saccharomyces sensu stricto clade,
being the furthest relative from S. cerevisiae, and is now recognized as a pure species, distinct
from S. bayanus, which is a hybrid of S. uvarum and S. eubayanus [5,6]. Due to its problematic
taxonomy and incorrect identification, it is difficult to trace it in the scientific literature
and obtain data about its origin, diversity, and potential usage in cider and winemaking.
S. uvarum is not only related to cider fermentations, but it is also known in white wine
production from colder grape-growing regions [7].

S. uvarum in grape juice, in comparison to S. cerevisiae, produces less acetic acid,
acetaldehyde, and ethanol but more glycerol, succinic acid, and malic acid [7]. It is also
capable of producing substantially more 2-phenyl ethanol (rose note), isoamyl alcohol
(whisky), iso-butanol (solvent, bitter), and ethyl acetate (pineapple) [8,9]. There are also
reports about the use of S. uvarum in cider production [10,11]. The phenotypic differences
between S. uvarum and S. cerevisiae, the primary yeast species used worldwide for wine
and cider making, are associated with pronounced proteomic differences [12].

S. cerevisiae gives ciders consistent aroma and taste and less risk of spoilage, however,
resulting in less complex ciders [13]. Thus, to modulate the profile of ciders by enhancing
microbial diversity seems a rational approach and was shown in recent studies [14,15]. To
better evaluate the potential of different natural Saccharomyces strains, we need to assess the
impact of nitrogen sources on fermentative behavior and possible undesirable production of
metabolites such as acetic acid, H2S, and BAs as well. In spontaneous fermentations, yeasts
generally use naturally present amino acids, which results in higher aromatic complexity
but also higher production of BAs.

The impact of Saccharomyces strains on the aroma profile related to different fermenta-
tion conditions is already well described in wine and beer production [7]; however, in recent
years, cider production has been supported by research mainly based on non-Saccharomyces
yeast strains [14–17], and not so much on potential alternative Saccharomyces species, such
as S. uvarum.

S. cerevisiae is known to be more controllable in its fermentation output and perfor-
mance in wine and beer production [7,18]. Therefore, it is very important to study them in
natural media for cider production, namely apple juice. Most of the yeast characterization
studies are still performed in synthetic must.

This study aimed to characterize traits of isolated S. cerevisiae and S. uvarum strains
from ciders produced in Hardanger [4], an important area for cider production. We aimed
to take a deeper look at their amino acid and sugar consumption in typical Hardanger
apple juice (Malus domestica cv. ‘Aroma’), the conversion of present sugars into ethanol, the
yeast production potential of characteristic volatile compounds, and possible production of
undesirable compounds, such as BAs, acetic acid and H2S. To sum up, a comprehensive
study of 20 yeast metabolite phenotypes has been used to classify the yeasts into groups
with similar properties with the help of statistical methods, and partial least squares (PLS)
regression has been used to reveal the correlation between amino acids and other primary
metabolites with a synthesis of five different chemical groups of volatile compounds in
apple ciders.

2. Materials and Methods
2.1. Yeast Strains, Media, and Culture Conditions

A list of the 20 strains from the Saccharomyces genus used in this study is provided
in Table S1 (in Supplementary Materials). The yeast strains were isolated during the
biodiversity study on cider yeasts in cider from Hardanger (in preparation for MDPI
Foods) [4] and kept as cryo-cultures at −80 ◦C in 15% glycerol in the in-house culture
collection at NIBIO Ullensvang (Lofthus, Norway) and the Wine Research Centre at the
University of Nova Gorica (Vipava, Slovenia).
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2.2. Screening for Sulfite Reductase Activity Using BiGGY Agar

Strains were tested for H2S production on Bismuth Sulfite Glucose Glycine Yeast
agar (BiGGY) [19]. BiGGY plates were spot-inoculated with a one-day-old liquid culture
pregrown in Yeast Extract-Peptone-Dextrose (YPD) medium (10 g/L yeast extract, 20 g/L
peptone, 20 g/L glucose) at 25 ◦C and 150 rpm. BiGGY plates were inoculated at 25 ◦C,
and colony color was assessed after 5 days. The assay was performed in triplicate.

2.3. Micro-Fermentations

Monoculture fermentations were performed with selected Saccharomyces strains listed
in Table S1. For the fermentation experiment, apples from the apple cultivar Aroma
(M. domestica cv. ‘Aroma’), grown in the Hardanger area, were milled and pressed with
a belt press; apple juice was immediately frozen at −20 ◦C till the experimental set-up.
Apples and the obtained juice were not pre-treated with enzymes or other enological
additives during processing.

Pre-cultures were prepared by inoculating single colonies of Wallerstein Laboratory
Nutrient Agar (WL) (VWR) plate cultures in 3 mL YPD medium in 15 mL tubes. After
incubation for 24 h at 25 ◦C and 150 rpm, the pre-cultures were centrifuged (2000 rpm,
10 min, room temperature (RT)) and washed with 0.85% NaCl solution. Finally, the yeast
pellets were resuspended in diluted sterile apple juice (1:1 with sterile water). The optical
density at 600 nm (OD 600 nm) of the yeast suspensions was adjusted to 1.0 and left at RT
for 30 min for adaptation.

The apple juice was unfrozen and sterile filtered using a vacuum filtration system
(500 mL Polyethersulfone (PES), 0.2 µm membrane filter (VWR)). Then, 20 mL of the apple
juice was placed in 40 mL glass vials and inoculated with the pre-culture to achieve a final
OD of 600 nm 0.1 AU. Fermentations were prepared in triplicates and conducted at 15 ◦C
for 26 days.

During fermentation, mass loss was monitored and H2S was quantified using 120SF
gas detector tubes (Komyo Kitagawa, Kawasaki-City, Japan), as described by Ugliano
and Henschke [20]. The detector tubes were inserted into the vials through a hole in the
PTFE/silicone partition of the lids.

At the end of fermentation, samples were centrifuged (20 min, 6000 rpm) and stored
at −20 ◦C before chemical analysis.

2.4. Determination of Sugars, Acids, and Ethanol
Reagents, Materials, and Standards for HPLC–UV/RI Analyses

Chemicals: we used glucose (99%) (Acros Organics, Fair Lawn, NJ, USA), fructose
(99%) (Acros Organics, Fair Lawn, NJ, USA), sucrose (99.9%) (Acros Organics, NJ, USA), tar-
taric acid (Alfa Aesar, Karlsruhe, Germany), lactic acid (30%) (Sigma, Steinheim, Germany),
D-L malic acid (99%) (Aldrich, Steinheim, Germany), and citric acid (99.9%) (Sigma,
Steinheim, Germany). Concentrated sulfuric acid (VI) was purchased from VWR Chemicals
(Leuven, Belgium).

Three in-house developed HPLC–UV/RI methods were used for the determination of
sugars, organic acids, and ethanol in cider samples, respectively. An Agilent 1100 series
HPLC system (Agilent Technologies©, Palo Alto, CA, USA) was equipped with Agilent
OpenLab CDS ChemStation 2.3.54 software, a UV detector (G1314A VWD) for the analysis
of organic acids (detection at 210 nm), and a refractive index detector (model G7162A)
for the analysis of sugars (fructose and glucose) and ethanol. Samples were filtered using
Polytetrafluoroethylene (PTFE) 0.45 µm syringe filters (VWR® International, Radnor, PA,
USA). For the determination of glucose and fructose, 4 µL of each sample was injected
onto a Phenomenex Luna® Omega Sugar HPLC column (150 mm long and ø of 4.6 mm,
particle size of 3 µm) with a precolumn (5 mm long and ø of 4.6 mm, particle size of 3 µm)
using a mobile phase of acetonitrile/water = 75:25 (v/v) at a flow rate of 0.9 mL/min and
a run time of 15 min [21]. Separation of the organic acids was performed on two HPLC
columns, which were coupled sequentially: Phenomenex C18 Kinetex F5 (dimensions
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150 × 4.6 mm with a particle size of 2.6 µm) with a precolumn (5 mm long and ø of 4.6 mm,
particle size of 3 µm) and a Phenomenex C18 Kinetex EVO (dimensions 250 × 4.6 mm
with a particle size of 5 µm) kept at 30 ◦C during analyses. The injection volume was 4 µL,
the mobile phase consisted of 5 mM H2SO4, the flow rate was 0.7 mL/min, and the run
time was 20 min [22]. Ethanol was evaluated on a multimodal ROA Organic Acid H+ (8%)
column (Phenomenex) with a size of 300 × 7.8 mm and a sample injection volume of 5 µL.
Isocratic elution was performed using 5 mM H2SO4 as the mobile phase with a flow rate of
0.9 mL/min and a run time of 25 min [23]. All HPLC columns were kept at 30 ◦C during
chromatographic analyses.

Method validation data are summarized in Table S2 (in Supplementary Materials).

2.5. HPLC–UV Determination of Amino Acids and Biogenic Amines
2.5.1. Reagents, Materials, and Standards for HPLC–UV Analyses

Amino acids: L-tyrosine disodium salt hydrate (98%) (Sigma, Steinheim, Germany), L-
aspartic acid (99,5%) (AppliChem, Darmstadt, Germany), L-serine (99%) (Sigma, Steinheim,
Germany), L-leucine (98%) (Sigma, Steinheim, Germany), L-cystein (99%) (Merck, Darm-
stadt, Germany), isoleucine (99.5%) (AppliChem, Darmstadt, Germany), L-phenylalanine
(99.5%) (Sigma, Steinheim, Germany), L-asparagine (98%) (Sigma, Steinheim, Germany),
L-lysine monohydrochloride (98%) (Sigma, Steinheim, Germany), L-glycine (99%) (Sigma,
Steinheim, Germany), L-glutamine (99%) (Sigma, Steinheim, Germany), L-thryptophan
(98%) (Sigma, Steinheim, Germany), L-arginine monohydrochloride (99.5%) (Sigma, Stein-
heim, Germany), L-alanine (99.5%) (AppliChem, Darmstadt, Germany), L-lysine monohy-
drochloride (99%) (Acros Organics, NJ, USA), L-proline (99.5%) (AppliChem, Darmstadt,
Germany), L-glutamic acid (99%) (Sigma, Steinheim, Germany), L-valine (98%) (Sigma,
St. Louis, MO, USA), L-methionine (99.5%) (Fisher Scientific, Geel, Belgium), threonine
(99%) (Fisher Scientific, Geel, Belgium), L-hystidine monohydrochloride monohydrate
(99%) (VWR Chemicals, Leuven, Belgium).

Biogenic amines: putrescine dihydrochloride (98%) (AppliChem, Darmstadt, Ger-
many), cadaverine dihydrochloride (98%) (Sigma, Steinheim, Germany), histamine dihy-
drochloride (98%) (Alfa Aesar, Karlsruhe, Germany), tyramine hydrochloride (98%) (Alfa
Aesar, Karlsruhe, Germany).

Other reagents and chemicals: hypochloric acid (Gram-Mol, Zagreb, Croatia), sodium
hydroxide, sodium hydrogen carbonate and ammonia were purchased from (Sigma, Stein-
heim, Germany), ethanol, acetonitrile (HPLC grade) (J.T. Baker, Gliwice, Poland), sodium
acetate (Carl Roth, Karlsruhe, Germany). Derivatization reagent dansyl chloride was
supplied from Sigma (Steinheim, Germany).

Chemicals were prepared with ultrapure water, which was prepared using a Milli-Q
water purification system Purelab Option-Q system (ELGA LabWater, High Wycombe, UK)
to a specific resistance of >18.0 MΩ cm−1 at 25 ◦C.

A mix stock standard solution of 19 amino acids and a mix stock solution of 4 biogenic
amines (1000 mg/L) were prepared in 0.1 M HCl. The solutions were stirred in an ultrasonic
bath for 5 min.

2.5.2. Derivatization Procedure for Determining Amino Acids and Biogenic Amines

Derivatization was performed according to the procedure described by Topić Božič
et al. [24] with modifications. 250 µL of the standard (amino acids or biogenic amines)
and cider samples were mixed with 70 µL of saturated NaHCO3, 75 µL of 0.1 M NaOH,
and then with 1.5 mL of dansyl chloride derivatization reagent (0.2% in acetonitrile). The
mixture was then shaken and incubated in an oven at 40 ◦C for 45 min. Then, 100 µL
of ammonia was added to the reaction mixture and the mixture was incubated at RT for
30 min. Samples were filtered using 0.45 µm PTFE syringe filters before HPLC analysis.
Calibration curves for amino acids and biogenic amines were generated in the range of
1–100 mg/L by diluting the standard stock solution (1000 mg/L).
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2.5.3. HPLC–UV Analysis of AAs and BAs

Separation and quantification of 19 amino acids and 4 biogenic amines was performed
on Agilent’s HPLC–UV system (described in Section 2.4) using Kinetex® 2.6 µm EVO C18
RP column (150 mm long and ø of 4.6 mm, Phenomenex) with a pre-column (Kinetex®

2.6 µm EVO C18 RP, 5 mm long and ø of 4.6 mm). The separation was done at 35 ◦C with
gradient elution at a flow rate of 0.8 mL/min. The total run time was 65 min.

The mobile phase was prepared from 20 mM sodium acetate. The pH of the mobile
phase was pH adjusted to 6.5 with 0.8 M acetic acid. An injection volume of 3 µL was used.
Derivatized amino acids and biogenic amines were detected at 246 nm. The gradient profile
is described in Table S3 (in Supplementary Materials).

2.5.4. Method Validation

Method validation was performed by testing linearity, repeatability, the limit of detec-
tion (LOD), the limit of quantification (LOQ) and recovery (presented in Supplementary
Materials in Table S4). The derivatization step was included in the validation procedure.

2.6. Determination of Volatile Compounds Using HS-SPME-GC-MS

Selected aroma compounds were determined in the ciders using an automated robotic
system for Solid Phase Micro-Extraction (SPME) in head space (HD) and injected on a gas
chromatograph coupled with a mass spectrometric detector (GC-MS). Esters, C6 alcohols,
and volatile phenols were analyzed using a method adapted from a previously published
protocol [25]. Samples were extracted by headspace Solid Phase Micro-Extraction (HS–
SPME) using an SPME fiber assembly (50/30 µm DVB/CAR/PDMS, Stableflex, 24 Ga,
Autosampler, Gray (Supelco, St. Louis, MO, USA)). To a 20 mL SPME vial, 3 mL of the
cider sample was added with 2 g NaCl and 3 mL deionized water, and 20 µL solution of
internal deuterated standards (ethyl butyrate-4,4,4 d3, ethyl d5 hexanoate, ethyl octanoate
d15, ethyl trans-cinnamate d5) was added. The solution was then homogenized using a
vortex mixer and the samples were loaded into a Gerstel MPS Robotic Autosampler. The
program consisted of introducing the fiber into the SPME Arrow Conditioning Module
for 2 min at 270 ◦C. The fiber was then introduced into the headspace of a sample vial for
30 min at 40 ◦C while simultaneously vortexing the sample with the agitator at 250 rpm.
The fiber was then transferred to the injector for desorption at 250 ◦C for 15 min. The time
for sample injection into the GC column was set to 30 s, followed by cleaning of the fibers
in the SPME Arrow Conditioning Module at 270 ◦C for 10 min.

2.7. Multivariate Data and Statistical Analysis

Data were presented as means ± standard deviation (SD) from three repetitions.
ANOVA and Tukey’s method were employed using IBM SPSS Statistics 27 to compare the
variances among the means of various groups. A significance level of α = 5% was chosen
to determine statistical significance.

Data analysis was performed by a multivariate approach. Principal components
analysis (PCA) and the partial least squares (PLS) regression analysis were carried out to
explore the differences among ciders produced from apple juice by different Saccharomyces
strains. To deal with non-detectable values, the data matrix was pre-processed, and non-
detectable values were replaced with LLOQ/2.

All computational efforts and multivariate data analysis were implemented in IBM
SPSS Statistics 27, Minitab 21, GraphPad Prism 9.5.1, and XLSTAT 2023 on a Lenovo PC
with Intel(R) Core (TM) i7-6600U CPU @ 2.60 GHz and 16 GB of RAM, Microsoft Windows
10 OS. Boxplots for AAs utilization were prepared by R v. 4.1.2 for macOS.

3. Results and Discussion
3.1. H2S Production

According to the results obtained on BiGGY plates, seven strains were classified as
non-H2S producers (white colony color), two as moderate (white, light brown edge), and
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the rest as strong H2S producers (brown color) (Table 1). Using detector tubes inserted
into a hole in the septum of the vial cap, we quantitatively assessed H2S formation by the
strains tested under fermentative conditions. The H2S formation potential determined by
color staining on BiGGY agar did not agree with the results obtained with detector tubes.
Five S. uvarum strains produced H2S; in strain 2176, we detected an average of 58.3 ppm
H2S, followed by strains 2402 and 2128 with 48.3 and 36.7 ppm, respectively (Table 1). The
lowest H2S production was detected in S. uvarum 2401 (average 13.3 ppm) (Table 1).

Table 1. Results of color staining on BiGGY agar and measured H2S production during fermentation
for 20 Saccharomyces strains tested.

Yeast Species and
Strain Code

Colony Color on
BiGGy Agar 1

H2S Detector Tubes 2

(ppm)

S. uvarum 2046 white 0 ± 0.00 E
S. uvarum 2071 white 35 ± 8.7 BC
S. uvarum 2120 brown 0 ± 0.00 E
S. uvarum 2186 brown 0 ± 0.00 E
S. uvarum 2401 white 13.3 ± 5.8 DE
S. cerevisiae 2003 brown 10 ± 0.00 DE
S. cerevisiae 2095 brown 0 ± 0.00 E
S. cerevisiae 2265 white, light brown edge 0 ± 0.00 E
S. cerevisiae 2273 white 0 ± 0.00 E
S. cerevisiae 2303 brown 0 ± 0.00 E
S. cerevisiae 2349 brown 0 ± 0.00 E
S. uvarum 2128 brown 36.7 ± 10.4 BC
S. uvarum 2204 brown 0 ± 0.00 E
S. uvarum 2216 white 23.3 ± 2.9 CD
S. uvarum 2376 white 0 ± 0.00 E
S. uvarum 2083 white, light brown edge 0 ± 0.00 E
S. uvarum 2104 brown 0 ± 0.00 E
S. uvarum 2176 white 58.3 ± 18.9 A
S. uvarum 2402 brown 48.3 ± 2.9 AB
S. uvarum 2061 brown 0 ± 0.00 E

1 White colony color = no H2S production; White colony color with light brown edge = moderate H2S production;
Brown colony color = strong H2S production. 2 H2S was measured with gas detector tubes (120SF; Komyo
Kitagawa, Kawasaki-City, Japan). Values are reported as mean ± SD of three replicates. Values not connected by
the same letter are significantly different (ANOVA, Tukey’s method).

3.2. HPLC–UV Determination of Amino Acids and Biogenic Amines

Determination of AAs and BAs is challenging when using the HPLC–UV system
since both AAs and BAs lack chromophores for detection. Therefore, if HPLC coupled
with mass spectrometric detection (MS) is not used, a sample derivatization step requiring
HPLC coupled with a fluorescence detector (FLD) is necessary before analysis, especially
if quantitation below 1 mg/L is required [26]. The HPLC–FLD system has more than
a 10-fold higher sensitivity for such analyses compared to HPLC–UV [27]. All in all,
only two methods for simultaneous determination of AAs and BAs have been published
to the best of our knowledge, one based on the HPLC–MS system [28] and the second
based on ultra-performance liquid chromatography (UPLC) coupled with a diode array
detector (DAD) [29]. Here, we present a newly developed method for the simultaneous
determination of nineteen AAs and four BAs based on the HPLC–UV system using dansyl
chloride as a derivatizing agent for AAs and BAs. The method was validated and applied
for the analysis of fermented beverages based on apple juice (cider) and can also be used
for wine samples or, as in our study, for the in-depth characterization of AA utilization
and BA production of a larger number of yeasts. The separation system is based on the
C18 reverse phase (RP) system with 3 µm particles, which allows better resolution as well
as higher sensitivity for the analyzed compounds (Figure 1). Together with the previous
derivatization with dansyl chloride, we were able to obtain adequate LODs and LOQs for
the determination of AAs and BAs in the analyzed samples. These LODs and LOQs are
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comparable to the published method [29], although the UPLC system with 1.8 µm particles
was used. The linearity range of the method for each compound is between 0.5 mg/L and
200 mg/L, which corresponds to the actual range of occurrence of the analyzed compounds
in juices and fermented beverages (the detection limits are between 0.03 and 0.3 mg/L). All
validated parameters indicate that the method presented here can be a relevant and useful
tool for the quality control of cider by monitoring fermentation, especially due to the fact
that the HPLC–UV system is an easily accessible tool in analytical/research laboratories.
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con-centration level) with prior derivatization using dansyl chloride agent.

3.3. Behavior of Saccharomyces Strains under Fermentative Conditions

The total AA content in apple juice from the cultivar Aroma averaged 303.97 mg/L. The
evaluation of the AA content revealed that asparagine (42.2%) was the most important AA
in juice, followed by tyrosine (13.1%), aspartic acid (8.2%), arginine (6.7%), and glutamine
(5.8%) (Table S5 in Supplementary Materials).

The AA utilization profile of both species showed a similar utilization pattern of
AAs present in apple juice, and the pattern of AAs utilized also reflected the strain effect
(Figure 2, Table S6 in Supplementary Materials). The major AA source for all strains tested
was asparagine, which provided an average of 57.7% of the total AAs utilized. Note that
the initial asparagine concentration in apple juice was 3–65 times higher than that of the
other AAs (Table S5). Aspartic acid, arginine, and glutamine were the next most utilized
AAs, followed by glutamic acid, serine, proline, and then valine and tyrosine (Figure 2,
Table S6). The remaining AAs were present in very low concentrations in apple juice and
were mostly utilized during fermentation. For methionine, histidine, and alanine, some
residual amounts were still detected at the end of fermentation (Figure 2, Table S6).

The good utilization of asparagine and glutamine by the Saccharomyces strains tested
in this study is consistent with what has been reported in the literature, as these two
AAs, along with ammonium, have often been reported as preferred nitrogen sources for
S. cerevisiae [26,27]. Aspartic acid, arginine, glutamic acid, and serine were also included
among the preferred nitrogen sources [26,27], which we also observed in our study.

Although tyrosine was the second most abundant AA in apple juice, less than a quarter
of it was utilized by the strains, which is consistent with the literature where tyrosine is
considered a non-preferred nitrogen source [26,27].
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box) and 14 S. uvarum strains (uvarum, blue box), compared to the initial concentration in apple
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Cysteine, lysine, and especially tryptophan were found in higher concentrations at
the end of fermentation compared to what was present in the apple juice. This could be ex-
plained by the release of these AAs into the medium during fermentation (Tables S5 and S6).
Tryptophane and methionine were also previously classified as non-preferred nitrogen
sources [26,27]. However, the data in the literature on the classification of nitrogen sources
were mostly based on their ability to support yeast growth of laboratory strains under
non-fermentative conditions.

The HPLC–UV method enabled us to determine AAs and BAs simultaneously. Thus,
we were able to detect strains with BA-producing ability using this method (Table S6). At
the end of fermentation, strains of both species formed two BAs, putrescine and tyramine.
Putrescine was detected at relatively low concentrations in all strains tested, whereas the
highest concentrations for tyramine averaged 3.9 mg/L in the high-producing strains 2104,
2186, and 2402 (Table S6). The BA production capability is another characteristic that is
important for the selection of starter yeasts for cider production, especially when substrates
for the production of BA are present in apple juice, such as tyrosine, which can be further
decarboxylated to tyramine.

The initial sugar content of apple juice was 101.6 g/L, and the main sugar was fruc-
tose (52.9%), followed by sucrose (35.2%) and glucose (11.9%), as shown in Table S7 (in
Supplementary Materials). At the end of fermentation, most of the sugar was consumed
(98.6% on average), and the residual sugar consisted mainly of remaining glucose, which
varied in very low concentrations from 1.3 to 1.6 g/L (Table S7). Hence, studies showed
that Saccharomyces yeasts display a clear preference for glucose over fructose [29–31]. If
we assume that hydrolysis of sucrose was a limiting step during our fermentation, the
glucophilic nature of Saccharomyces yeasts would still leave more fructose at the end. How-
ever, there are few systematic studies on the preference for glucose and fructose of cider
yeast strains, especially in mixed sugar media, such as apple juice [17]. Therefore, it would
be of immense importance to focus on the utilization of glucose, fructose, and sucrose
by cider yeasts under different fermentation conditions in the near future. Nevertheless,
such studies could provide tools for the evaluation and selection of yeast strains for cider
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production, especially yeasts with fructophilic character, since fructose is the main sugar
in apple juice and may pose a problem for stuck fermentation. In addition, sucrose is
usually added during fermentation in the production of cider from Hardanger to increase
the alcoholic strength. Moreover, from this point of view, it would be important to study
the consumption of fructose, glucose, and sucrose during the fermentation process.

Ethanol content averaged between 3.99 and 4.82% (v/v) and did not differ statistically
among the Saccharomyces strains tested (Table S7).

In terms of organic acids in apple juice, malic acid was the most abundant (97.0%
of total organic acids), which is consistent with previous studies [2,32]. Citric acid and
tartaric acid were also detected, and their contents were much lower than those of malic
acid. In cider, malic acid averaged between 5.2 g/L and 6.6 g/L, being least affected by the
degradation of S. uvarum 2046 and most affected by strain S. uvarum 2176 (Table S7). Acetic
acid was within acceptable levels [13], with the highest concentration determined in the
ferments of S. cerevisiae 2349; otherwise, the levels were less than 0.09 g/L in the other yeast
strains (Table S7). Citric acid and tartaric acid were also detected in very low concentrations
in the finished ciders, ranging from 0.46 to 1.31 g/L and from 0.04 to 0.06 g/L, respectively
(Table S7).

3.4. Volatile Compound Production Profiles of the Saccharomyces Ferments

The concentrations of the volatile compounds are listed in Table 2. We measured a
total of twenty-six aroma compounds, eighteen esters (seven ethyl esters of fatty acids, two
ethyl esters of branched acids, and nine acetate esters), three C6 alcohols, and five volatile
phenols in experimental ciders.

The main group of aroma compounds in our experiment were C6 alcohols, ethyl
esters of fatty acids, and volatile phenols. When we sum all aroma compounds, we see a
large variability between strains, ranging from 2503 µg/L (S. cerevisiae 2095) to 8654 µg/L
(S. uvarum 2376).

The major aroma compound in all ciders was hexanol, which varied from 1222 µg/L
(S. uvarum 2083) to 2539 µg/L (S. cerevisiae 2349). According to Waterhouse et al. [33], the
olfactory threshold value for 1-hexanol is 8000 µg/L, which means that its contribution
to the aroma profile is most likely negligible. In the study of Scandinavian and British
ciders, 1-hexanol was the major C6 alcohol [34], ranging from 32 to 6541 µg/L. In our recent
study, Norwegian ciders, on average, contained 5137 µg/L of 1-hexanol, and French ones
6555 µg/L [1].

Higher alcohols are known to be the most abundant group of aroma compounds in
cider and apple juice [35,36], but they are mainly important as precursors of esters, which
are known for their fruity and sweet aroma [37]. The concentration of higher alcohols
generally decreases or disappears during cider fermentation [16,34], but in some cases, it
also increases or remains unchanged [36].

Seven different ethyl esters of fatty acids were quantified, namely ethyl propanoate,
ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl valerate, and ethyl
dodecanoate. The amounts varied greatly between strains, as shown in Table 2. Ethyl
esters are known to be an important component of the Norwegian cider flavor (Øvsthus
et al., 2023, in press [1]) and also for other ciders [34,38]. Although some esters may be
originally present in apple juice before fermentation, most esters in the ciders are formed by
the esterification of alcohols with carboxylic acids during fermentation and aging [36,39].

The yeast with the lowest total concentration of fatty acid ethyl esters (average
269.3 µg/L) (S. cerevisiae 2273) produced almost no ethyl decanoate and ethyl dodecanoate
(0 and 15.5 µg/L, respectively). Whereas in the cider with the highest total ethyl ester of
fatty acids contents among all yeast strains (S. uvarum 2376) (5123.67 µg/L), these two
esters were among the two most abundant ones (1905.93 and 1899.66 µg/L, respectively).
None of the Saccharomyces yeasts produced ethyl valerate in higher concentrations (on
average, less than 1% of all ethyl esters of fatty acids).
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Table 2. Volatile compounds (µg/L) of ciders produced from apple juice fermentation carried out by 19 Saccharomyces strains. Values are reported as mean ± standard
deviation of three replicates. Groups are indicated by letters. The values (i.e., the means) on the same column are significantly different according to Tukey’s method
(and 95% confidence) if they do not share a letter.

Yeast
Species

Strain
no.

Acetate Esters(AE)

Propyl
Acetate

Isobutyl
Acetate

Butyl
Acetate

Isoamyl
Acetate

Z-3-Hexenyl
Acetate

E-2-Hexenyl
Acetate

Ethyl Phenyl
Acetate

Hexyl
Acetate OctylAcetate

S. uvarum 2104 7.72 ± 0.47 ABC 7.98 ± 1.19 AB 145.97 ± 3.54 ABC 69.99 ± 12.52 ABC 3.71 ± 0.13 AB 0.35 ± 0.07 ABCD 1.45 ± 0.75 ABCD 29.77 ± 0.89 ABC 2.39 ± 0.29 BC
S. uvarum 2120 10.90 ± 0.58 A 11.11 ± 4.64 A 220.86 ± 41.45 A 103.57 ± 52.16 AB 4.68 ± 0.98 AB 0.51 ± 0.16 A 1.03 ± 0.65 BCD 38.47 ± 9.16 A 2.76 ± 0.14 AB
S. uvarum 2128 9.29 ± 1.32 ABC 10.01 ± 1.20 ABC 191.05 ± 25.9 AB 91.34 ± 11.65 ABC 4.09 ± 0.10 AB 0.42 ± 0.07 AB 1.17 ± 0.07 ABCD 33.84 ± 1.79 AB 3.18 ± 0.74 A
S. uvarum 2176 9.46 ± 0.43 ABC 5.28 ± 0.31 ABC 196.73 ± 5.9 AB 56.26 ± 9.23 ABC 3.41 ± 0.02 ABC 0.35 ± 0.04 ABCD 2.48 ± 1.02 A 29.86 ± 1.21 ABC 2.10 ± 0.09 BCD
S. uvarum 2186 9.62 ± 0.99 ABC 10.07 ± 2.36 AB 207.93 ± 31.8 AB 80.29 ± 27.62 ABC 3.94 ± 0.45 AB 0.42 ± 0.08 AB 1.22 ± 0.07 ABCD 34.65 ± 3.52 AB 2.15 ± 0.50 BC
S. uvarum 2204 10.38 ± 0.63 AB 9.283 ± 1.86 AB 213.61 ± 22.2 AB 90.32 ± 29.43 ABC 3.84 ± 0.50 AB 0.40 ± 0.05 ABC 1.02 ± 0.07 BCD 31.96 ± 5.61 AB 2.07 ± 0.38 BCD
S. uvarum 2216 9.29 ± 1.02 ABC 4.84 ± 0.60 ABC 194.17 ± 48.7 AB 39.08 ± 8.34 ABC 3.14 ± 0.60 ABCD 0.36 ± 0.04 ABCD 1.23 ± 0.06 ABCD 23.87 ± 6.13 ABCD 1.94 ± 0.37 CDE

S. cerevisiae 2349 8.94 ± 1.36 ABC 4.40 ± 0.61 BC 161.28 ± 18.41 ABC 99.41 ± 23.76 AB 3.52 ± 0.41 AB 0.27 ± 0.04 ABCD 0.48 ± 0.05 CD 33.91 ± 4.70 AB 1.01 ± 0.0.3 F
S. uvarum 2376 9.10 ± 2.46 ABC 6.91 ± 2.59 ABC 158.67 ± 61.76 ABC 49.23 ± 24.20 ABC 2.81 ± 0.84 ABCD 0.32 ± 0.08 ABCD 1.36 ± 1.00 ABCD 22.91 ± 8.88 ABCD 0.99 ± 0.0.6 F
S. uvarum 2402 8.41 ± 1.47 ABC 9.25 ± 2.37 AB 166.11 ± 49.54 ABC 65.48 ± 20.68 ABC 3.09 ± 0.81 ABCD 0.31 ± 0.11 ABCD 1.81 ± 0.42 ABC 24.66 ± 8.59 ABCD 1.31 ± 0.0.5 DEF
S. uvarum 2401 9.00 ± 1.94 ABC 10.20 ± 3.26 ABC 159.13 ± 43.61 ABC 86.14 ± 28.94 ABC 3.08 ± 0.92 ABCD 0.28 ± 0.07 ABCD 1.27 ± 0.24 ABCD 22.25 ± 9.79 ABCD 1.17 ± 0.08 EF
S. uvarum 2071 5.82 ± 1.36 BC 4.98 ± 1.71 ABC 95.61 ± 39.4 BC 29.48 ± 18.71 BC 1.36 ± 0.69 D 0.15 ± 0.07 D 0.74 ± 0.16 CD 8.48 ± 4.83 D 0.87 ± 0.08 F
S. uvarum 2061 5.63 ± 0.99 C 9.60 ± 3.30 AB 63.46 ± 53.23 C 45.96 ± 20.88 ABC 1.42 ± 0.68 CD 0.16 ± 0.09 CD 2.24 ± 0.56 AB 9.25 ± 6.02 CD 1.17 ± 0.09 EF
S. uvarum 2046 7.29 ± 2.01 ABC 6.17 ± 2.77 ABC 124.13 ± 35.94 ABC 50.56 ± 26.21 ABC 2.17 ± 0.76 BCD 0.20 ± 0.09 BCD 1.21 ± 0.30 ABCD 17.46 ± 8.16 BCD 0.90 ± 0.09 F

S. cerevisiae 2265 10.43 ± 2.05 AB 5.82 ± 1.32 ABC 170.95 ± 51.36 ABC 88.59 ± 18.02 ABC 3.66 ± 0.67 AB 0.33 ± 0.10 ABCD 1.15 ± 0.06 ABCD 35.88 ± 8.79 AB 1.11 ± 0.05 F
S. cerevisiae 2273 6.73 ± 1.40 ABC 2.36 ± 0.60 C 105.34 ± 32.26 ABC 12.01 ± 1.02 C 1.23 ± 0.36 D 0.21 ± 0.11 BCD 0.29 ± 0.07 D 8.98 ± 4.03 D 1.12 ± 0.03 F
S. cerevisiae 2003 9.12 ± 1.88 ABC 6.94 ± 1.97 ABC 171.20 ± 50.52 ABC 118.73 ± 62.59 A 3.89 ± 0.24 AB 0.32 ± 0.08 ABCD 0.68 ± 0.14 CD 39.72 ± 12.89 A 0.95 ± 0.01 F
S. cerevisiae 2095 7.65 ± 1.14 ABC 4.93 ± 0.56 ABC 119.12 ± 21.09 ABC 59.46 ± 3.74 ABC 2.54 ± 0.29 BCD 0.25 ± 0.03 ABCD 0.66 ± 0.03 CD 24.27 ± 2.46 ABCD 1.06 ± 0.16 F
S. uvarum 2083 5.99 ± 0.74 BC 4.93 ± 1.12 ABC 111.12 ± 30.50 ABC 35.92 ± 13.09 ABC 2.17 ± 0.46 BCD 0.26 ± 0.08 ABCD 1.20 ± 0.47 ABCD 19.74 ± 5.42 ABCD 0.95 ± 0.05 F

Yeast
Species

Strain
no.

Ethyl Esters from Fatty Acids(EEFA)

Ethyl propanoate Ethyl butyrate Ethyl hexanoate Ethyl octanoate Ethyl decanoate Ethyl valerate Ethyl dodecanoate

S. uvarum 2104 57.36 ± 4.95 CDE 45.16 ± 1.23 FG 86.53 ± 3.80 EFGH 291.56 ± 45.08 EFGHI 247.30 ± 33.52 DEFG 0.42 ± 0.03 CD 258.68 ± 32.96 DEFG
S. uvarum 2120 70.66 ± 16.71 BCD 57.37 ± 7.25 CDEFG 121.80 ± 21.89 DEFG 373.86 ± 67.47 CDEFG 392.82 ± 90.60 DEF 0.59 ± 0.13 BCD 401.77 ± 89.09 DEF
S. uvarum 2128 53.38 ± 9.49 DE 52.17 ± 3.14 EFG 120.43 ± 7.44 DEFG 425.35 ± 76.54 BCDEF 488.00 ± 63.42 CD 0.52 ± 0.7 BCD 495.37 ± 62.37 CD
S. uvarum 2176 158.94 ± 10.53 A 93.79 ± 5.46 AB 191.53 ± 16.28 BCDEF 606.22 ± 49.90 B 887.72 ± 87.30 B 1.39 ± 0.08 A 888.43 ± 85.84 B
S. uvarum 2186 69.13 ± 11.88 CD 55.23 ± 5.87 DEFG 123.36 ± 14.0 CDEFG 359.55 ± 38.35 CDEFGH 468.80 ± 103.79 CD 0.82 ± 0.17 B 476.49 ± 102.06 CD
S. uvarum 2204 100.91 ± 9.56 B 59.85 ± 3.87 CDEFG 110.91 ± 6.62 DEFGH 452.85 ± 25.5 BCDE 741.37 ± 50.63 BC 0.82 ± 0.05 B 744.51 ± 49.76 BC
S. uvarum 2216 172.37 ± 10.62 A 74.33 ± 3.9 BCDE 133.56 ± 8.04 BCDEF 548.31 ± 6.95 BC 463.66 ± 16.62 D 1.18 ± 0.02 A 471.43 ± 16.35 D

S. cerevisiae 2349 41.54 ± 6.13 DEF 104.21 ± 17.0 A 256.10 ± 49.27 A 339.71 ± 77.20 DEFGH 141.68 ± 27.57 FG 0.61 ± 0.12 BCD 154.82 ± 27.11 FG
S. uvarum 2376 88.12 ± 19.10 BC 80.15 ± 16.9 ABCD 185.19 ± 30.43 BC 973.86 ± 40.27 A 1905.93 ± 189.17 A 0.73 ± 0.20 BC 1889.66 ± 186.02 A
S. uvarum 2402 45.20 ± 8.91 DEF 49.15 ± 5.69 EFG 106.44 ± 11.39 DEFGH 293.59 ± 93.67 DEFGHI 147.69 ± 57.34 FG 0.50 ± 0.05 BCD 160.72 ± 56.39 FG
S. uvarum 2401 70.76 ± 12.89 BCD 55.83 ± 7.83 CDEFG 83.51 ± 18.44 FGH 485.70 ± 60.40 BCD 911.34 ± 145.23 B 0.57 ± 0.07 BCD 911.66 ± 142.80 B
S. uvarum 2071 30.65 ± 7.57 EF 40.60 ± 5.69 G 56.81 ± 16.0 H 320.02 ± 29.51 DEFGH 434.32 ± 136.17 DE 0.39 ± 0.03 D 442.58 ± 133.90 DE
S. uvarum 2061 31.84 ± 1.64 EF 40.55 ± 6.28 G 101.68 ± 25.6 DEFGH 402.24 ± 151.09 CDEFG 246.06 ± 90.58 DEFG 0.45 ± 0.08 CD 257.46 ± 89.07 DEFG
S. uvarum 2046 43.61 ± 15.19 DEF 47.99 ± 8.93 FG 83.97 ± 21.60 FGH 459.05 ± 92.84 BCDE 813.25 ± 137.77 B 0.46 ± 0.10 CD 815.20 ± 135.47 B

S. cerevisiae 2265 40.92 ± 5.91 DEF 80.59 ± 8.62 ABC 147.85 ± 16.34 BCDE 247.14 ± 17.84 FGHI 67.17 ± 13.19 FG 0.69 ± 0.06 BCD 81.55 ± 12.97 G
S. cerevisiae 2273 30.44 ± 7.57 EF 45.83 ± 7.78 FG 63.54 ± 15.44 GH 113.50 ± 23.76 I 0.009 ± 0.01 G 0.45 ± 0.08 CD 15.50 ± 0.01 G
S. cerevisiae 2003 21.63 ± 5.0 F 68.59 ± 11.4 BCDEF 153.89 ± 26.90 BCD 345.91 ± 39.18 DEFGH 168.46 ± 38.26 EFG 0.73 ± 0.23 BC 181.15 ± 37.63 EFG
S. cerevisiae 2095 43.44 ± 10.08 DEF 51.09 ± 4.62 EFG 95.96 ± 10.40 DEFGH 177.46 ± 18.36 HI 21.61 ± 19.33 G 0.61 ± 0.10 BCD 36.75 ± 19.01 G
S. uvarum 2083 25.70 ± 1.83 EF 39.03 ± 4.13 G 70.54 ± 13.79 GH 223.80 ± 52.53 GHI 269.30 ± 78.80 DEFG 0.36 ± 0.07 D 280.31 ± 77.48 DEFG
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Table 2. Cont.

Yeast
Species Strain no.

Ethyl Esters from Branched Acids(EEBA) C6-Alcohols(C6-OH)

Ethyl isobutyrate Ethyl
2-methylbutyrate Z-3-Hexenol E-3-Hexenol Hexanol

S. uvarum 2104 2.56 ± 0.34 CDEF 0.46 ± 0.04 A 140.19 ± 6.51 ABCD 4.39 ± 0.46 A 1731.77 ± 89.15 BCDE
S. uvarum 2120 4.92 ± 1.69 ABC 0.64 ± 0.20 A 176.86 ± 25.80 ABC 5.00 ± 0.52 A 2171.38 ± 229.22 ABC
S. uvarum 2128 4.93 ± 0.76 ABC 0.64 ± 0.09 A 151.29 ± 15.1 ABCD 3.94 ± 0.41 A 1797.3 ± 218.7 BCDE
S. uvarum 2176 6.69 ± 0.60 A 0.74 ± 0.03 A 148.12 ± 17.15 ABCDE 4.58 ± 0.38 A 1869.75 ± 83.91 ABCDE
S. uvarum 2186 4.65 ± 0.58 ABCD 0.57 ± 0.09 A 154.85 ± 2.82 ABCD 4.65 ± 0.36 A 1967.90 ± 44.01 ABCD
S. uvarum 2204 4.31 ± 0.21 ABCDE 0.56 ± 0.05 A 168.81 ± 12.2 ABC 5.42 ± 0.40 A 2208.67 ± 161.80 ABC
S. uvarum 2216 5.05 ± 0.34 ABC 0.66 ± 0.06 A 181.20 ± 10.05 AB 5.53 ± 0.92 A 2234.25 ± 185.44 ABC

S. cerevisiae 2349 2.81 ± 0.48 CDEF 0.36 ± 0.09 A 191.59 ± 7.24 A 5.69 ± 0.30 A 2539.14 ± 96.89 A
S. uvarum 2376 4.28 ± 0.83 ABCDE 0.54 ± 0.14 A 158.60 ± 10.66 ABCD 5.08 ± 0.45 A 1803.84 ± 127.14 BCDE
S. uvarum 2402 4.67 ± 1.13 ABCD 0.52 ± 0.12 A 187.92 ± 10.84 A 5.86 ± 0.72 A 2417.87 ± 172.85 AB
S. uvarum 2401 6.58 ± 1.62 A 0.62 ± 0.14 A 181.73 ± 11.85 AB 5.16 ± 0.94 A 2242.75 ± 140.58 ABC
S. uvarum 2071 5.53 ± 1.41 AB 0.37 ± 0.12 A 121.63 ± 22.1 CDE 3.67 ± 0.54 A 1626.81 ± 308.32 CDE
S. uvarum 2061 5.14 ± 1.10 ABC 0.44 ± 0.09 A 148.37 ± 29.6 ABCD 3.87 ± 0.44 A 1841.51 ± 434.03 ABCDE
S. uvarum 2046 4.09 ± 1.01 ABCDE 0.43 ± 0.15 A 108.39 ± 14.9 DE 3.75 ± 0.78 A 1353.55 ± 238.15 DE

S. cerevisiae 2265 2.13 ± 0.24 DEF 2.28 ± 0.38 A 147.23 ± 9.61 ABCDE 4.26 ± 0,97 A 1883.32 ± 143.94 ABC
S. cerevisiae 2273 1.20 ± 0.46 F 2.17 ± 0.46 A 129.62 ± 10.8 BCDE 3.90 ± 0.35 A 1749.91 ± 106.43 BCDE
S. cerevisiae 2003 2.24 ± 0.60 DEF 2.35 ± 0.31 A 129.60 ± 28.17 BCDE 4.02 ± 1.21 A 1622.19 ± 377.31 CDE
S. cerevisiae 2095 1.97 ± 0.51 EF 2.28 ± 0.35 A 128.68 ± 36.2 BCDE 3.96 ± 0.28 A 1655.67 ± 447.66 CDE
S. uvarum 2083 3.23 ± 0.20 BCDEF 2.26 ± 0.32 A 92.40 ± 20.39 E 6.43 ± 4.27 A 1222.57 ± 292.76 E

Yeast
Species

Strain
no.

VolatilePhenols(VP)

4-Ethyl phenol 4-Ethyl guaiacol 4-Vinyl guaiacol 4-Vinyl phenol Guaiacol

S. uvarum 2104 5.74 ± 0.93 BCD 0.36 ± 0.15 AB 609.05 ± 116.3 ABCDE 212.40 ± 37.09
ABCDE 1.10 ± 0.09 A

S. uvarum 2120 7.35 ± 1.12 ABCD 0.29 ± 0.09 AB 1087.30 ± 325.63 E 29.27 ± 19.12 E 1.45 ± 0.72 A
S. uvarum 2128 6.83 ± 0.75 BCD 0.29 ± 0.01 AB 1456.3 ± 17.87 BCDE 153.97 ± 198.2 BCDE 2.40 ± 2.10 A
S. uvarum 2176 12.91 ± 0.31 A 0.30 ± 0.02 AB 2001.80 ± 161.37 E 39.46 ± 7.96 E 3.42 ± 4.89 A
S. uvarum 2186 5.75 ± 1.31 BCD 0.23 ± 0.03 AB 1175.05 ± 273.51 E 39.72 ± 11.56 E 2.09 ± 2.22 A
S. uvarum 2204 7.29 ± 0.60 ABCD 0.26 ± 0.02 AB 1216.44 ± 149.23 DE 47.71 ± 8.01 DE 0.91 ± 0.24 A
S. uvarum 2216 6.15 ± 0.30 BCD 0.32 ± 0.01 AB 2121.76 ± 107.63 ABCD 413.98 ± 324 ABCD 1.80 ± 1.32 A

S. cerevisiae 2349 4.10 ± 0.96 CD 0.29 ± 0.05 AB 1632.24 ± 134.28 A 561.04 ± 26.01 A 0.89 ± 0.81 A
S. uvarum 2376 12.92 ± 2.33 A 0.29 ± 0.03 AB 1199.19 ± 156.97 CDE 81.33 ± 14.71 CDE 11.91 ± 17.74 A
S. uvarum 2402 5.07 ± 0.78 BCD 0.34 ± 0.08 AB 1599.26 ± 121.19 AB 473.78 ± 33.05 AB 0.60 ± 0.40 A

S. uvarum 2401 7.56 ± 1.09 ABCD 0.31 ± 0.03 AB 1793.76 ± 158.55 BCDE 187.33 ± 259.49
BCDE 3.38 ± 0.13 A

S. uvarum 2071 2.66 ± 0.90 D 0.23 ± 0.04 AB 884.52 ± 148.71 ABCDE 327.35 ± 47.5
ABCDE 8.99 ± 14.11 A

S. uvarum 2061 9.06 ± 5.41 ABC 0.22 ± 0.03 AB 1085.67 ± 366.57 ABCDE 274.44 ± 206 ABCDE 3.35 ± 0.13 A
S. uvarum 2046 10.82 ± 2.52 AB 0.18 ± 0.03 B 653.55 ± 113.66 CDE 82.09 ± 35.37 CDE 4.82 ± 4.44 A

S. cerevisiae 2265 6.57 ± 1.83 BCD 0.40 ± 0.04 A 1608.44 ± 145.22 ABC 418.23 ± 29.5 ABC 1.08 ± 0.17 A

S. cerevisiae 2273 6.46 ± 0.95 BCD 0.17 ± 0.04 B 610.93 ± 127.20 ABCDE 228.56 ± 43.8
ABCDE 0.93 ± 0.18 A

S. cerevisiae 2003 8.12 ± 1.82 ABCD 0.24 ± 0.07 AB 680.06 ± 196.04 ABCDE 246.31 ± 78.99
ABCDE 1.09 ± 0.48 A

S. cerevisiae 2095 8.33 ± 2.80 ABCD 0.28 ± 0.18 AB 36.01 ± 10.53 E 18.18 ± 2.88 E 0.75 ± 0.02 A
S. uvarum 2083 9.58 ± 1.53 ABC 0.21 ± 0.06 AB 357.71 ± 34.07 E 26.92 ± 2.24 E 6.30 ± 1.32 A
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When comparing the relative values in the ethyl fatty acid ester group, all yeasts
produced from 19–40% of ethyl octanoate. S. uvarum strains produced, in general, more
ethyl esters of decanoic and dodecanoic acids (18–36% of each), while ethyl esters of
propanoic, butanoic, and hexanoic acids were less abundant in this group of ciders (from
2–10% of all ethyl esters). The later esters were more abundant in S. cerevisiae strains and
less in the contribution of decanoate or dodecanoate ethyl esters to the total ethyl ester of
fatty acids fingerprint.

There was no or low significant difference in the concentration of the acetate esters
between the yeast strains. The group of acetate esters was represented by propyl acetate,
isobutyl acetate, butyl acetate, isoamyl acetate, Z-3-hexenyl acetate, E-2-hexenyl acetate,
ethyl phenyl acetate, hexyl acetate, and octyl acetate. The major acetate ester was butyl
acetate, which varied between 63.5–220.8 µg/L among yeasts but was generally quite
comparable among samples, followed by isoamyl acetate (12.0–118.73 µg/L) and hexyl
acetate (8–39 µg/L).

We determined five different volatile phenols in our ciders, namely 4-ethylphenol,
4-ethylguaiacol, 4-vinylguaiacol, 4-vinylphenol, and guaiacol. These five volatile phenols
together accounted, on average, for between 1% (S. cerevisiae 2303) and 40% (S. cerevisiae
2365) of the measured volatile fingerprint of the ciders.

The major volatile phenolics were 4-vinylguaiacol and 4-vinylphenol, the presence of
which varied among samples due to differences in yeast metabolic characteristics. Moreover,
4-vinylguaiacol varied from 36 to 2121 µg/L and 4-vinylphenol from 18 to 473 µg/L.

Ethyl phenols varied in low concentrations, below the odor threshold (OT). The OT
determined in water/10% ethanol solution at pH 3.2 for 4-ethylguaiacol and 4-ethylphenol
was 33 and 440 µg/L, respectively [40]. Their presence imparts equine, peasant, smoky,
and medicinal aromatic odors when present above their OTs concentrations.

3.5. Correlations of AAs and Physico-Chemical Parameters with Aroma Compound Formation
Data Analysis and Data Configuration

As described in previous sections, we determined 54 different compounds (Table 1
(measured H2S production), Table 2, Tables S6 and S7) in the resulting ciders. Strain
S. cerevisiae 2303 was identified as an outlier and omitted in further statistical analyses
(see Appendix A). All 54 continuous variables (summarized in Table 1 (measured H2S
production), Table 2, Tables S6 and S7) associated with 19 different yeast strains were
selected to draw a heat map (Figure 3). In Figure 3, the rows represent the measured
compounds (and the corresponding clusters), and the columns represent the different
yeast strains (and the resulting clusters) used for the single-strain fermentations in the
fermentation experiment.

Before generating the heat map, the data were standardized to a value between 0 and
100 using the following equation:

new score = (score − min(x))/(max(x) − min(x)) * 100, (1)

The dendrograms on the top and left side of the heatmap show how the variables
and the rows are clustered independently (they indicate the degree of similarity between
the variables or yeast strains). Color coding is used to show the values of each variable
in the dataset and also to show clusters of variables or samples that have similar expres-
sion patterns. The color scale indicates the range of values for each variable, with low
values represented by dark colors and high values represented by light colors. Variables
and/or samples (i.e., yeast strains) that are more similar to each other are grouped in
the same cluster/block. The height of the dendrogram branches represents the degree of
similarity between the variables or samples, with lower heights indicating a higher degree
of similarity.
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Figure 3. The heatmap and cluster analysis of a total of 54 continuous variables: 26 aroma compounds
(i.e., the response variables grouped into 5 chemical classes/groups in Y-block data used in PLS
regression) and 28 variables including amino acids, sugars, ethanol, organic acids, etc. (i.e., the
predictor variables which made the X-block data used in PLS regression) of 19 Saccharomyces strains
used in the fermentation trial.

Although all patterns in the heat map may indicate a relationship between rows
and columns, we look for rectangular areas that are approximately the same color. This
indicates a group of rows correlated with the corresponding group of columns. According
to the results of the heatmap analysis, the total of 54 variables associated with the 19 yeasts
used for fermentation can be divided into four main classes, shown on the left side of the
heatmap. In addition, the yeast strains are also divided into four main groups, shown in
the upper part of the heatmap (Figure 3).

The first class of variables (i.e., the first class on the upper left) consists mainly of
aromatic compounds (hexyl acetate, Z-3-hexenyl acetate, isoamyl acetate, butyl acetate,
octyl acetate, propyl acetate, E-2-hexenyl acetate, octyl acetate); in this class are the amino
acids glutamic acid and lysine and the biogenic amines putrescine and glucose. The second
class of variables (i.e., the second class on the upper left) includes malic acid, 4-ethyl
guaiacol, 4-ethyl valerate and ethyl butyrate. The third class of variables (i.e., the third class
at the top left) includes H2S, the amino acid valine, and the aromatic compounds ethyl
phenyl acetate and 4-ethyl phenol. The fourth class of variables (i.e., the fourth class at the
top left) consists of CO2 release, glutamine, methionine, and serine.
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It was found that the compounds of the first class of variables on the upper left in
cider fermented with S. uvarum strains 2046, 2071, and 2061 (i.e., the first group of yeast
strains on the upper left) had the lowest content. The highest levels of the same class of
variables/compounds were found in cider fermented with S. uvarum 2104, 2186, 2204, 2120,
and 2128 (i.e., the third group of yeasts above). In an analogous analysis, the compounds
of the second class of variables are found to have the second lowest content in fermented
strains S. uvarum 2046, 2071, and 2061 (i.e., the first group at the top left).

The second yeast group with 4 S. cerevisiae strains (2273, 2095, 2265, and 2003) and
one S. uvarum strain (2083) showed predominantly high levels of the fourth class of
variables/compounds: relatively high CO2 release, high levels of the remaining amino
acids glutamine, methionine, asparagine, phenylalanine, tyrosine, proline, alanine, ser-
ine, and tartaric and citric acids, and the highest levels of the aromatic compound ethyl
2-methylbutyrate.

Based on the observed color scales, it can also be said that the fourth yeast group (i.e.,
the fourth group at the top from the left), consisting of one S. cerevisiae strain (2349) and
five S. uvarum strains (2176, 2216, 2376, 2402, and 2401), has the highest content of the
second class of variables (relatively high contents of malic acid and the other amino acids
histidine and tryptophan, high contents of volatile phenols 4-vinylphenol, 4-vinylguaiacol
and 4-ethylguaiacol, relatively high contents of all three C6 alcohols and ethyl esters ethyl
valerate, ethyl propanoate, ethyl hexanoate, and ethyl butyrate).

3.6. Relationships between Aroma Compounds and Variables
3.6.1. Principal Component Analysis (PCA)

To perceive an initial configuration of our data/variables and to simplify the dataset by
identifying possible patterns and relationships between all variables, a principal component
analysis (PCA) was performed and validated using the correlation matrix in IBM SPSS
Statistics 27 and GraphPad Prism 9.5.1 (see Appendix A for additional description). In the
PCA analysis, ethyl esters of fatty acids, ethyl esters of branched acids, acetate esters, C6
alcohols, and volatile phenols were the five chemical classes/groups of aroma compounds,
and the other 28 features, including amino acids, sugars, ethanol, organic acids, etc., were
entered as other important variables.

From the eigenanalysis of the correlation matrix related to PCA, nine principal com-
ponents (represented by PC or F) were extracted, and 54.0% of the variance in the data
set was explained by the first three components (F1 = PC1 = 27.9%, F2 = PC2 = 13.8%,
and F3 = PC3 = 12.4%). When we refer to explained variance in terms of the PCs, we are
referring to the proportion of variance in the entire collection of response and predictor
variables that is explained by the PCs. In our results, the first nine principal components
have eigenvalues greater than 1 (see the scree plot in Figure 4). These nine components
explained approximately 89% of the variation in the data (Figure 4). However, since the
cumulative variance of 54.1% in the first three components does not report the adequate
amount of variation we expected, we performed another statistical analysis, the partial
least squares (PLS) regression analysis.

The Component Plot in Rotated Space (CPRS) shown in Figure 4 displays the scores
of the first three PCs, which capture most of the variance in our data set. This plot is a
graphical representation of the results of PCA with orthogonal rotation. Each point on
the plot represents a variable in our data set, and the position of the point in the new
rotated space is determined by the scores of the observation on the PCs. In other words,
the CPRS shows how the variables in our dataset are related based on the underlying
patterns identified by the PCA method. Variables that are close to each other on the graph
(e.g., lysine and putrescine) have similar principal component values, indicating that they
share similar underlying patterns. Observations that are far apart on the graph (e.g., lysine
and serine) have different values on the PCs, indicating that they have different underlying
patterns. The CPRS can be useful in identifying clusters or groups of variables in the data
set that have similar patterns. The problem of clustering yeast strains can also be explored
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in the PCA Bootstrap hulls (implemented in XLSTAT 2023) in Figure 5 and the partial
least squares (PLS) regression analysis (implemented in Minitab 21 and XLSTAT 2023) in
Figure 6.
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Figure 6. The 2D configuration, correlations, loading, clustering, and projection of observations (yeast
strains) and all attributes and aroma groups of compounds (p < 0.05) of all 19 different yeasts on the
first two components (top), and the VIP values associated with the 28 predictor variables from the
PLS regression model with 10 LVs (bottom). Legend: Ethyl esters from branched acids—EEBA; Ethyl
esters from fatty acids—EEFA; Acetate esters—AE; Volatile phenols—VP; C6-alcohols—C6-OH.
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Bootstrap hulls involve generating a series of bootstrap samples from the original
dataset and then computing the PCs for each bootstrap sample. We use them to assess the
significance of individual observations/yeasts in our dataset and to see the possible clusters
in our 19 fermented yeast strains (in the first two PCs). Yeast strains that consistently fall
within the convex hull of the scores for each bootstrap sample are considered statistically
significant, while yeast strains that consistently fall outside the convex hull are considered
statistically non-significant. By using bootstrap hulls in PCA, we identified influential
observations (i.e., the yeast strains) in the dataset that could affect the results of the analysis.
The results of the analysis can be interpreted based on the location of the observations
relative to the bootstrap hulls. Observations that consistently fall outside the convex hull
may be outliers or noise in the data. By identifying influential observations, it is possible to
determine if they are outliers that need to be removed from the analysis or if they represent
important patterns in the data that should be investigated further. However, as can be
seen in Figure 5, our observations consistently fall within the designated convex envelope.
Therefore, they should all be considered statistically important and reliable; this is because
we have already identified and removed the outliers from our data set.

3.6.2. Partial Least Squares (PLS) Regression Analysis

In this section, the ferments/ciders produced with 19 different yeast strains were
further analyzed. Since this is a high-dimensional data set, to further determine the
associations between the aroma groups of attributes (y variables, n = 5) and the other
physicochemical parameters (x variables, n = 28) in ciders from 19 tested strains, we
used partial least squares (PLS) regression—a multivariate statistical analysis used for
both regression and classification tasks. To prepare for the PLS regression, we first had
to distinguish between the response variables (y variables) and the predictor variables
(x variables). Therefore, the five chemical classes/groups of aroma compounds (ethyl esters
of fatty acids, ethyl esters of branched acids, acetate esters, C6 alcohols, and volatile phenols)
were considered as the response variables that formed the Y-block in the PLS regression.
The amino acids, sugars, ethanol, organic acids, etc., were entered and considered as
predictor variables used to develop the X-block.

Thus, the goal was to find out the relationship between two blocks, the Y-block and
the X-block (i.e., the set of response variables and the predictor variables of interest). PLS
regression was used to identify (1) the underlying factors responsible for the variation
in the data; (2) the contributions of 28 traits/predictors, including amino acids, sugars,
ethanol, acids, etc. (i.e., the variables forming the X-block) and to correlate and discover
the five groups of cider aroma attributes (i.e., the variables forming the five groups in the
Y-block) from 19 yeast strains used for fermentation (Table 3).

The method works by finding the linear combinations of the predictor variables X (also
called latent variables (LVs)) that are most strongly related to the response variables Y. This
is done by maximizing the covariance between the X-block and the Y-block while ensuring
that the predictor variables are orthogonal (i.e., uncorrelated) to each other. Subsequently,
the PLS regression analysis was used to determine which variables contributed most to the
Y-block and the X-block contributed most to the variation in the data. Finally, PLS regression
analysis indicated how the variables were correlated with each other and then lumped
the variables into a new latent variable (LV). Our results show that our X-block variables
mentioned above are strongly correlated with each of the groups of aroma compounds, for
which large correlations were always found in different numbers of LVs (Table 3).

The results of our PLS regression model show how the amino acids, sugars, ethanol,
acids, etc., contributed to the fermentations of the yeasts as well as to the chemical classes of
the aroma compounds, and they also lead to some important findings. Table 3 summarizes
the results of this analysis and shows that our PLS regression model (built with 10 LVs)
includes 89% of the variation in the X-block data and 93% in the Y-block data. Although the
optimal number of latent variables (LVs) was analytically set at ten by the PLS regression
method, even with eight LVs, our PLS model can well explain the variation in the X-block



Fermentation 2023, 9, 824 18 of 27

and Y-block data, that is, 82% of the variation in the X-block and 88% in the Y-block. PLS
regression analysis achieved a correlation coefficient of R2 ≥ 0.85 for all aroma classes of
compounds and captured R2X ≥ 85% of the variation in the X-block data (i.e., predictor
variables amino acids, sugars, ethanol, acids, etc.) and R2Y ≥ 85% of the variation in
the Y-block data (i.e., aroma classes of compounds), implying a robust linear relationship
between the measured aroma classes of compounds and the predictors in all 19 yeast strains
we tested in this study.

Table 3. Summary of results from the partial least squares (PLS) regression analysis.

PLS Regression: Model Selection and Validation for Different Families of Aroma Attributes.
Y-Block

(i.e., Aroma Groups of
Attributes)

(y Variables, n = 5)

Number of Latent
Variables (LVs)

R-Sq
(R2)

Captured Cumulative
X-Block Variance

(R2X cum)

Captured Cumulative
Y-Block Variance

(R2Y cum)

Ethyl esters from fatty acids 0.96
Ethyl esters of branched acids 0.92

Acetate esters 0.95
C6-alcohols 0.86

Volatile phenols

10 *

0.94

0.89 0.93

Ethyl esters from fatty acids

9

0.96

0.86 0.90
Ethyl esters of branched acids 0.91

Acetate esters 0.87
C6-alcohols 0.86

Volatile phenols 0.92
Ethyl esters from fatty acids

8

0.87

0.82 0.88
Ethyl esters of branched acids 0.91

Acetate esters 0.86
C6-alcohols 0.86

Volatile phenols 0.92
* The optimal number of latent variables (LVs) was systematically chosen to 10 by the PLS regression method.

Besides much useful information that Figure 6 can provide, it shows the correlation
coefficients between each predictor variable and the response variable, as well as the
loading weights that indicate the importance of each predictor variable in the model.

As can be seen in Figure 6, the aroma attributes of ethyl esters of fatty acids, ethyl
esters of branched acids, volatile phenols, and C6 alcohols can be used to distinguish the
aroma of ciders produced with yeast strains S. uvarum 2401, 2216, 2176, and others in the
same cluster. Similarly, the aroma properties of acetate esters can be used to discriminate
the aroma of ciders produced with yeast strains S. cerevisiae 2349, S. uvarum 2186, and others
in the same cluster. At the same time, yeast strain 2349 was well associated not only with
acetate esters but also with the amino acids glutamic acid and glycine, the biogenic amine
putrescine, and the sugars fructose and glucose.

The ciders of S. uvarum 2046 and S. cerevisiae 2265 showed a high correlation with
some attributes, such as the amino acids tyrosine, serine, and glutamine.

The analysis showed that the amino acids aspartic acid, tryptophan, and histidine
were highly correlated, with tryptophan having greater importance in the model because it
had greater (positive) loadings in the first component. It was also observed that for CO2
release, the amino acids asparagine and methionine were also strongly correlated, with
asparagine being of greater importance in the model as it had greater (negative) loadings
in the first component. In addition, glucose, tyramine, and malic acid were correlated, but
only malic acid was important in the model. On the first component, predictors such as
aspartic acid, malic acid, and serine had similar absolute loadings, suggesting that they
were equally important. On the second component, H2S production, glutamic acid, valine,
tartaric acid, and citric acid had similar absolute loadings, indicating that they were equally
important (see Figure A4).
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In addition, the values for the importance of the variables in the projection (VIP) were
also obtained in the PLS regression model and shown in Figure 6. These values are a
good measure of the importance of each predictor variable in our PLS regression model.
They are calculated by considering both the amount of variation in the response variable
(five chemical groups of aroma compounds) explained by each latent variable (LV) and
the importance (i.e., loading) of each predictor variable in this LV. The VIP values for
the 16 predictor variables were ≥1, including H2S production, phenylalanine, asparagine,
aspartic acid, tryptophan, histidine, valine, methionine, malic acid, serine, tartaric acid,
citric acid, glutamic acid, glutamine, CO2 release, and proline. These predictor variables
with high VIP scores are more important to us than those with low VIP scores. Moreover,
these VIP scores are also used for variable selection by selecting only the variables with the
highest VIP scores for inclusion in the model (namely, those with VIP ≥ 1).

Finally, we proceeded with error analysis of our PLS model using the x-residual matrix
plot. To this aim, we examined general patterns in the residuals and identified areas where
problems exist. We then examined the x-residuals displayed in the output to determine
which observations and predictors the model may be poorly describing. As can be seen
in Figure 7, the PLS residual X-plot shows that the residuals are close to zero, indicating
that our model does a good job of describing most of the variance in the predictors in our
experimental analysis with cider made with 19 Saccharomyces strains. There is no specific
line on the graph that deviates dramatically from the other lines; therefore, the model
describes all observations/yeast strains (represented by lines) very well. At both points 16
and 28, which correspond to the two predictors lysine and H2S, respectively, the lines are
far apart. At point 16, the lines are slightly apart at the same point on the x-axis. Therefore,
the model can still be considered a good statistical tool to describe the predictor at this
point (i.e., lysine). However, at point 28, most of the lines diverge at the same point on the
x-axis, and this means that the model can poorly describe the corresponding predictor at
this point (i.e., H2S). This could be related to the values obtained for H2S, a sparse vector
where 63% of the elements had a value of zero.
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4. Conclusions

A fermentation screening of six S. cerevisiae and fourteen S. uvarum strains isolated
from ciders produced in Hardanger [4] provided information on metabolic capabilities
with an emphasis on aroma production. This is a first selection small-scale fermentation
experiment with chemical characterization and is a stepping stone for the selection process
of indigenous yeasts from Hardanger with respect to their suitability for cider production.

Using the HPLC–UV/RI and HS–SPME/GC–MS methods for chemical characteriza-
tion of cider produced with different strains tested, we determined seventeen AAs, two
BAs, four organic acids, ethanol, glucose, fructose, and twenty-six volatile compounds,
including eighteen esters (seven ethyl esters of fatty acids, two ethyl esters of branched
acids, and nine acetate esters), three C6 alcohols, and five volatile phenols. In addition,
in the current study, we also successfully implemented a new analytical approach for the
simultaneous determination of AAs and BAs using the HPLC–UV system.

When statistical analyses were applied to the obtained chemical data, cluster analysis
allowed us to divide the Saccharomyces strains into four main groups. The yeast groups
differed in the production of aromatic components. Two groups produced few aromatic
compounds. The other two groups, primarily consisting of S. uvarum strains, were good
producers of aromatic components; one was characterized by the highest production of
acetate esters, while the other exhibited the highest production of ethyl esters, volatile
phenols, and C6 alcohols. Additionally, with PLS regression, we established a relationship
between aroma compounds and predictor variables (AAs, BAs, organic acids, sugars, H2S
production, and CO2 release), and the obtained VIP scores showed that the most important
predictor variables affecting aroma compounds were 16, most of which belong to the
following AAs: phenylalanine, asparagine, aspartic acid, tryptophan, histidine, valine,
methionine, serine, glutamic acid, glutamine, and proline.

Further detailed studies on the representatives of the four yeast groups identified
in our study during the fermentation process on larger scales, including sensory evalua-
tion, are needed to find an alternative Saccharomyces yeast for potential cider production
from Hardanger.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/fermentation9090824/s1, Table S1: Yeast strains used in the study.
Table S2: Calibration parameters for sugars, acids, and ethanol by HPLC–UV/RI method. Table S3:
Gradient profile of HPLC-UV method for determination of amino acids and biogenic amines. Table S4:
Calibration parameters for amino acids and biogenic amines detected by HPLC–UV method. Table S5:
Physicochemical parameters of apple juice used in the study. Values represent the mean ± SD for
three replicates. Table S6: Content of amino acids (mg/L) and biogenic amines (mg/L) in ciders
produced from apple juice fermentation carried out by 19 Saccharomyces strains. Table S7: Content of
organic acids, sugars, ethanol, and other measured parameters (CO2 release) in ciders produced from
apple juice fermentation carried out by 19 Saccharomyces strains.
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Appendix A

To study the relationship between aroma attributes, amino acids, and other features
of interest and to display the pairwise Pearson correlation coefficients (with a significance
level alpha = 0.05) between all our 54 continuous variables (including the response and
predictor variables), we employ the correlation matrix which is visualized in Figure A1.
The values range from −1 to 1, with −1 (light red) indicating a strong negative correlation,
1 (light green) indicating a strong positive correlation, and 0 (dark red or green) indicating
no correlation. In this image, positive correlations (i.e., green color) indicate that variables
tend to increase or decrease together, while negative correlations (i.e., red color) indicate
that variables tend to move in opposite directions.

Knowing that outliers can have a strong influence on the correlation coefficients and
may distort the overall pattern of the data, we appropriately handled the outliers in our data
set using the Grubbs test in XLSTAT 2023 (with a significance level of alpha = 0.05) before
calculating the correlation (image) matrix. To interpret a correlation image matrix, we
look at the values/colors in the (image) matrix and use them to conclude the relationships
between variables. Cells in light green or light red indicate a strong relationship between
the two corresponding variables. Cells in dark green or dark red indicate a weak or no
relationship. As seen in Figure A1, there are not many cells that are colored light green or
red, and therefore, there should not exist many groups of variables that have high positive
or negative correlations. This indicates that there may not be any underlying patterns in
the data.

However, we remark that the Pearson correlation (image) matrix, although it provides
valuable insights into the relationships between variables in the data set, can only measure
and represent the possible linear relationships between the variables. Therefore, if the rela-
tionship between variables is not linear, the Pearson correlation matrix may not accurately
capture the true relationship. On the other hand, just because of a light green/red cell, we
cannot conclude that the two corresponding variables are highly correlated, and it does
not mean that one causes the other (i.e., correlation does not imply causation). Therefore,
it is important to consider other factors, interpret the results carefully, and consider the
broader context of the data and further statistical (multivariate) analysis, such as PCA and
PLS regression analysis.
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Figure A1. Image of the correlation matrix of a total of 54 continuous variables: 26 aroma compounds
(i.e., the variables which will make the 5 groups in Y-block in the PLS regression analysis) and
28 features/predictors including amino acids, sugars, ethanol, acids, etc. (i.e., the variables which
will make the X-block in the PLS regression analysis) of 19 yeast strains fermented. The correlations
are according to Pearson, and the significance level alpha is considered 0.05.

To display the pairwise Pearson coefficients of determination of our 54 continuous
variables (including the response and predictor variables), we use the matrix of R-squared
values that are visualized in Figure A2, implemented in XLSTAT 2023 (with a significance
level alpha = 0.05). The R-squared (R-Sq or R2) value is a statistical measure that can be
interpreted as the percentage of the variability in one variable that can be explained by
the other variable. The matrix of coefficients of determination is similar to the correlation
matrix, but instead of displaying the correlation coefficients between variables, it displays
the R-squared values. The R-Sq values range from 0 to 1. An R-Sq value of 0 indicates that
there is no relationship between the two variables, while an R-squared value of 1 indicates
that all of the variability in one variable can be explained by the other variable.

Like the correlation matrix, each row and column of the matrix represents a different
variable, and the values/color in the (image) matrix represent the R-Sq value between
the two corresponding variables. The diagonal of the matrix represents the R-Sq value
of each variable with itself, which is always equal to 1. Higher R-Sq values indicate a
stronger relationship between variables, while lower R-squared values indicate a weaker
relationship. However, it is important to note that the R-Sq value only measures the
proportion of variance in one variable that can be explained by the other variable and does
not provide information about the direction or causality of the relationship. As seen in
Figure A2, there are not many cells that are colored in black/dark blue or dark brown, and
hence, there do not seem to exist many groups of variables whose large proportion of their
variance can be explained by the other groups of variables. Most of the cells are in the
middle range (0.1, 0.3) and (−0.3, 0). This indicates that there may not be any underlying
discoverable patterns in the data. However, we highlight that we will employ R-Sq values
for model selection. More precisely, we exploit the R-Sq values to select the best model
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for our data set in the partial least squares (PLS) regression analysis. Models with higher
R-Sq values are generally considered to be better at explaining the variation in the data (see
Table 2).

Like the Pearson correlation (image) matrix, R-Sq values can be biased by outliers or
other factors that affect the relationship between the variables. Therefore, before calculating
the matrix of coefficients of determination, we aptly coped with the outliers in our data set
using the Grubbs test in XLSTAT 2023 (with a significance level of alpha = 0.05). We remark
that the (image) matrix of coefficients of determination, although it provides valuable
insights into the factors that are driving variation in the data set, does not indicate causality.
Like correlation coefficients, R-Sq values do not provide information about the direction or
causality of the relationship between the variables. Therefore, it is important to consider
other factors and conduct further (multivariate) analysis before making any conclusions.
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Figure A2. Image of the matrix of coefficients of determination of a total of 54 continuous variables:
26 aroma compounds (i.e., the variables which will make the 5 groups in Y-block in the PLS regression
analysis) and 28 features/predictors including amino acids, sugars, ethanol, acids, etc. (i.e., the variables

which will make the X-block in the PLS regression analysis) of 19 yeast strains fermented. The
correlations are according to Pearson, and the significance level alpha is considered 0.05.

The PCA loading plot depicted in Figure A3 displays the loadings/associations of the
variables on the PCs. Loadings represent the correlation between each variable and the
PCs and can be used to interpret the underlying patterns in the data set. The correlation
monoplot plots vectors pointing away from the origin to represent the original variables.
The angle between the vectors is an approximation of the correlation between the variables.
A small angle indicates that the variables are positively correlated, an angle of 90 degrees
indicates that the variables are not correlated, and an angle close to 180 degrees indicates
that the variables are negatively correlated. The length of the line and its closeness to the
circle indicate how well the plot represents the variable. It is, therefore, unwise to make
inferences about relationships involving variables with poor representation.
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The PLS normal probability plot of the residuals (Figure A5) displays the standardized
residuals versus their expected values when the distribution is normal. We use the normal
probability plot of the residuals to verify the assumption that the residuals are normally
distributed. All our obtained points in the graph fall randomly on both sides of the normal
line, with no recognizable patterns in the points. This is verified in our analysis and is
demonstrated in the picture.
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