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Abstract: Ferulic acid esterases belong to the category of carboxylesterases and possess the capability
to enzymatically break down hemicellulose within lignocellulosic substances, thereby liberating
ferulic acid. A ferulic acid esterase from Lentinula edodes (LeFae) was expressed using Pichia pastoris,
and its characterization and effects on the in vitro fermentation of wheat straw were investigated in
this study. The optimal pH and temperature for LeFae were pH 7.0 and 60 ◦C, respectively. LeFae
exhibited a broad temperature and pH adaptability (>60% of the maximum activity at pH 4.0–7.0 and
40–70 ◦C) and excellent thermal stability. The activity of LeFae was increased by 30.3% with a dosage
of Tween 20 at 0.25% (v/v) and exhibited satisfactory resistance to Mn2+ and sodium dodecyl sulfate.
LeFae released ferulic acid from wheat straw and exhibited an obvious synergistic effect with cellulase
during wheat straw hydrolysis. LeFae severely inhibited the microbial fermentation of wheat straw
and reduced the in vitro dry matter digestibility, total volatile fatty acid yield, and 16S rDNA copy
numbers of Ruminococcus flavefaciens by 9.6%, 9.9 mM, and 40.1%, respectively. It also increased pH
and the concentration of soluble phenols during wheat straw fermentation. Pretreating wheat straw
with LeFae did not affect the microbial fermentation of wheat straw but resulted in the leaching of
more dissolving sugars. The current results showed that although LeFae can cooperate with cellulase
to promote the hydrolysis of wheat straw, its adverse effect on rumen microorganisms when directly
fed to ruminants is a problem worthy of consideration.

Keywords: ferulic acid esterase; wheat straw; hydrolysis; microbial fermentation

1. Introduction

As an agricultural by-product, wheat straw has been widely used in animal feed
production, biomass conversion, papermaking, and biosynthesis due to its rich biomass
content [1]. Wheat straw can be degraded by microorganisms in the rumen into volatile
fatty acids such as acetic acid, propionic acid, and butyric acid, providing energy for rumi-
nants [2]. However, despite being a primary source of roughage for ruminants, its ruminal
degradation efficiency has not yet attained the desired outcome, typically remaining below
50% [2,3]. This is mainly due to its intricate and stable lignocellulose structure resulting
from the complex covalent bonds among cellulose crystals, hemicellulose, and lignin [4].
The hemicellulose of wheat straw contains abundant ferulic acid, which accounts for more
than 65% of the total phenolic acid in the plant and about 0.5% of the cell wall [5]. Ferulic
acid, in the form of a monomer or dimer, establishes close linkages between arabinoxylan
and lignin through ester and ether bonds, respectively. This results in the formation of
complexes, such as the “arabinoxylan-ester-ferulic acid-ether-lignin bridge”, which hinders
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the access of fibrolytic enzymes secreted by rumen microorganisms to the intended location
and inhibits the degradation and utilization of fibers [4,6,7].

As an important component of the hemicellulose-degrading enzyme system, ferulic
acid esterases (FAEs) are a subclass of carboxylic acid esterases, which can break the ester
bonds in ferulic ester, oligosaccharide ferulic ester, polysaccharide ferulic ester, and eventu-
ally release ferulic acid [8]. The degradation of branched chains enhances the accessibility
of the main chain in heteropolysaccharides to a diverse array of cellulolytic enzymes [7,8],
which makes FAEs important for the degradation of hemicellulose. Previous studies proved
that the combination of FAEs and other cellulolytic enzymes had better effects on degrading
lignocellulose substrates. A feruloyl esterase-1 from termite hindgut bacteria synergisti-
cally acted with GH10 xylanases to promote the degradation of arabinoxylans, and the
degree of synergy between them was higher than 1 [9]. In a study by Record et al. [10], the
delignification of wheat straw was 38% when an Aspergillus niger feruloyl esterase was used
alone, but a combined xylanase/feruloyl esterase pretreatment, followed by the laccase
treatment, enhanced delignification to 55%.

Although FAEs have been found in various plant-cell-wall-degrading microorganisms,
fungi are still the main sources of FAEs used in industry [7]. According to Dilokpimol
et al. [7], FAEs from fungi were classified into 13 subfamilies using a novel phylogenetic
tree. Fungal FAEs from different subfamilies differ strongly in physical and biochemical
properties [7]. Lentinus edodes, as a white rot fungus, can decompose lignocellulose with
its enzymatic machinery and improve the nutritional value of low-quality feed including
agricultural straws, and consequently, it is a good source of the fibrinolytic enzyme gene
pool [11]. A gene coding a ferulic acid esterase (LeFae) from L. edodes was identified by
Sakamoto et al. [12] using genome sequencing technology and then deposited into EMBL
(accession number GAW07464.1), but there is still little information available on the enzyme.
In this study, we assumed that LeFae could hydrolyze the ferulate ester bonds in the cell
wall structure, enhance hemicellulose degradation, and improve the rumen fermentation
of wheat straw. Therefore, the LeFae was heterologously expressed using Pichia pastoris,
and its characteristics and effects on the degradation and in vitro fermentation of wheat
straw were investigated in this study. The obtained results provide empirical support and
a theoretical basis for the application of LeFae in ruminant production.

2. Materials and Methods
2.1. Analysis of Sequence Features

The amino acid sequence of LeFae from L. edodes (EMBL accession number GAW07464.1)
was aligned online by EMBL’s European Bioinformatics Institute (EMBL-EBI) services us-
ing the UniProtKB/Swiss-Prot database. Twenty similar sequences in the results were
selected to construct the phylogenetic tree for LeFae using Molecular Evolutionary Genetics
Analysis (MEGA) 11 software. Multiple alignments of LeFae and several FAEs from As-
pergillus oryzae (UniProtKB number Q2UMX6), A. flavus (UniProtKB number B8NPA4), and
A. terreus (UniProtKB number Q0CI21) were carried out using ClustalW. The homologous
modeling of LeFae was completed with the program Discovery Studio 2016 using A. oryzae
esterase (PDB number 6G21) as the template.

2.2. Construction of the Recombinant Strain

The coding sequence of the LeFae gene was optimized according to the codon prefer-
ence in P. pastoris and then synthesized and cloned into a pPICZαA vector using GenScript,
and the result was defined as pPICZαA-LeFae. The pPICZαA-LeFae plasmid was trans-
formed into Escherichia coli DH5α using heat shock and then extracted.

The recombinant plasmid pPICZαA-LeFae was linearized with Sac I endonuclease
and electrically transformed into P. pastoris X33 competent cells. Preliminary screening of
recombinant strains was performed on a YPD solid medium containing Zeocin and then
verified with PCR amplification using specific primers: forward prime (ATGGAAGCTTG-
GTTGCCTCAAAAC) and reverse prime (TCTTTGTGGAGTCCAAGCAG). Finally, gene
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sequencing of the positive clones was carried out. The screened recombinant strains were
grown in buffered glycerol-complex medium (BMGY) on a small scale and then centrifuged
and transferred into buffered methanol-complex medium (BMMY) to induce the expression
of LeFae, according to our previous report [11]. The LeFae activity was measured using 1%
starch-free wheat bran as substrate at pH 5.0 and 50 ◦C for 1 h [13]. The ferulic acid released
was analyzed using spectrophotometry at 310 nm [14]. The active strains were further
verified using a Western blot with the antibody against His-tag (66005-1-Ig, Proteintech
Group, Inc., Chicago, IL, USA).

2.3. Laboratory-Scale Production of LeFae

The laboratory-scale production of LeFae was performed using a 6 L bench-top biore-
actor (Minifors 2, Infors HT, Bottmingen, Switzerland). Shake flask culture was carried
out first by inoculating the LeFae strain into 200 mL BMGY media in a 1 L shake flask.
Then, the overnight-cultured strains were transferred into the 2 L medium of the bioreactor
for high-density culture. The detailed fermentation process followed that detailed in our
previous report [15]. The fermentation process was terminated when the yeast biomass
did not increase further. The supernatant of the yeast culture was obtained using cen-
trifugation. The LeFae in the supernatant was concentrated and purified with Ni-charged
affinity chromatography [15]. The content and purity of LeFae obtained were analyzed
using a Bradford Protein Assay Kit (Sangon Biotech, Shanghai, China) and sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

2.4. Characterization of LeFae

The temperature dependency of LeFae was analyzed using 0.1 M sodium citrate buffer
(pH 5.0) and 1% starch-free wheat bran at 20–90 ◦C for 1 h, and the LeFae activity was
assessed based on the preceding delineation. Similarly, the effect of pH on LeFae activity
was determined using 0.1 M sodium citrate buffer (pH 3.0–7.0) or 0.1 M sodium phosphate
buffer (pH 7.0–9.0) at 60 ◦C. The activity obtained was expressed as relative activity, with
the maximum activity set at 100%. Thermal stability was determined after pretreating
LeFae at 30–90 ◦C for 1 h, respectively, and then residual activity was analyzed under
optimal conditions.

The resistance of LeFae to some metal ions, inhibitors, detergents, and organic solvents
was analyzed after adding these additives into the reaction mixture. The reaction was
performed at optimal conditions. The activity of the enzyme without any additives was
considered as 100%.

2.5. Hydrolysis of Wheat Straw Using LeFae

The hydrolysis of wheat straw using LeFae was performed by incubating 10 mg
wheat straw and 25.0–200.0 µg LeFae in sodium citrate buffer (pH 7.0) at 40 ◦C for
1 h. The ferulic acid released was measured using an HPLC system (model D-7000,
Hitachi Ltd., Tokyo, Japan).

2.6. Synergism of LeFae on the Enzymatic Hydrolysis of Wheat Straw

To investigate the synergism of LeFae and cellulolytic enzymes, a reaction mixture
containing 10 mg wheat straw and 50 µg LeFae/inactive LeFae (control), was incubated at
pH 7.0 and 40 ◦C for 1 h, and then the liquid portion was discarded. The solid residues
were washed twice with distilled water. The residues were re-suspended in 1.0 mL 0.1 M
sodium citrate buffer (pH 5.0) containing 0.2 mg cellulase cocktail (C8272, Beijing Solarbio
Science & Technology Co., Ltd., Beijing, China) and incubated at 40 ◦C for 1 h. The reducing
sugars released were measured using a 3, 5-dinitrosalicylic acid (DNS) assay.

2.7. In Vitro Fermentation of Wheat Straw

An in vitro fermentation study was performed to investigate the effect of LeFae on
the microbial fermentation of wheat straw, according to the reports by Hughes et al. [16],
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using microbial inocula from bovine feces. Briefly, fresh feces were obtained from healthy
beef cattle fed a diet consisting of 700 g/kg rice straw and 300 g/kg concentrates. Four
hundred and fifty grams of feces were diluted into 1 L of buffered McDougal’s artificial
saliva. The mixture was stirred repeatedly with a glass rod at 39 ◦C for about 25 min
and then filtered through two layers of cheesecloth. Fermentation was carried out in a
120 mL serum bottle containing 200 mg wheat straw and 20 mL fecal inoculum. One
milligram of purified LeFae was supplemented into the fermentation bottle as an enzyme
treatment, and the same amount of inactivated LeFae was incubated similar to the control.
The bottles were incubated in a shaking bath at 39 ◦C for 48 h in triplicate. The blank only
containing fecal inoculum was synchronously incubated to correct the residual dry matter
(DM) in the samples. The bottles were placed on ice to terminate the fermentation, and
the fermentation mixture was filtered with pre-weighed nylon bags (37 µm aperture) to
determine the residual DM weight and in vitro dry matter digestibility (IVDMD) of wheat
straw. IVDMD was calculated as the DM that disappeared from the initial weight inserted
into the bottle. The filtrate was used for the analysis of pH, volatile fatty acids (VFAs),
ammonia-N, total soluble phenols, and 16S rDNA copy numbers of total bacteria and three
fibrolytic bacterial species including Ruminococcus flavefaciens, Fibrobacter succinogenes, and
Ruminococcus albus.

2.8. In Vitro Fermentation of Wheat Straw Pretreated with LeFae

An experiment was performed to investigate the in vitro fermentation of wheat straw
pretreated with LeFae. A reaction mixture (150 mL) containing 1.5 g of milled wheat straw
(<200 mesh) and 7.5 mg LeFae/inactive LeFae (control) was incubated at pH 7.0 and 40 ◦C
for 24 h. The liquid portion and the solid residues were separated using filtration with
a nylon mesh cloth (37 µm aperture). The liquid samples were used for the analysis of
leached dissolving sugars. The solid residues were washed thrice with distilled water and
then dried in an oven at 65 ◦C for 72 h. The dried solid residues were used as the substrates
for the in vitro microbial fermentation according to the aforementioned descriptions.

2.9. Analytical Procedures

The dry matter in the samples was determined at 65 ◦C for 72 h. The VFA concen-
trations in the filtered samples were determined using an HPLC system consisting of a
L7100 pump and a UV-Vis L7400 detector, according to Zhao et al. [17], with crotonic
acid as an internal standard. Microbial protein in the fermentation liquid (FLMCP) was
measured according to a previous report [18]. Total soluble phenols were determined
using the Folin–Ciocalteau method [19] with a modification that the reaction solutions were
incubated at room temperature in the dark for 2 h. Then, the 16S rDNA copy numbers of
the microorganisms selected were determined according to our previous report [11]. Ferulic
acid was determined using HPLC with a Hypersil C18 column (4.6 × 150 mm, 10 µm).
The flow rate was set to 1 mL/min, and the wavelength for UV detection was 310 nm.
The mobile phase was a mixture of water, methanol, and glacial acetic acid in the ratio of
74.8:25:0.2 (v/v). Leached dissolving sugars in the filtered samples were determined using
the phenol–sulfuric acid method [20].

2.10. Statistical Analyses

Statistical analyses were carried out using IBM SPSS statistics version 20 (IBM, Chicago,
IL, USA). When conducting comparisons among three or more groups, a one-way anal-
ysis of variance (ANOVA) was used. A least significant difference (LSD) test was used
to conduct multiple comparisons, while an independent samples t-test was utilized for
comparisons between two groups. Significance was considered when p ≤ 0.05, and trends
were discussed when p ≤ 0.10.
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3. Results and Discussion
3.1. Analysis and Production of LeFae

Though the LeFae gene was deposited in the EMBL database (accession number
GAW07464.1) by Sakamoto and his coworkers, the sequence analysis was not presented in
the previous publication [12]. The predicted theoretical molecular weight and isoelectric
point for LeFae were 28 kDa and pH 4.56, respectively, as identified using the ProtParam
tool of ExPASy accessed on 18 December 2021 (https://web.expasy.org/protparam/). The
phylogenetic tree showed that LeFae exhibited a relatively high genetic relationship with
a feruloyl esterase from A. flavus (EMBL-EBI number B8NPT0; Figure 1A). According to
Dilokpimol et al. (2016), LeFae may belong to the fungal FAEs 3 subfamily [7]. A multi-
alignment between LeFae and several FAEs from A. oryzae (UniProtKB number Q2UMX6,
AoFae), A. flavus (UniProtKB number B8NPA4, AfFae), and A. terreuswas (UniProtKB
number Q0CI21, AtFae) was carried out. As shown in Figure 1C, LeFae had a high similarity
(>60%) to these sequences. The strictly conserved residue, S98 (marked with a pentacle),
observed at the transition position between the β-sheet and α-helix in the predicted 3D
structure (Figure 1B), proved to be the catalytic site in a previous study [21]. LeFae was
heterologously expressed in P. pastoris. Two protein bands at about 62 and 68 kDa were
detected using SDS-PAGE and further identified using a Western blot (Figure 2). The two
observed molecular weights of LeFae were greater than its theoretical molecular weight
(28 kDa), which may be due to the following reasons. First, the LeFae protein has the
possibility of being glycosylated because five potential N-glycosylation sites were detected
in the LeFae sequence using NetNGlyc-1.0 accessed on 19 December 2021 (https://services.
healthtech.dtu.dk/service.php?NetNGlyc-1.0). Second, the LeFae protein possibly existed
in the dimer form, which was not untraceable. Dimer proteins consist of two subunits,
which may be either identical or different. It is likely that dimer proteins composed of
identical subunits demonstrate increased stability in comparison to monomer proteins.
Several FAEs with similar structures to LeFae, such as F. oxysporum FAE (PDB number
6FAT) and A. oryzae FAE (PDB number 3WMT), appeared in dimer form during crystal
resolution [21,22], while SDS in the SDS-PAGE cannot completely convert the multimers of
proteins into monomers [23]. In any case, however, further research is needed to determine
the real reason for the current result, although a similar phenomenon was also observed in
our previous study [11,15].
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3.2. Characterization of LeFae

The maximum activity of LeFae was observed at 60 ◦C. When the temperature was
between 40 ◦C and 80 ◦C, the enzyme could still maintain more than 50% of its maximum
activity (Figure 3A). LeFae exhibited its maximum activity at pH 7.0 and could maintain
more than 58% of the maximum activity between pH 4.0 and 8.0 (Figure 3B). The tempera-
ture stability results showed that after being pretreated at 40–70 ◦C for 1 h, LeFae could
still retain more than 85% of its original activity (Figure 3A). These results indicate that
LeFae has a broad temperature and pH range and excellent temperature stability. Similar
to the current result, an FAE from A. aculeatus showed its maximum activity at pH 7.0 and
60 ◦C [24].
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Figure 3. Analysis of dependence on temperature (A) and pH (B) and the temperature stability (A) of
LeFae. Activity was obtained by determining pH and temperature dependence and is expressed as
relative activity, where the highest activity is 100%. For temperature stability, activity for untreated
LeFae was defined as 100%. Each value represents the mean ± SD.

Except for Mn2+, other metal ions more or less inhibited the activity of LeFae (Figure 4A).
The inhibitory effect of Zn2+, Cu2+, and Ni2+ on the activity of LeFae was observed to
be substantial. The three ions inhibited LeFae activity by 43–48% at the concentration of
1 mM, but as the added concentration increased to 5 mM, more than 60% of the activity of
LeFae was inhibited, and especially, Cu2+ almost completely inactivated the enzyme. The
influence of metal ions on FAEs is related to the source of FAEs. In a study by Kanauchi
et al. [25], the presence of 1 mM of Zn2+, Cu2+, and Ni2+ had a minimal inhibitory impact
on the activity of FAE from A. awamori, as evidenced by maintaining 100%, 80%, and 95%
of the original activity, respectively. However, the activity of FEA from A. aculeatus was
reduced by about 40% and 60% with 5 mM of Zn2+ and Cu2+, respectively [24]. Donaghy
and McKay [26] observed that 5 mM of Cu2+ repressed 95% of the initial activity of FAE
from Penicillium expansum. The current results were partially consistent with the preceding
research. Metal ions may inhibit enzyme reactions by combining with the active group
of the enzymes, causing oxidative stress and damage to proteins, or by reacting with the
enzyme–substrate complex [27].

The resistance of LeFae to some inhibitors, detergents, and organic solvents was
investigated in the current study (Figure 4B). Regardless of the concentration, Triton-X100
and 2-mercaptoethanol both significantly inhibited the activity of LeFae. At a concentration
of 1 mM, dithiothreitol and EDTA did not exert a significant inhibitory influence on the
activity of LeFae. However, at a concentration of 5 mM, these substances demonstrated
substantial inhibitory effects on LeFae. These results were partially consistent with the FAE
from Lactobacillus plantarum [28], but the latter was not significantly inhibited with Triton
X-100. The inhibitory effect of dithiothreitol and 2-mercaptoethanol may be related to the
disulfide bonds in LeFae. Three potential disulfide bonds (Cys24-Cys184, Cys97-Cys167,
and Cys193-Cys202) were predicted using an online website (https://predictprotein.org/

https://predictprotein.org/
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accessed on 18 December 2021). Disulfide bonds play an important role in the three-
dimensional structure and catalytic activity of enzyme proteins, and a reducing agent
such as dithiothreitol or 2-mercaptoethanol could disrepute disulfide bonds, resulting
in an enzymatic conformational change and activity loss [29]. LeFae resisted a certain
concentration of SDS, which was similar to the results for A. awamori [25]. The impact of
Tween-20 on LeFae appeared to exhibit concentration-dependent behavior. Specifically, at
a concentration of 0.05%, Tween-20 demonstrated significant repression of LeFae activity,
resulting in a 60% decrease. Conversely, at a concentration of 0.25%, Tween-20 exhibited
a notable increase in LeFae activity, leading to a 30% rise. Similarly, the enhancement of
FAEs using Tween-20 has been observed in many reports [28,30]. However, we did not find
the reason why low concentration detergents inhibited the enzyme and high concentration
detergents promoted the enzyme, though this phenomenon was also observed in other
studies [31]. The organic solvents used in the present study all significantly inhibited the
activity of LeFae, regardless of the concentration.
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3.3. Hydrolysis of Wheat Straw Using LeFae

In the current investigation, LeFae demonstrated an ability to liberate ferulic acid
from wheat straw. The maximum ferulic acid yield was observed at a LeFae loading of
5 µg/mg substrate, but further increasing LeFae concentration reduced ferulic acid yield
(Figure 5A). Similarly, ferulic acid release from wheat straw using other FAEs has also been
observed in many studies [32]. The mechanism underlying the observed behavior that
ferulic acid yield decreases at high LeFae loading in enzymatic hydrolysis of wheat straw
is still unknown. It might be due to the lower adsorption efficiency for higher enzyme
loading than for diluted ones [33].

3.4. Synergism between LeFae and Cellulase

Previous studies have shown that the complexes formed by ferulic acid and other
hemicellulose components through ester bonds block the accessibility of fibrolytic enzymes
to fiber [4,6]. Therefore, the current study investigated the effect of removing ferulic acid
using LeFae on the cellulase hydrolysis of wheat straw. Compared with the control, LeFae
pretreatment significantly improved the following hydrolysis of wheat straw by cellulase,
resulting in an increase in reducing sugars by 18.5% (p < 0.05, Figure 5B). This suggested that
there was a synergistic effect between LeFae and cellulase on the hydrolysis of wheat straw.
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3.5. In Vitro Fermentation of Wheat Straw

An experiment was carried out to investigate the effects of LeFae on the in vitro fermen-
tation of wheat straw. The results showed that LeFae obviously affected the fermentation
parameters of wheat straw (Table 1). After incubation for 48 h, LeFae significantly reduced
the IVDMD (31.7% vs. 22.1%, p = 0.01) and the production of total VFA (71.4 vs. 61.5 mM,
p < 0.01), acetate (42.7 vs. 35.2 mM, p < 0.01), and propionate (14.0 vs. 11.1 mM, p < 0.01). Si-
multaneously, adding LeFae significantly increased or tended to increase the pH (5.8 vs. 6.1,
p < 0.01) and the concentration of ammonia-N (6.4 vs. 7.1 mM, p = 0.03), ferulic acid (35.0 vs.
63.2 ng/mL, p = 0.02), and total soluble phenols (24.3 vs. 26.7 µg-GAE/mL, P = 0.10) during
the fermentation of wheat straw. LeFae did not affect total bacteria, i.e., F. succinogenes
and R. albus, but tremendously reduced the 16S rDNA copy numbers of R. flavefaciens by
40.1% (p < 0.01). The reduced IVDMD echoed and coincided with the reduced VFA and
increased pH. The current results indicated that the presence of LeFae severely hindered the
fermentation of wheat straw by inhibiting the growth of some microorganisms. Although
these results were unexpected, they also had patterns to consider. Many previous studies
proved that phenolic acids, such as ferulic acid, p-coumaric acid, and sinapic acid, have a
very strong toxic effect on rumen microorganisms, including rumen bacteria, protozoa, and
fungi, consequently reducing the digestion and utilization of cell walls in forage [34–36].
Although some ruminal bacteria, such as R. albus, R. flavefaciens, and Wolinella succinogenes,
can catabolize and/or hydrogenate ferulic acid into less toxic forms, their FA-reducing
ability was possibly inhibited to some extent when the concentration of ferulic acid was
higher [35,37]. The addition of phenolic compounds could result in fewer bacteria associ-
ated with forage fiber [36]. Marvin et al. [38] reported that ferulic acid, p-coumaric acid,
and syringic acid released from maize cell walls by rumen microorganisms during in vitro
incubations negatively correlated with organic matter digestibility. Increased soluble phe-
nols and inhibited microbial fermentation of wheat straw with LeFae in the current study
confirmed the reports described above. However, unlike the current studies, FAEs did
not inhibit rumen microbial fermentation in some other studies [39,40], which may be
due to the discrepancy in phenolic acids produced by different FAEs and substrates, and
different phenolic acids and their metabolites have different toxicity to rumen microorgan-
isms [34,35]. However, in any case, the current results suggest that when LeFae is directly
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fed to rumen microorganisms, the phenolic acids produced and their adverse effects on
microorganisms are a problem that has to be considered.

Table 1. Effects of LeFae on the fermentation of wheat straw during in vitro incubation.

Item Control LeFae p

IVDMD (%) 31.7 ± 1.46 22.1 ± 3.46 0.01
pH 5.8 ± 0.05 6.1 ± 0.04 <0.01
Total VFA (mM) 71.4 ± 1.93 61.5 ± 1.45 <0.01
Acetate (mM) 42.7 ± 0.78 35.2 ± 0.73 <0.01
Propionate (mM) 14.0 ± 0.12 11.1 ± 0.30 <0.01
Butyrate (mM) 5.9 ± 0.67 5.5 ± 0.12 0.38
Isobutyrate (mM) 1.4 ± 0.25 1.1 ± 0.06 0.08
Valerate (mM) 1.3 ± 0.18 1.5 ± 0.32 0.59
Isovalerate (mM) 6.2 ± 0.24 7.2 ± 0.46 0.03
Ammonia-N (mM) 6.4 ± 0.16 7.1 ± 0.11 0.03
FLMCP (µg/mL) 262.4 ± 1.96 253.6 ± 24.72 0.57
Ferulic acid (ng/mL) 35.0 ± 3.89 63.2 ± 11.2 0.02
Soluble phenols (µg-GAE/mL) 24.3 ± 0.46 26.7 ± 1.85 0.10
16S rDNA gene copy numbers of microorganisms (log10N/mL)
Total bacteria 9.79 ± 0.02 9.82 ± 0.04 0.35
R. flavefaciens 7.58 ± 0.32 4.54 ± 0.27 <0.01
F. succinogenes 4.58 ± 0.17 4.65 ± 0.15 0.59
R. albus 5.65 ± 0.35 5.22 ± 0.37 0.21

An equivalent quantity of inactivated LeFae was used in the control group. Log10N/mL, log10 of 16S rDNA gene
copy numbers per ml fermentation liquid. Each value represents the mean ± SD.

3.6. In Vitro Fermentation of Wheat Straw Pretreated with LeFae

In order to mitigate the inhibition of phenolic acids on microorganisms, we further
investigated the in vitro fermentation of wheat straw pretreated with LeFae. The results
showed that all fermentation parameters listed for wheat straw residues were not different
between the LeFae and control groups (Table 2). This indicated that, compared to the
results in Section 3.5, the differences between the effects of control and LeFae on wheat
straw fermentation were shortened after phenolic acid removal. However, this still did not
meet our expectation that LeFae would be able to improve the utilization of wheat straw.
We speculate that this may be related to a change in the chemical composition of wheat
straw residues after pretreatment with LeFae. Our previous results showed that changing
the structure of the straw substrate could affect the leaching of dissolving sugars from
straw [41]. Therefore, we detected the total soluble sugars leached from wheat straw during
the pretreatment. The result showed that the soluble sugars released from the wheat straw
treated with LeFae were significantly increased compared with the control, suggesting
that the degradation of ferulic acid ester in the wheat straw enhanced the leaching of
soluble sugars (Figure 6). The wheat straw residues in the LeFae group contained less
soluble sugars than those in the control group, which may partly explain why there were
no significant differences in the in vitro fermentation parameters between the control and
LeFae groups, though LeFae may improve fiber degradation in wheat straw residues. These
results indicate that pretreating wheat straw with LeFae may be not a good approach to
utilize LeFae due to the loss of soluble sugar during the pretreatment.
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Table 2. The fermentation of wheat straw pretreated with LeFae during in vitro incubation.

Item Control LeFae p

IVDMD (%) 30.3 ± 1.94 27.0 ± 2.40 0.14
pH 7.3 ± 0.074 7.6 ± 0.22 0.11
Total VFA (mM) 42.0 ± 1.87 41.3 ± 0.37 0.56
Ammonia-N (mM) 4.4 ± 0.17 4.3 ± 0.29 0.77
FLMCP (µg/mL) 150.3 ± 1.67 142.0 ± 13.60 0.40
Soluble phenols (µg-GAE/mL) 29.6 ± 0.08 29.8 ± 0.29 0.25

An equivalent quantity of inactivated LeFae was usedd in the control group. Each value represents the mean ± SD.
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4. Conclusions

A ferulic acid esterase from L. edodes was expressed in P. pastoris. The optimal condition
for LeFae was pH 7.0 and 60 ◦C. LeFae had a broad temperature and pH range and excellent
temperature stability. The LeFae activity was significantly enhanced with Tween-20. LeFae
demonstrated the ability to perform hydrolysis on wheat straw, resulting in the liberation of
ferulic acid. Additionally, a noticeable synergistic effect was observed when cellulase was
used in conjunction with LeFae for the hydrolysis of wheat straw. LeFae severely inhibited
the fermentation of wheat straw by suppressing the growth of some microorganisms.
Pretreating wheat straw with LeFae resulted in the leaching of more soluble sugars. The
current results indicated that LeFae can be used to produce ferulic acid from wheat straw,
but when it is fed to ruminants, its adverse effect on rumen microorganisms is a problem
worthy of consideration.
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