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Abstract: Metabolic engineering is a promising strategy to realize green synthesis of valued chemicals
derived from petroleum. According to the literature, cell factories for producing L-aspartate and its
derivatives (β-alanine, ectoine, 3-hydroxypropionate, D-pantothenic acid and L-homoserine) have
been developed. In this review, we firstly introduced the functions, applications and markets of
L-aspartate and its derivatives. Then, the current research progress on microbial production of them
was elaborated in detail. Finally, we have discussed the limiting factors and given some suggestions
for realizing applications of engineered bacteria in the industry, including metabolic engineering
of the bacteria to increase the titer, yield and productivity of the target products, fermentation
condition optimization and downstream purification. With the development of novel technologies
and increased investments in synthetic biology, it is promising to realize sustainable production of
L-aspartate and its derivatives at the industrial scale in the future.

Keywords: metabolic engineering; L-aspartate; β-alanine; ectoine; 3-hydroxypropionate;
D-pantothenic acid; L-homoserine

1. Introduction

Metabolic engineering is a field of biotechnology that focuses on the manipulation
and modification of metabolic pathways in cells to enhance the production of desirable
products. This involves the use of genetic engineering techniques to alter the DNA of
microorganisms, plants and animals in order to optimize their biochemical processes and
improve the production of specific compounds. The main goal of metabolic engineering is
to design or modify metabolic pathways to produce desired products in large quantities
with high efficiency. This can involve introducing genes from other organisms or even
synthesizing new genes to produce needed enzymes that enable the desired metabolic
reactions [1]. Examples of products that can be produced using metabolic engineering
include biofuels [2], bioplastics [3], pharmaceuticals [4], flavors [5], fragrances [6] and food
additives [7]. Metabolic engineering is also used in the production of enzymes [8] and
in the development of medical treatments for certain diseases [9]. The key advantages
of metabolic engineering include the ability to produce large quantities of products in
an environmentally sustainable manner with reduced dependence on non-renewable
resources [10]. It also enables the creation of new and novel compounds with unique
properties that can have a wide range of applications in different industries.

With the help of metabolic engineering, the microbial cell factories for the production
of L-aspartate and its derivatives are realized. In this paper, we summarize the research
progress on microbial production of L-aspartate and its derivatives: β-alanine, ectoine,
3-hydroxypropionate (3-HP), D-pantothenic acid and homoserine.
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2. Metabolic Engineering of Microbials to Produce L-Aspartate and Its Derivatives
2.1. Developing Cell Factories to Produce L-Aspartate

L-aspartate is an amino acid that is naturally found in many fruits and vegetables,
as well as in animal proteins. It has various functions, including its role as a precursor
for the synthesis of other amino acids and for the production of energy in the body [11].
L-aspartate has various applications in the food and pharmaceutical industries. In the
food industry, it is commonly used as a flavor enhancer and a sweetener in many diet
and low-calorie products [8,12]. In the pharmaceutical industry, L-aspartate is used to
treat symptoms of liver disease and to help improve brain function [13]. The market for
L-aspartate is expected to grow in the coming years, as the demand for low-calorie and diet
products continues to rise. The global market for L-aspartate was 93.15 million dollars in
2021 and is projected to grow at a CAGR of 6.20% from 2022 to 2029. The increasing demand
for sports and energy drinks is also expected to drive the growth of the L-aspartate market.
The Asia-Pacific region is anticipated to be the fastest-growing market for L-aspartate,
due to the growing demand for low-calorie products and the increasing health awareness
among consumers (https://www.databridgemarketresearch.com/reports/global-aspartic-
acid-market, accessed on 3 May 2023).

There are several ways to produce L-aspartate at an industrial scale, including ex-
traction from natural sources, chemical synthesis, enzymatic processes and fermentation.
The choice of the production method depends on several factors, such as cost, efficiency
and sustainability. Currently, the most widely used method is enzymatic conversion
of the precursors, fumarate and ammonia, catalyzed by aspartase. For example, E. coli
JCL1258/pBAW2/pASP400 produced over 77 g/L of L-aspartate from fumarate with a
conversion yield of 83% [14]. Since fumarate is derived from petrochemicals, the enzy-
matic process is not an environmentally friendly synthetic technology [15]. For L-aspartate
biosynthesis by fermentation, several types of bacteria have been engineered, including Es-
cherichia coli (E. coli), Corynebacterium glutamicum (C. glutamicum) and Brevibacterium flavum
(B. flavum) (Table 1). For L-aspartate cell factory construction, researchers focus on pathway
modification [15,16] and overcoming the rate-limiting steps of L-aspartate biosynthesis
(Figure 1) [13,17].

To date, the best cell factory for L-aspartate biosynthesis with glucose as a carbon
source is the E. coli developed by Piao et al., producing 33.1 g/L of L-aspartate (Table 1).
However, the yield was only 0.39 g/g, which was about 27% of the theoretical value when
oxaloacetate/fumarate, the direct substrate for L-aspartate biosynthesis, was supplied by
the reductive branch of the TCA cycle from glucose [15]. The researchers have focused
on pathway modification to increase phosphoenolpyruvate (PEP), oxaloacetate (OAA),
L-glutamate and CO2 supply and optimizing fermentation conditions to improve
L-aspartate biosynthesis [15]. For engineering C. glutamicum ATCC13032 to produce
L-aspartate, several genes were inactivated since they consume pyruvate (ldhA and avtA)
or fumarate (sdhCAB), and aspB, encoding L-aspartate aminotransferase, was overex-
pressed [18]. It could produce 5.72 g/L of L-aspartate with a yield of 0.75 g/g. As for
B. flavum 70, it was developed after several rounds of mutations and could produce 22.6 g/L
of L-aspartate (Table 1). When maleate is used as the substrate, it is firstly converted to
fumarate by maleate cis-trans isomerase (MaiA) and then to L-aspartate by the engineered
E. coli. In this process, a titer of L-aspartate of 419.8 g/L with a conversion ratio of 0.72 was
achieved [13]. Above all, with glucose as the substrate, the yield of L-aspartate is much
lower than the theoretical value (1.48 g/g). Low yield will waste the substrate and increase
the production cost. For realizing cost-effective industrial production of L-aspartate by
fermentation using low-cost substrates (glucose), there is still much work to do, such as
improving cell growth by pathway modification and fermentation medium optimization.

https://www.databridgemarketresearch.com/reports/global-aspartic-acid-market
https://www.databridgemarketresearch.com/reports/global-aspartic-acid-market
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Table 1. Summary of microbial production of L-aspartate.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield a

(g/g)
Fermentation

Strategy Reference

Engineered cell factories

E. coli XAR31

Introducing and overexpressing CgaspC, Cgppc, Mspck,
glk, bt-ca, acs, Cgasp, BsrocG and CR, deleting genes

involved in byproduct biosynthesis, developing
a cofactor

self-sufficient system, optimizing the
fermentation conditions

glucose 33.1 0.39 fed-batch [15]

C. glutamicum
SLV. pEKEx3-aspB

Deleting genes involved in byproduct biosynthesis
(sdhCAB, ldhA and avtA) glucose ~5.72 a 0.75 flask [18]

B. flavum 70

Developing several mutations: a citrate
synthase-defective glutamate auxotroph,

S-(2-aminoethyl)-L-cysteine-resistant mutant, a
methionine-insensitive revertant and

hosphoenolpyruvate carboxylase, a supplement
of biotin

glucose 22.6 0.22 flask [16]

Enzyme catalysis

E. coli pMA-RBS4-
G27A/G171A

Co-overexpressing maleate cis-trans isomerase (MaiA)
mutant and aspartase (AspA) on the plasmid and

optimizing their activity ratio by ribosome binding site
(RBS) regulation

maleate 419.8 0.72 5-L fermenter [13]

E. coli
JCL1258/pBAW2/

pASP400

Overexpressing aspC and tyrB on plasmid pASP400 and
overexpressing parB and aspA on plasmid pBAW2 fumarate 77.60 a 0.83 [14]

a represents that the data were derived by calculating according to the literature.
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Figure 1. Biosynthetic pathways of L-aspartate and β-alanine. Here shows the metabolic pathways
for L-aspartate and β-alanine biosynthesis with glucose as the substrate. Phosphoenolpyruvate is
produced from glucose through EMP, then it can be converted to oxaloacetate or fumarate, which are
the direct substrates for L-aspartate. Pyruvate derived from phosphoenolpyruvate can be metabolized
to OAA or malate. Malate is catalyzed by fumarase to produce fumarate. β-alanine is derived
from L-aspartate with aspartate decarboxylase [19]. ppc, phosphoenolpyruvate carboxylase; pck,
phosphoenolpyruvate carboxykinase; pyk, pyruvate kinase; pyc, pyruvate carboxylase; mdh, malate
dehydrogenase; maeA, malate dehydrogenase; maeB, malate dehydrogenase; fumABC, fumarase;
aspA, aspartate ammonia-lyase; aspDH, NADH-dependent aspartate dehydrogenase; aspC, aspartate
transaminase; AOX, alcohol oxidase; maiA, maleate cis-trans isomerase.
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2.2. Developing Cell Factories to Produce β-Alanine

β-alanine is a non-essential amino acid that is naturally synthesized by the liver. It
is used to synthesize the dipeptide carnosine, a powerful antioxidant [20]. β-alanine has
various applications in the food and fitness industries. As a food additive, β-alanine is
used as a flavor enhancer and acidity regulator. It is particularly useful in meat products,
as it offers a pleasant taste and acts as a natural preservative [21]. In fitness industries,
it is commonly used as a sports nutrition supplement to help increase endurance, delay
fatigue and improve exercise performance [22]. The global market for β-alanine is ex-
pected to grow in the coming years, driven by the increasing demand for sports nutrition
supplements and functional foods. The global market revenue of β-alanine was 75 mil-
lion USD in 2019 and will reach 99 million USD in 2031, with a CAGR of 4.65% during
2023–2031 (https://www.marketwatch.com/press-release/beta-alanine-market-global-
industry-share-trends-size-growth-opportunity-and-forecast-2023-2031-2023-04-14, ac-
cessed on 3 May 2023).

Currently, β-alanine is mainly produced via chemical synthesis, which involves
toxic precursors and operates under harsh conditions [23]. For enzymatic processes,
β-alanine can be derived from L-aspartate and fumarate. When L-aspartate, the pre-
cursor of β-alanine, was fed to E. coli expressing L-aspartate-α-decarboxylase, over 271 g/L
of β-alanine was produced at a conversion rate of over 92% (Table 2). Although the highest
conversion efficiency could be 97.2% when L-aspartate was used as the substrate, the
cost for β-alanine biosynthesis is too high since the market price of L-aspartate is around
$5000/ton, while the price for β-alanine is $6000/ton (Table 2). When fumarate is used
as the substrate, it needs two enzymes, L-aspartate ammonia-lyase and L-aspartate-α-
decarboxylase, to finish the β-alanine biosynthesis, and the highest titer can reach 200.3 g/L
with a conversion efficiency of over 90% (Table 2). There have been a few studies on the
production of β-alanine with bacteria through metabolic engineering. The bacteria used for
constructing a β-alanine-producing cell factory include E. coli, C. glutamicum, B. megaterium
and Pichia pastoris (Table 2). Glucose and methanol are used as carbon sources for β-alanine
biosynthesis. Glucose is metabolized through the pentose phosphate pathway or EMP
to produce PEP, which is converted to OAA, the substrate for L-aspartate biosynthesis.
L-aspartate is converted to β-alanine by L-aspartate decarboxylase (Figure 1). With glucose
as the substrate, the best strain for β-alanine biosynthesis is from C. glutamicum, and the
highest reported titer of β-alanine was 166.6 g/L with a productivity of 1.74 g/(L.h) [24]
(Table 2). However, the yield was only 0.28 g/g glucose (the maximum theoretical yield is
0.99 g/g glucose) due to the use of the pentose phosphate pathway and aerobic fermentation
instead of anaerobic conditions for producing β-alanine. The metabolic engineering strate-
gies they adapted were introducing L-aspartate 1-decarboxylases (encoded by panD) from
B. subtilis, improving the supply of OAA and L-aspartate and speeding up the secretion of
β-alanine. With glucose as the substrate, the highest yield was 0.75 g/g with engineered
E. coli [15] (Table 2). When methanol was added to a culture of methylotrophic Pichia pastoris
2ADC-Spe, it was first converted to glyceraldehyde-3-phosphate with formaldehyde as
an intermediate and then to β-alanine (Figure 1). However, the titer of β-alanine was only
5.6 g/L (Table 2). Except substrate optimization, some researchers tried to develop new
methods to improve β-alanine production as well. For example, Dr. Alper’s group has
developed biosensor-assisted directed evolution and found ribonuclease E (encoded by rne)
had a negative influence on β-alanine biosynthesis. The final strain, E. coli eBA32, could
produce 34.8 g/L of β-alanine with fed-batch fermentation in 37 h [22]. Above all, this
shows that a highly efficient β-alanine-producing cell factory can be realized in the future.

https://www.marketwatch.com/press-release/beta-alanine-market-global-industry-share-trends-size-growth-opportunity-and-forecast-2023-2031-2023-04-14
https://www.marketwatch.com/press-release/beta-alanine-market-global-industry-share-trends-size-growth-opportunity-and-forecast-2023-2031-2023-04-14
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Table 2. Summary of microbial production of β-alanine.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

Engineered cell factories

E. coli XBR41

Introducing BspanD, deleting genes
involved in byproduct biosynthesis,

developing a cofactor
self-sufficient system, optimizing the

fermentation conditions

glucose 37.7 0.75 a Fed-batch [15]

E. coli NL-A13

High-throughput method to screen
L-aspartate-α-decarboxylase variant

ADCK43Y, evaluation and elevation cells’
tolerance to β-alanine, improving fumarate
supply and strengthening the pathway of

fumarate and OAA to L-aspartate,
optimizing culture medium

glucose
glycerol 11.9 Fed-batch [25]

E. coli W3110

Introducing panD from Bacillus subtilis,
rerouting fluxes of the central carbon

metabolism, relieving the inactivation of
L-aspartate-α-decarboxylase, optimizing the

fed-batch bioprocess

glucose 85.18 0.24 1.05 Fed-batch [26]

E. coli
ALA17/pTrc99a-
panDBS-aspBCG

Introducing panD from B.subtilis and aspB
from C. glutamicum, inactivating the

β-alanine uptake system, the aspartate
kinase I and III, iclR, ptsG, aroG, galR,

overexpressing ppc, aspC, aceB, aceA, glk, and
gltBD operon

glucose 43.94 0.20 Fed-batch [23]

E. coli W
FZβA-10

Introducing an L-aspartate a-decarboxylase
gene from Bacillus tequilensis, a L-aspartate

dehydrogenase gene from Pseudomonas
aeruginosa and a pyruvate decarboxylase

from Corynebacterium glutamicum,
overexpressing aspA, deleting three native

L-aspartate kinase genes and genes for
byproduct biosynthesis (ldhA, pflB, pta and

adhE)

glucose 43.12 0.89 Fed-batch [27]

E. coli eBA32
Biosensor-enabled high-throughput

screening, cofactor balancing and pathway
modification

glucose 34.8 Fed-batch

C. glutamicum
XQ-5

Deleting byproduct biosynthesis pathway
(lactate dehydrogenase and alanine/valine
aminotransferases), replacing L-aspartate

kinase (AK) with wild-type AK,
introducing and overexpressing a mutated

L-aspartate-α-decarboxylase
(BsADCE56S/I88M) from B. subtilis

glucose 56.5 39.5% b 0.79 Fed-batch [28]

C. glutamicum
BAL10

(pBA2_tr18)

Introducing panD from B. subtilis,
overexpressing PTS-independent glucose

uptake system, ppc, pyc, aspB, rocG from B.
subtilis, aspA from E. coli and β-alanine

exporter (NCgl0580), replacing the native
pck with that from Mannheimia

succiniciproducens (encoded by Mspck),
deleting odx and mdh

glucose 166.6 0.28 1.74 Fed-batch [24]

B. megaterium
BMDBPG

Introducing a codon-optimized panD from B.
subtilis, overexpressing aspB, ppc and

NADH-dependent glutamate
dehydrogenase (gdh)

glucose 17.60 0.23 0.78 [29]

methylotrophic
Pichia pastoris

2ADC-Spe

Overexpressing panD from B. subtilis and
aspDH from S. proteamaculans methanol 5.6 Fed-batch [30]
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Table 2. Cont.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

Enzyme catalysis

L-aspartate-α-
decarboxylase

(ADC) from C.
glutamicum

Overexpressed in Escherichia coli BL21(DE3),
optimal at 55 ◦C and pH 6 with excellent

stability at 16–37 ◦C and pH 4–7

L-
aspartate 12.85 97.2% b Purified

enzyme [31]

E.coli BTW

Co-expressing two different types of
L-aspartate-α-decarboxylase: one was from
B. subtilis and the other was from Tribolium

castaneum

L-
aspartate 271.5 92.4% b Whole cell [32]

E.coli BTEW

Co-expressing three enzymes: two types of
L-aspartate-α-decarboxylase (one was from
B. subtilis and the other was from Tribolium

castaneum) and one type of L-aspartase
(AspA) from E. coli

fumarate 200.3 90.0% b Whole cell [32]

B. megaterium
BMDA-6

Balancing the expression of
L-aspartate-1-decarboxylases (ADC) from B.
subtilis and aspartate ammonia-lyase (AspA)

from B. megaterium, optimizing the
cultivation conditions and biocatalysis

process parameters

fumarate 11.68 0.78 Whole cell [33]

a represents that the data were derived by calculating according to the literature. b the conversion efficiency of
the substrate.

2.3. Developing Cell Factories to Produce Ectoine

Ectoine is a naturally occurring organic molecule. It functions as a protective agent,
preventing damage to biological structures from harsh environmental conditions such as
osmotic and thermal stress [34]. Ectoine also has water retention properties, allowing it to
maintain hydration levels in cells, which is essential for the survival of organisms [35]. One
potential application of ectoine is in the cosmetics industry, for its water-binding properties,
which are key qualities for hydrating skin and hair. Besides this, ectoine has pharmaceutical
applications for the treatment of skin disorders, eye diseases, and respiratory diseases
as it has anti-inflammatory and antioxidant properties [36]. According to a report by
businessresearchinsights, the market for ectoine was 20 million USD in 2021 and is expected
to reach 31 million USD by 2028, growing at a CAGR of 6.6% from 2023 to 2028. This
growth is driven by the increasing demand for natural-based cosmetics and personal-care
products, as well as the growing awareness of the benefits of ectoine in healthcare (https:
//www.businessresearchinsights.com/market-reports/ectoine-market-100579, accessed
on 3 May 2023).

Ectoine is currently produced by chemical synthesis, biocatalytic approach and fer-
mentation. Ectoine can be chemically synthesized using chemical building blocks, such
as glycine or sarcosine [37]. However, this method is not commonly used due to its low
yield, high cost and low efficiency compared to biocatalytic and fermentation methods [37].
Ectoine can also be biosynthesized from its precursor, L-2,4-diaminobutyric acid (DABA),
using an enzyme called ectoine synthase [38]. DABA is produced by certain bacteria and
plants and can be chemically synthesized [39]. For fermentation, ectoine biosynthesis
is realized in kinds of bacteria. Since ectoine is a compatible solute, it is produced by
halophilic bacteria in response to high salt concentrations in their environments. Several
halophilic bacteria are natural producers of ectoine in response to salt stress (Table 3).
Among the natural producers, the best performer is H. elongate 1A01717, and this bacterium
could produce 15.9 g/L of ectoine with glucose as the substrate. Some natural producers
can convert glutamate to ectoine with L-aspartate as an intermediate (Figure 2). The key
strategy was optimizing the fermentation conditions, such as the culture medium and NaCl
concentration. With glutamate as the feedstock, the best performer is H.salina DSM 5928T,
which could produce 14.86 g/L ectoine with a yield of 0.14 g/g at a productivity of about

https://www.businessresearchinsights.com/market-reports/ectoine-market-100579
https://www.businessresearchinsights.com/market-reports/ectoine-market-100579
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0.32 g/(L.h) (Table 3). Polypeptone and yeast extract can also be the carbon sources for
ectoine biosynthesis (Table 3). When glycerol was added to ectoine biosynthetic medium, it
served as the source of acetyl-CoA (AcCoA) in the step converting L-2,4-diaminobutyrate
to N-acetyl-2,4-diaminobutyrate (Figure 2). In the industry, halophiles are used to produce
ectoine with fermentation on a large scale. However, high concentrations of salt could
corrode the equipment [40]. It is urgent to realize ectoine biosynthesis under low-salt
conditions. Luckily, with the development of metabolic engineering and new technologies,
that is not a dream anymore.

Table 3. Summary of microbial production of ectoine.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

Engineered cell factories

E. coli ET11
(ectA:ectB:ectC

= 1:2:1)

Introducing the ectABC gene cluster from
Halomonas venusta ZH, regulating the copy
number of ectA, ectB and ectC, eliminating

byproduct metabolic pathways, optimizing
the culture medium

glucose 53.2 0.33 1.11 fed-batch [41]

E. coli Ect05

Introducing ectABC gene cluster from
Halomonas elongata and a feedback-resistant

L-aspartate kinase (lysC) from
Corynebacterium glutamicum, deleting thrA

and iclR, improving ppc expression by
promoter replacement

glucose 25.1 0.11 0.84 fed-batch [42]

E. coli
S16-ectBAC

Introducing ectABC gene cluster from
Aestuariispira SWCN16T into E. coli BL21

sodium
aspartate

and
glycerol

2.26

cell suspension
bioconversion
reactions in the

optimum
buffer

[43]

E. coli ET01
Introducing the ectABC operon from

Halomonas venusta ZH, optimizing the
fermentation process

glucose 47.8 fed-batch [44]

E. coli BW25113

Introducing ectABC from Halomonas elongata
and overexpressing these three genes with

an arabinose-inducible promoter,
optimizing the fermentation process

aspartate
and

glycerol
25.1 4.1 b 1.04 whole-cell

catalysis [45]

E. coli ECT2 Introducing the ectABC genes from
Halomonas elongata, deleting lysA

glycerol
and

sodium
aspartate

12.7 1.27 0.53 whole-cell
catalysis [46]

C. glutamicum
ectABCopt

Introducing the ectABC genes from
Pseudomonas stutzeri and regulating their
expression with different promoters and

three linker elements

glucose,
sucrose

and
fructose

65 0.19 2.3 f fed-batch [47]

C. glutamicum
ECT-2

Introducing a codon-optimized synthetic
ectABCD gene cluster from Pseudomonas

stutzeri, inactivating the L-lysine exporter,
optimizing the fed-batch process

glucose 4.5 0.24 d 0.28 e fed-batch [48]

C.glutamicum
CB5L6

Introducing the ectBAC cluster from
Pseudomonas stutzeri, deleting pck, ldh and

sugR, improving the precursor supply
(overexpression of Ecasd and CglysCS301Y),
constructing repressor libraries (BetI from E.

coli and LmrA from B. subtilis)

glucose 45.52 0.25 fed-batch [49]
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Table 3. Cont.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

H.
hydrothermalis

Y2/∆ectD/∆doeA

Identifying the pathways for ectoine
synthesis and catabolism, deleting genes
involved in ectoine catabolism (EctD and

DoeA) and Na+/H+ antiporter (Mrp),
optimizing the culture medium

monosodium
glutamate 10.5 0.21 fed-batch [50]

H.
bluephagenesis
TD-ADEL-58

Overexpressing three clusters related to
ectoine biosynthesis, including ectABC,

lysC and asd, deleting byproduct
biosynthetic pathways

glucose 28 0.21 1.0 fed-batch [51]

Natural producers

Chromohalobacter
salexigens

Optimizing the medium composition,
especially the C/N ratio, to regulate the

metabolic pattern
glucose 4.21 fed-batch [52]

Chromohalobacter
salexigens

Producing ectoine with two continuously
operated bioreactors, regulating the

hyperosmotic conditions and thermal
stress

glucose 8.2 2.1 fed-batch [40]

Brevibacterium
sp. JCM 6894

Inducing ectoine biosynthesis with 2 M
NaCl, fermentation with non-sterilized

medium

polypepton
and dried

yeast extract
2.4 flask [53]

Brevibacterium
epidermis

DSM20659

Optimizing the fermentation conditions
and the extraction technology

monosodium
glutamate 8 0.05 0.08 e fed-batch [54]

H. boliviensis
LC1T

Optimizing NaCl concentrations and the
medium for fed-batch cultivations

glucose,
monosodium

glutamate
4.3 0.07 c 0.12 e fed-batch [35]

H. boliviensis
LC1T

Optimizing the nutrient parameters in the
fed-batch fermenter

glucose,
monosodium

glutamate
9.2 0.26 e fed-batch [55]

H. salina
BCRC17875

Optimizing the agitation speed and
medium composition yeast extract 13.94 fed-batch [56]

Sinobaca sp.
H24

Isolating an ectoine producer from soil,
optimizing culture medium, identifying

the genes involved in ectoine biosynthesis

yeast extract,
glycerol 0.01 flask [57]

H. salina DSM
5928

Optimizing the culture medium and NaCl
concentration

monosodium
glutamate 6.9 0.33 e batch [58]

H. elongata
DSM2581

Two nanostructures, multiwalled carbon
nanotube (MWCNT) and iron oxide

nanoparticle (Fe2 O3 NPs), to increase the
availability of the substrate

glucose 14.25 batch [59]

Marinococcus
sp. MAR2

Optimizing the culture condition with
response surface methodology (RSM) and

a fed-batch strategy
yeast extract 5.6 0.16 e fed-batch [60]

H. salina DSM
5928T

Optimizing the two-step fermentation
conditions: growing of cells and

production of ectoine by resting cells

monosodium
glutamate 14.86 0.14 0.32 e batch [61]

Marinococcus
sp. ECT1

Developing semi-synthesized medium
(YAMS medium), optimizing the yeast

extract concentrations
yeast extract 2.5 batch [62]

H.
brevibacterium
sp. JCM 6894

Optimizing the conditions for ectoine
biosynthesis

polypepton,
glucose,

yeast extract
2.5 [63]
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Table 3. Cont.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

H. campaniensis
G8-52

(CCTCCM2019777)

Developing a higher ectoine producer by
multiple rounds of UV mutation, identifying

the key mutations (orf00723 and orf02403
(lipA)) related to ectoine biosynthesis

sodium L-
glutamate 1.51 flask [64]

H. elongata
DSM 2581T

Testing NaCl influence on ectoine
biosynthesis, revealing higher NaCl

concentration activating genes involved in
the pentose phosphate pathway,

Entner–Doudoroff pathway, flagellar
assembly pathway, ectoine metabolism,

repressing genes involved in the
tricarboxylic acid cycle and fatty acid

metabolism

12.91 [65]

H. boliviensis
DSM 15516(T)

Optimizing the conditions for two-step
fermentation and producing ectoine with

milking process
glucose 8.9 0.38 e fed-batch [66]

P. halophilum
DSM 102817T

Optimizing the culture medium, developing
strategies for ectoine isolation glucose 0.41

a flask [67]

H. elongate
1A01717

Optimizing the ectoine extraction and
purification process glucose 15.9 fed-batch [68]

a represents that the data were derived by calculating according to the literature. b g/g DCW. c g/g DCW
calculated according to the literature. d g/g substrate calculated according to the literature. e calculated according
to the literature. f at the beginning of the feed phase.

For metabolic engineering of bacteria to produce ectoine, two strategies are used.
One approach is to introduce the genes that encode the enzymes involved in the ectoine
biosynthetic pathway into a bacterial host that has a relatively clear genome background
and well-developed gene operation method. For example, the ectABC genes, encoding
the three enzymes required for ectoine biosynthesis, are cloned from Halomonas elongata
and introduced into a bacterial host such as E. coli [44]. This is combined with additional
manipulation to increase precursor L-aspartate production. According to the literature, the
best engineered strain for ectoine biosynthesis is C. glutamicum ectABCopt, carrying the
ectoine pathway from Pseudomonas stutzeri that was expressed from synthetic promoters.
After fermentation condition optimization, C. glutamicum ectABCopt produced about 65 g/L
of ectoine with a productivity of 2.3 g/(L.h) at the beginning of the feed phase [47]. An
engineered E. coli strain ET11 produced 53.2 g/L of ectoine with a yield of 0.33 g ectoine/g
glucose during fed-batch fermentation [41] (Table 3). The metabolic engineering strategies
they used were introducing the ectABC gene cluster from Halomonas venusta ZH, regulating
the copy numbers of ectA, ectB and ectC and eliminating byproduct metabolic pathways.
For improving the ectoine production further, they optimized the fermentation medium
as well. In summary, metabolic engineering strategies have yielded promising results for
realizing ectoine biosynthesis for industrial use.
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Figure 2. Pathways for producing L-aspartate derivatives with L-aspartate as the substrate. lysC,
aspartokinase; asd, aspartate-semialdehyde dehydrogenase; hom, L-homoserine dehydrogenase; ectB,
L-2,4-diaminobutyrate transaminase; ectA, 2,4-diaminobutyrate acetyltransferase; ectC, ectoine syn-
thase; panD, aspartate decarboxylase; PP0596, β-alanine-pyruvate transaminase; ydfG, 3-hydroxyacid
dehydrogenase; panC, pantothenate synthetase; aspC, aspartate transaminase.

2.4. Developing Cell Factories to Produce 3-Hydroxypropionate

3-hydroxypropionate (3-HP) is a naturally occurring organic acid and a precursor
chemical to produce various value-added chemicals such as acrylates, acrylic acid, malic
acid and 1,3-propanediol [69]. One potential application of 3-HP is as a building block
chemical for biodegradable polymers, potentially replacing petroleum-based plastics in
environmentally conscious products [70]. The global market for 3-HP and its related
compounds is expected to grow significantly in the coming years. According to a report
by marketwatch, the market for 3-HP was 117.14 million USD in 2022 and is expected to
reach 153.81 million USD by 2028 with a CAGR of 4.64% (https://www.marketwatch.com/
press-release/3-hydroxypropionic-acid-market-research-2023-2030-2023-06-15, accessed
on 3 May 2023). This growth is driven by the increasing demand for sustainable and eco-
friendly materials, as well as the increasing investment in renewable chemicals and biofuels.

Currently, 3-HP is produced via chemical synthesis and cell factory. 3-HP can be pro-
duced through chemical synthesis using acrolein, formaldehyde and hydrogen cyanide [71].
This method is not economically feasible due to the high cost of raw materials and envi-
ronmental concerns. For realizing 3-HP biosynthesis with bacteria, many researchers have
focused on optimizing the 3-HP biosynthetic pathway and tried different feedstocks to
increase the titer and yield of 3-HP during fermentation (Table 4). The feedstocks can be
a single sugar (such as glucose, xylose, glycerol, malonate, acrylic acid, 1,3-propanediol,
ethanol and sorbitol), a sugar combination (glycerol and acetate, glucose and cellobiose) or
a complex mixture (such as fatty acids (FAs), mechanically refined corn stover hydrolysate)
(Table 4). After β-alanine is produced from L-aspartate, it is converted to 3-HP via malonate
semialdehyde, an important intermediate for 3-HP biosynthesis. Except 1,3-propanediol
and acrylic acid, all of the substrates mentioned above can join 3-HP biosynthesis via
malonate semialdehyde (Figure 3). Glycerol is the most promising substrate for 3-HP
biosynthesis since it is a byproduct of biodiesel and just needs two steps to complete the
biosynthetic process. K. pneumoniae is the natural producer of 3-HP. After overexpressing
of PuuC, the best engineered performer of K. pneumoniae could produce 102.61 g/L of
3-HP with glycerol as the carbon source [72]. E. coli is the most popular strain used for
engineering, and it is modified to produce 3-HP from kinds of sugars as well (Table 4).
To date, the best one is introducing dhaB1234, gdrAB and ydcW from K. pneumoniae into
E. coli to realize 3-HP biosynthesis with glycerol as substrate, and the titer has reached

https://www.marketwatch.com/press-release/3-hydroxypropionic-acid-market-research-2023-2030-2023-06-15
https://www.marketwatch.com/press-release/3-hydroxypropionic-acid-market-research-2023-2030-2023-06-15
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76.2 g/L at a productivity of 1.89 g/(L.h) [73]. That is promising for industrial use. Yeast
has also been engineered to produce 3-HP via the malonyl-CoA pathway, and the titer
has reached 71.09 g/L, which is the highest value with glucose as the substrate [74]. The
interesting thing is that 3-HP biosynthesis was finished in the mitochondria. Except over-
expressing malonyl-CoA reductase (MCR), they also optimized the expression of POS5
and IDP1 to improve NADPH supply. In addition, they found an ACC1 mutant could
improve 3-HP production as well. When 1,3-propanediol is used as the substrate, there
are only two steps needed to realize 3-HP biosynthesis, and the best performer is engi-
neered Halomonas bluephagenesis TD27, which could produce 154 g/L of 3-HP with a yield
of 0.93 g/g 1,3-propanediol (Table 4). The metabolic engineering strategies were delet-
ing the 3-HP degradation pathway and overexpressing alcohol dehydrogenases (AdhP)
to improve 3-HP biosynthesis [73]. Halomonas bluephagenesis is promising for industrial
use since it can be cultured under an open and unsterile condition with continuous pro-
cess [75]. Except the organisms mentioned above, 3-HP biosynthesis has also been realized
in Schizosaccharomyces pombe, Lactobacillus reuteri, Debaryomyces hansenii, Rhodococcus ery-
thropolis, Lentilactobacillus diolivorans and Gluconobacter oxydans (Table 4). The chassis cells
and its cultivation conditions have great influence on 3-HP biosynthesis. Above all, it is
promising to realize green biosynthesis of 3-HP via metabolic engineering in the industry.

Table 4. Summary of microbial production of 3-HP.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

Engineered cell factories

E. coli FA08

Optimizing the FA utilization pathway and
fermentation conditions, introducing 3-HP

biosynthesis module and balancing the
carbon flux to maximize 3-HP production

fatty acids
(FAs) 52 1.56 fed-batch [76]

E. coli
ZJU-3HP01

Developing a dual-substrate fermentative
strategy, balancing the activity between

glycerol dehydratase and aldehyde
dehydrogenase with glucose added

glycerol
and

glucose
17.20 fed-batch [77]

E. coli WL
(pTac15kBAB,

p100Rkyd)

Introducing a glycerol-dependent 3-HP
biosynthetic pathway (dhaB1234, gdrAB and
ydcW) from Klebsiella pneumoniae, regulating

the expression of ydcW, optimizing the
fed-batch fermentation conditions

glycerol 76.2 0.457 1.89 fed-batch [73]

E. coli W
DUBGK

Identifying the 3-HP-tolerant Escherichia coli
strain among nine strains according to their

growth in the presence of 25 g/L of 3-HP,
introducing the 3-HP biosynthetic pathway

into E. coli W, overexpressing them on
plasmids

glycerol 41.5 0.61 a 0.86 fed-batch [78]

E. coli PSO119

Overexpressing pyruvate aminotransferase,
3-hydroxyacid dehydrogenase,

L-aspartate-1-decarboxylase, L-alanine
aminotransferase, phosphoenolpyruvate

carboxylase and alanine racemase, adaptive
evolution, deleting L-valine transaminase,
developing a dual-substrate fermentative

strategy

glucose
and xylose 29.1 0.22 fed-batch [79]
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Table 4. Cont.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

E. coli JHS01304
Overexpressing galP and gpsA,

analyzing the metabolome, deleting
exogenous GPD1

glucose
and xylose 37.6 0.17 0.63 fed-batch [80]

Aspergillus niger
An3HP9/pyc2/
ald6a∆/3HP-6

Introducing the β-alanine biosynthetic
pathway, identifying and modifying the
genetic targets according to proteomic
and metabolomic analysis, optimizing

the fermentation conditions

corn stover
hy-

drolysate
36.0 0.48 b [81]

E. coli C43 (DE3)
ZXP05

Developing malonic acid transporter
mutants via directed evolution and

enzyme-inhibition-based high
throughput screening approach

malonate 20.08 1.55 a [82]

E. coli Q2186

Directed evolution of rate-limiting
enzyme MCR-C and fine tuning of

MCR-N expression level, optimizing the
fermentation conditions

glucose 40.6 0.19 fed-batch [83]

E. coli SH-BGK1

Modulating the expression level of
glycerol dehydratase (DhaB),

alpha-ketoglutaric semialdehyde
dehydrogenase (KGSADH) and glycerol

dehydratase reactivase (GDR)

glycerol 38.7 fed-batch [84]

E. coli JHS00947
expressing L. brevis
dhaB and dhaR and

E. coli aldH

Overexpression of dhaB and dhaR from
Lactobacillus brevis KCTC33069 and aldH
from E. coli, two-step feeding strategy

glycerol 14.3 0.26 fed-batch [85]

E. coli
SH501_E209Q/

E269Q

Developing variants of an aldehyde
dehydrogenase (GabD4) from

Cupriavidus necator
glycerol 71.9 1.8 fed-batch [86]

E. coli
JHS01300/pELDRR

+ pCPaGGRm

Deleting ptsG, overexpressing xylR,
GPD1 and GPP2 genes from S.cerevisiae,

dhaB1B2B3 and dhaR1R2 from
Lactobacillus brevis and aldhH from

Pseudomonas aeruginosa

glucose
and xylose 29.4 0.36 0.54 fed-batch [87]

E. coli
JHS_∆gypr-PT7

Overexpressing puuC with a strong
promoter, deleting puu operon repressor

gene, puuR

co-
fermentation
of glucose
and xylose

53.7 fed-batch [88]

E. coli BEP113

Overexpressing AdhEMut, mcr from
Chloroflexus aurantiacus and dtsR1, accBC

from Corynebacterium glutamicum,
modulating pntAB expression

ethanol 13.17 0.57 [89]

S. cerevisiae ST687

Integrating multiple copies of
malonyl-CoA reductase (MCR) from

Chloroflexus aurantiacus and
phosphorylation- and acetyl-CoA
carboxylase ACC1 genes into the

chromosome, overexpressing native
pyruvate decarboxylase PDC1,

aldehyde dehydrogenase ALD6 and
acetyl-CoA synthase from Salmonella
enterica SEacs (L641P), engineering

glyceraldehyde-3-phosphate
dehydrogenase to increase NADPH
supply, 13C metabolic flux analysis

glucose 9.8 0.13 a fed-batch [90]
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Table 4. Cont.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

S. cerevisiae N3IP_2

Producing 3-HP in the mitochondria by
overexpressing malonyl-CoA reductase

(MCR) in the mitochondria,
overexpressing POS5 and IDP1 to

improve NADPH supply,
overexpressing of an ACC1 mutant to

improve 3-HP production

glucose 71.09 0.23 0.71 fed-batch [74]

S. cerevisiae SH18

Genome integration of MCR-C encoding
C-terminal of MCR, improving supply

of malonyl-CoA and NADPH by
overexpressing MPCox, RtCIT1, YHM2,
MmACL/AnACL, ACC1, MDH3, RtME,
PYC1, IDP2, ZWF1, GND1, TKL1 and
TAL1, modulating the expression of a
fatty acid synthase gene FAS1 with a

glucose concentration-sensitive
promoter PHXT1

glucose 56.5 0.31 0.53 fed-batch [69]

Pichia pastoris
PpHP6

Introducing and engineering the mcr
gene from Chloroflexus aurantiacus,

improving NADPH and malonyl-CoA
supply by overexpressing the ACCYl

and cPOS5Sc, optimizing the
fermentation conditions

glycerol 24.75 0.13 0.54 fed-batch [91]

K. pneumoniae with
YneI

overexpression

Overexpressing aldehyde
dehydrogenase, YneI and YdcW glycerol 2.4 shake-flask

culture [92]

K. pneumoniae with
aldehyde

dehydrogenases
(ALDH) from
Bacillus subtilis

Introducing aldehyde dehydrogenases
(ALDH), DhaS from B.subtilis glycerol 18 [93]

K. pneumoniae
Q1643

Overexpressing glycerol dehydratase,
its reactivation factor (dhaB123, gdrA

and gdrB from K. pneumoniae), aldehyde
dehydrogenase (aldH from E. coli),

deleting dhaT and yqhD

glycerol 2.03 flask culture [94]

K. pneumoniae
∆adhP∆pflB

(pTAC-puuC)

Deleting adhP and pflB, overexpressing
puuC glycerol 66.91 1.40 fed-batch [95]

K. pneumoniae
-T7 (pET28a-puuC)

Developing the T7 expression system
and overexpressing puuC glycerol 67.59 0.5632 fed-batch [96]

K. pneumoniae Overexpressing ald4 and dhaB,
optimizing the fermentation conditions

glycerol
and

glucose
3.77 flask [97]

K. pneumoniae with
L. reuteri pduP
overexpression

Overexpressing a pduP gene from
Lactobacillus reuteri glycerol 1.38 batch

fermentation [98]

K. pneumoniae
∆dhaT∆yqhD

overexpressing
both PuuC and

DhaB

Deleting dhaT and yqhD, overexpressing
puuC and dhaB glycerol >28 >0.4 fed-batch [99]

K. pneumoniae
(p3tac-PuuC)

Overexpressing puuC, optimizing
fermentation conditions, mathematical

model analysis
glycerol 102.61 fed-batch [72]
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Table 4. Cont.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

K. pneumoniae
∆ldh1∆ldh2∆pta

(pTAC-puuC)

Overexpressing puuC, deleting the
pathways for lactate and acetate

biosynthesis according to metabolix flux
analysis, optimizing fermentation

conditions, describing a flux
distribution model of glycerol

metabolism

glycerol 83.8 0.54 fed-batch [100]

Schizosaccharomyces
pombe

overexpressing
Cut6p and CaMCR

Overexpressing the S. pombe acetyl-CoA
carboxylase (Cut6p) and the
malonyl-CoA reductase from

Chloroflexus aurantiacus (CaMCR) with
the S. pombe hsp9 promoter, optimizing

the fermentation conditions

glycerol
and acetate 7.6 [101]

Schizosaccharomyces
pombe

Dissecting the mcr gene from
Chloroflexus aurantiacus into two

functionally distinct fragments and
balancing the activity of them,

overexpressing aldehyde
dehydrogenase, acetyl-CoA synthase
and pantothenate kinase, introducing

beta-glucosidase

glucose
and

cellobiose
11.4 0.11 b fed-batch [102]

engineered
Halomonas

bluephagenesis TD27

Deleting the 3-HP degradation pathway,
overexpressing alcohol dehydrogenases

(AdhP)

1,3-
propanediol 154 0.93 2.4 fed-batch [75]

Natural producers

Lactobacillus reuteri Optimizing fermentation conditions glycerol 5.2 1.3 fed-batch [103]

Lactobacillus reuteri
DSM17938

Comparing the ability of three
Lactobacillus reuteri strains to produce

3-HP, analyzing the influence of glycerol
and metabolites on strains’

physiological states and survival

glycerol 2 [104]

Debaryomyces
hansenii WT39

Selecting strains with propionic acid as
the substrate, making mutations with

the low-energy ion N+
glucose 62.42 1.30 flask [105]

Rhodococcus
erythropolis LG12

Isolating strains with acrylic acid as the
substrate, optimizing the fermentation

conditions

acrylic
acid 17.5 1.11 a 0.22 [106]

Lentilactobacillus
diolivorans Optimizing the fermentation conditions

0.025
mol/mol
glucose/
glycerol

67.7 fed-batch [107]

Gluconobacter
oxydans ZJB09112 Optimizing the fermentation conditions 1,3-

propanediol 76.3 1.5 fed-batch [108]

K. pneumoniae and
Gluconobacter

oxydans

Developing a two-step process to
produce 3-HP with glycerol glycerol 60.5 0.50 [109]

a represents that the data were derived by calculating according to the literature. b the unit is C-mol 3-HP/
C-mol sugars.

2.5. Current Process for Developing Cell Factories to Produce D-Pantothenic Acid

D-pantothenic acid is a water-soluble B-vitamin (Vitamin B5) that plays a crucial role in
energy metabolism and the synthesis of various compounds, such as fatty acids, cholesterol
and steroid hormones [110]. The global market of D-pantothenic acid was valued at about
460.3 million USD in 2020 and is expected to exhibit a CAGR of 6.19% over the forecast pe-
riod (2021–2028). It is primarily driven by the application of D-pantothenic acid as an ingre-
dient in dietary supplements and animal feed. It is also used in the production of cosmetics,
pharmaceuticals and food additives. (https://www.globenewswire.com/en/news-release/

https://www.globenewswire.com/en/news-release/2021/12/14/2351835/0/en/At-6-2-CAGR-Global-Pantothenic-Acid-Market-to-Reach-US-750-7-Million-by-2028-Says-Coherent-Market-Insights-CMI.html
https://www.globenewswire.com/en/news-release/2021/12/14/2351835/0/en/At-6-2-CAGR-Global-Pantothenic-Acid-Market-to-Reach-US-750-7-Million-by-2028-Says-Coherent-Market-Insights-CMI.html
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2021/12/14/2351835/0/en/At-6-2-CAGR-Global-Pantothenic-Acid-Market-to-Reach-US-
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Figure 3. Biosynthetic pathways of 3-HP. The substrate used for 3-HP biosynthesis is marked in bold.
dhaB, glycerol dehydratase; aldH, aldehyde dehydrogenase; matB, malonyl-CoA synthetase; mcrC,
malonyl-CoA reductase C-domain; mcrN, malonyl-CoA reductase N-domain; fadD, fatty acyl-CoA
synthetase; fadE, acyl-CoA dehydrogenase; fadB, α component of the fatty acid oxidation complex;
fadA, β component of the fatty acid oxidation complex; accBCDA, acetyl-CoA carboxyltransferase
complex; adhP, alcohol dehydrogenase; adhE, alcohol/aldehyde dehydrogenase; ACSS, acetyl-CoA
synthetase; Cut6p, acetyl-CoA/biotin carboxylase; BGL, beta-glucosidase; dhaT, alcohol dehydro-
genase; aldD, aldehyde dehydrogenase; PCS, acrylyl-CoA (propionyl-CoA) synthetase; ECHS1,
enoyl-CoA hydratase, HIBCH, 3-hydroxyisobutyryl-CoA hydrolase.

Synthetic methods for producing D-pantothenic acid include chemical synthesis, en-
zymatic catalysis and microbial fermentation. Currently, D-pantothenic acid is mainly
produced by chemical synthesis and enzymatic catalysis [111]. Chemical synthesis in-
volves several steps and requires some toxic chemicals, such as hydrocyanic acid and
sodium cyanide, which cause wastewater pollution [112]. For enzymatic catalysis, pan-
tothenate synthetase can catalyze pantoate and β-alanine to produce D-pantothenic acid.
For example, when pantothenate synthetase was overexpressed in E. coli or in Bacillus
megaterium (B. megaterium), D-pantothenic acid was biosynthesized after pantoate and
β-alanine were added into the culture medium (Table 5). The titer of D-pantothenic acid
in E. coli was 97.1 g/L at a productivity of 3.0 g/(L.h) [113], while that in B. megaterium
was about 45.56 g/L with fed-batch fermentation [114]. However, since pantoate is much
more expensive from commercial sources, enzymatic process is not a good choice for D-
pantothenic acid synthesis in the industry [115]. For microbial fermentation, D-pantothenic
acid biosynthesis was realized with glucose and β-alanine as feedstocks since glucose could
be converted to pantoate through the valine biosynthetic pathway combined with over-
expression of panB from different kinds of organisms (Figure 2). With this strategy, E. coli
DPAL 8 could produce 66.39 g/L of D-pantothenic acid with a yield of 0.27 g/g glucose
after optimizing the fermentation conditions (Table 5). For genome modification, several
genes involved in pantoate biosynthesis were overexpressed, such as pck, maeB, ilvD, ilvBN
and cycA. Pathways for byproduct biosynthesis were deleted or downregulated in E. coli
DPAL 8 [116]. L-isoleucine and citric acid are used for D-pantothenic acid biosynthesis also
since they can increase ATP and NADPH supply via the TCA cycle [117]. L-isoleucine is
also beneficial for improving the availability of CoA. When L-isoleucine and glucose were
used to feed the engineered strain, the best performer, E. coli ECPA, could produce 39.1 g/L
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of D-pantothenic acid with a yield of 0.175 g/g glucose at a productivity of 0.58 g/(L.h)
(Table 5). Furthermore, some engineered strains can use glucose as the only substrate for
D-pantothenic acid biosynthesis also, including E. coli, C. glutamicum and Saccharomyces
cerevisiae (Table 5). Moreover, the highest titer of D-pantothenic acid reached 68.3 g/L
with a yield of 0.36 g/g and a productivity of 0.794 g/(L.h) in E. coli DPA02/pT-ppnk. The
metabolic engineering strategies were overexpressing ppnk and deleting genes involved in
byproduct biosynthesis, such as aceF and mdh [118]. Overall, metabolic engineering is a
powerful tool for realizing D-pantothenic acid commercialization.

Table 5. Summary of microbial production of D-pantothenic acid.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

Engineered cell factories

E. coli
DPAL 8

Overexpressing pck, maeB, ilvD, ilvBN
and cycA, decreasing the expression of

gdhA, deleting pta, optimizing the
fermentation conditions

glucose
β-alanine 66.39 0.27 b fed-batch [116]

E. coli
DPA02/pT-ppnk

Overexpressing ppnk, deleting aceF and
mdh, optimizing the fermentation

conditions
glucose 68.3 0.36 0.794 fed-batch [118]

E. coli BL21(DE3)
strain expressing

pantothenate
synthetase from

C.glutamicum

Overexpressing pantothenate
synthetases from C. glutamicum

pantoate and
β-alanine 97.1 3.0

substrate
added at the

beginning
[113]

E. coli W3110 DPA-
11/pTrc99A-panB-
K25A/E189S-panC

Protein engineering of ketopantoate
hydroxymethyltransferase from C.
glutamicum, overexpressing panB,
CgKPHMT-K25A/E189S and panC

glucose
β-alanine

L-isoleucine
41.17 0.65 fed-batch [119]

E. coli
W3110/pTrc99A-

panB-panC

Optimizing the fermentation conditions,
overexpressing panB and panC

L-isoleucine
glucose 31.6 0.17 a 0.55 a fed-batch [120]

E. coli
DPA-9/pTrc99a-

panBC(C.G)

Overexpressing panB, panC, panE and
ilvC, making mutations of ilvG and coaA,
deleting avtA and ilvA, deregulating ilvE

β-alanine
glucose, 28.45 0.40 fed-batch [121]

Escherichia DPA21

Decreasing ilvE expression,
overexpressing ilvBN, glyA, pntAB, cyo,

cyoA and serAfbr, optimizing the
fermentation conditions according to

comparative transcriptome and
metabolomics analysis

citric acid,
glucose,
β-alanine

45.35 0.31 0.50 b fed-batch [122]

Bacillus megaterium
BM-4

Overexpressing panBC, panE, ilvBNC,
ilvD, serA and glyA

glucose,
β-alanine 19.70 0.26 0.78 b fed-batch [114]

B. megaterium BM-1
(pantoate-β-

alanine ligase
(PBL))

Overexpressing panC from B. subtilis pantoate and
β-alanine 45.56 fed-batch [115]

C. glutamicum
Pan-4/pXtuf-

panBCDBsu

Overexpressing panBCD from B. subtilis,
ilvBNC, aspB and aspA, deleting avtA,

ilvE and ilvA
glucose 18.62 5 L bioreactor [123]

Saccharomyces
cerevisiae
DPA171

Enhancing the D-pantothenic acid
biosynthetic pathway by adjusting the
copy numbers of key genes, deleting

bypass genes, balancing cofactor utilization,
optimizing GAL-inducible system

glucose 4.1 [124]

Natural producers

E. coli ECPA Optimizing the fermentation conditions L-isoleucine
glucose 39.1 0.175 0.58 a fed-batch [117]

a represents that the data were derived by calculating according to the literature. b the yield is g D-pantothenic
acid/g glucose.
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2.6. Developing Cell Factories to Produce L-Homoserine

L-homoserine is an amino acid and functions as an intermediate in multiple metabolic
pathways, including the synthesis of various essential amino acids, such as methionine
and threonine, and the production of certain pharmaceuticals and specialty chemicals [125].
The market for L-homoserine is relatively small compared to other amino acids due to its
inefficient production and expensive price [126].

In the industry, L-homoserine can be produced via chemical synthesis, enzymatic
synthesis and microbial fermentation. Chemical synthesis is expensive and complicated,
and enzymatic synthesis has limited scalability. Therefore, microbial fermentation is the
most promising method for producing L-homoserine. Microbial sources of L-homoserine
biosynthesis are bacteria such as E. coli and C. glutamicum, and glucose is usually used as the
feedstock. For producing L-homoserine from glucose, the biosynthetic pathway is shown
in Figure 2. Glucose is metabolized to L-aspartate (Figure 2) and then to L-homoserine cat-
alyzed by aspartokinase (lysC), aspartate-semialdehyde dehydrogenase (asd) and
L-homoserine dehydrogenase [127] (Figure 2). To date, the best producer of L-homoserine
is E. coli W-18/pM2/pR1, and the titer could reach 110 g/L with a yield of 0.64 g/g at a
productivity of 1.82 g/(L.h) (Table 6). The metabolic engineering strategies were improving
precursor supply, such as OAA and L-aspartate, by overexpressing glf, ppc, aspA, glk, asd,
metL and rhtA and decreasing byproduct biosynthesis, such as lactate and acetate, by
deleting lysA, thrB, metA, ldhA, adhE, pflB, ptsG, iclR and arcA. They also deleted lacI and
regulated key genes’ expression with the lac promoter [126]. The fermentation strategy was
fed-batch and two stage bioreaction: the growth stage and the production stage [126]. For
L-homoserine biosynthesis, the highest productivity was 1.96 g/(L.h), and it was realized
by engineering E. coli BW25113 after redox balance regulation and competitive and degrada-
tive pathway deletion [128]. Since C. glutamicum is successfully engineered to produce
kinds of amino acids, some researchers have also engineered it to produce L-homoserine
with different sugars. Among them, the best performer is C. glutamicum Cg18-1, which
could produce 63.5 g/L of L-homoserine with a yield of 0.25 g/g glucose (Table 6). Their
work focused on improving NADPH supply by regulating specific genes’ expression, such
as pntAB and ppnK, and pathway modification, such as enhancing the pentose phosphate
pathway (PPP) and introducing the Entner–Doudoroff (ED) pathway [129]. Since the pro-
ductivity was lower than the industry demand (≥2 g/L/h) and the yield is less than 50%
of the theoretical value, there is still a distance to achieve L-homoserine biosynthesis with a
cell factory in the industry.

Table 6. Summary of microbial production of L-homoserine.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

E. coli
W-18/pM2/pR1

Overexpressing glf, ppc, aspA, glk, asd,
metL and rhtA, deleting lysA, thrB, metA,
lacI, ldhA, adhE, pflB, ptsG, iclR and arcA,
optimizing the fermentation conditions

glucose 110.8 0.64 1.82 fed-batch [126]

E. coli HOM-14 Overexpressing thrB, thrAfbr, ppc, aspA8,
pntAB and rhtA

glucose 60.1 0.42 1.25 fed-batch [130]

E. coli H28
Overexpressing thrAfbr, thrABC, ppc,

aspC, aspA lysCcgl
fbr, rhtA pntAB, asdtmo

and adhpae, deleting lacI
glucose 85.29 0.43 1.78 fed-batch [131]

E. coli LJL12 Overexpressing thrA, deleting lysA,
metA, thrBC, iclR, gltA, pykA and pykF glucose 35.8 0.35 0.82 fed-batch [132]

E. coli SHL17
Overexpressing pntAB, rhtA, ppc, thrA

and asd, introducing a hok/sok
toxin/antitoxin system

glucose 44.4 0.21 0.93 fed-batch [133]
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Table 6. Cont.

Organism Metabolic Engineering Strategies Substrate Titer
(g/L)

Yield
(g/g)

Productivity
(g/(L.h))

Fermentation
Strategy Reference

E. coli HS15

Overexpressing pntAB, rhtB, glk, zglf,
ppc, aspC, gdhA, thrA, asd and aspA,
deleting lysA, metA, thrB, lacI, ldhA,

poxB, pflB and iclR

glucose 84.1 0.50 1.96 fed-batch [128]

C. glutamicum
Cg18-1

Overexpressing thrAS345F, aspC, pycP458S,
lysCT311I, asd, homV59A, brnFE, icdM1V,

dapAM1V and gapN, deleting mcbR, metD,
thrB, NCgl2688 and metY

glucose 63.5 0.25 fed-batch [129]

C. glutamicum
Cg09−1

Overexpressing lysC, asd, hom, pyc,
brnFE, lysCT311I and asd from C.

glutamicum and aspC and thrAS345F
from E. coli, deleting thrB, mcbR and

metD, decreasing the expression of dapA
and icd

glucose 8.8 batch [134]

Corynebacterium sp.
9366-EMS/329

Developing a mutant Corynebacterium
sp. requiring threonine sucrose 14.5 batch [135]

3. Perspective

Metabolic engineering is a promising method for realizing desired products biosyn-
thesis with a cell factory. Nowadays, except the natural producers, four kinds of microbials,
E. coli, B. subtilis, C. glutamicum and S. cerevisiae, are popular for producing kinds of com-
pounds with metabolic engineering since their genome backgrounds are relatively clear
and the gene editing methods are well developed. There are several factors that block the
commercializing of the engineered strains, and the detailed information is described as
the following:

(1) metabolic engineering of the bacteria to increase the titer, yield and productivity of
the target products

After the biosynthetic pathway is clear, the next step is optimizing the pathway
to improve the titer and yield of the target product, usually by balancing the supply
and consumption of the cofactors (NADH, NADPH, FADH2), deleting the competitive
pathways, regulating the expression of genes involved in the biosynthesis and increasing
the key enzymes’ activity as well as specificity. Shi et al. have developed a cell factory
to produce isobutanol under anaerobic conditions with a high yield of 0.92 mol/mol
glucose [136]. The strategies they applied were deleting competitive pathways, such as
biosynthetic pathways of ethanol, acetate and lactate, regulating key genes’ expression (alsS,
ilvC, ilvD, kivD and adhA) with strong artificial promoters and increasing the conversion
speed between NADH and NADPH by activating transhydrogenase and NAD kinase
together. With the development of bioinformatics, pathway optimization becomes more
rational and more accurate.

Aspartate ammonia-lyase, an important enzyme for L-aspartate biosynthesis, is al-
losterically regulated by L-aspartate. In addition, the activity of phosphoenolpyruvate
carboxylase, catalyzing phosphoenolpyruvate to oxaloacetate, is also inhibited by a high
concentration of L-aspartate. This problem should be solved for developing a high-
performance cell factory for L-aspartate biosynthesis. Protein engineering is relatively
difficult since it is time-consuming and usually unsuccessful. Luckily, with the develop-
ment of new technologies (e.g., Alphafold), it becomes easier and more predictable. Fei et al.
have developed a dual-fluorescence reporter system to screen L-aspartate-α-decarboxylase
variants with a high-throughput method and found one mutant with increased activity and
stability [137]. This mutant was further applied for β-alanine biosynthesis in E. coli Nissle
1917 [25]. The growth of the engineered strain is another factor that the researchers need
to consider since it will influence the productivity of the target products. The engineered
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strain for L-aspartate biosynthesis needs relatively enriched fermentation medium (yeast
extract added) since the bacteria could not grow well with mineral medium only [15].

After the target product is biosynthesized in the cell, the next step is to transfer it from
intracellular to extracellular in order to release its inhibition to the enzymes involved in its
biosynthesis. To realize this, the secretion mechanism of the target product needs to be inves-
tigated. For L-aspartate, we only know that its uptake is realized by the C4-dicarboxylate
transporter [138]. However, little information is given for its secretion. Ghiffary et al. have
found a β-alanine exporter in C. glutamicum, which had a great influence on the titer of
β-alanine [24].

(2) fermentation condition optimization

Some bacteria are natural producers of the target product, while the fermentation
strategies of those bacteria are not well developed. For example, many halophilic bacteria,
such as Halomonas sp. [51] and Sinobaca sp. [57], have the ability to produce ectoine, but we
have little data about its scale-up fermentation.

The engineered strain cannot enter into the industry until the fermentation cost is
competitive with the up-to-date synthetic method. The fermentation cost includes the
medium cost for strain growth, the substrates for target product biosynthesis and the
fermentation conditions, such as sterile treatment, pH control, dissolved oxygen (DO)
control and feeding strategy. Some researchers have focused on optimizing the fermentation
process. For example, E. coli ET01 is an engineered producer for ectoine biosynthesis. For
improving ectoine production, Dong et al. have optimized the fermentation condition,
such as feeding strategies and DO levels. Finally, 47.8 g/L of ectoine has been produced
with two-stage fermentation [44]. A Clostridium pasteurianum strain for 1,3-propanediol
biosynthesis developed by Dr. Zeng’s group could be fermented with medium of low
cost and unsterile treatment. The fermentation cost was decreased by 50% [139]. As a
renewable energy source, biomass is promising to be the substrate for valuable product
biosynthesis. Nowadays, many researchers try to find an economic way to break the
biomass into monosaccharides with less toxic side products produced. If it is successful,
the fermentation cost will be dramatically decreased.

(3) downstream processing

The purification cost is another important factor needing to be taken into account.
The methods for purification are determined by the characteristic of the target product,
the culture medium and the side products. Ectoine was produced by H. elongata with
fermentation. Chen et al. have designed a strategy with multiple steps to purify it, including
microfiltration, desalination, cation exchange, decolorizing with activated carbon, refining
with methanol, crystallization and centrifugation. However, the yield is only 43%, and the
process is time consuming. The method is not ready for commercial use [68].

Above all, there are many scientific problems that should be solved before a biosyn-
thesized product moves into commercialization. Luckily, with the development of novel
technologies, such as synthetic biology and bioinformatics, the engineering process be-
comes predictable and faster. According to the literature, to improve 3-HP production in
Aspergillus niger, several genes were selected and modified according to proteomic and
metabolomic analysis [81]. After protein engineering of ketopantoate hydroxymethyltrans-
ferase from C. glutamicum and overexpressing panB, CgKPHMT-K25A/E189S and panC,
E. coli W3110 DPA-11 could produce 41.17 g/L of D-pantothenic acid [119]. Moreover,
the fermentation condition of D-pantothenic acid in Escherichia DPA21 was optimized
according to comparative transcriptome and metabolomics analysis [122]. In the future,
with the development of genome editing technology such as CRISPR/Cas9, some natural
producers of 3-HP can be engineered. As a result, this gives us more choice to realize 3-HP
biosynthesis in the industry.

The cost of fermentation and downstream purification has great influence on the
product’s selling price and are of great concern to the fermentation company. We believe
these problems will be solved by the cooperation of researchers from different areas.
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