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Abstract: Ultraviolet (UV) radiation reaching the Earth’s surface is a major societal concern, and
therefore, there is a significant consumer demand for cosmetics formulated to mitigate the harmful
effects of UV radiation. Synthetic sunscreens being formulated to block UV penetration include
inorganic metal oxide particles and organic filters. Lately, organic UV-absorbing compounds are
manufactured from non-renewable petrochemicals and, as a result, there is a need to develop a
sustainable manufacturing process for efficient, high-level production of a naturally occurring group
of UV-absorbing compounds, namely mycosporine-like amino acids (MAAs), for use as a sunscreen
additive to skincare products. Currently, the commercial production of MAAs for use in sunscreens is
not a viable proposition due to the low yield and the lack of fermentation technology associated with
native MAA-producing organisms. This review summarizes the biochemical properties of MAAs,
the biosynthetic gene clusters and transcriptional regulations, the associated carbon-flux-driving
processes, and the host selection and biosynthetic strategies, with the aim to expand our under-
standing on engineering suitable cyanobacteria for cost-effective production of natural sunscreens in
future practices.

Keywords: biosynthetic gene clusters; mycosporine-like amino acids; sunscreens; synthetic biology

1. Introduction

Chemicals, including oxybenzone, ZnO, and TiO2, are frequently used in skincare
products to protect against skin damage from UV rays. However, these chemicals have
several negative effects on human health and the environment. Several common chemical
UV sunscreen filters are absorbed by the skin and enter the bloodstream. The usage
of chemical and inorganic sunscreens has increased in recent decades to counteract the
harmful effects of UV radiation, but this practice has been linked to a number of skin-related
diseases, including skin allergies, rashes, premature aging, dermal cancer, and other skin
problems [1]. As a result, there is an increasing need to find bio-based sunscreen chemicals
that are efficient, safe, sustainable, and that have the ability to prevent UV-induced damage
and boost the effectiveness of natural sunscreens [2]. Mycosporines and mycosporine-like
amino acids (MAAs), synthesized by both prokaryotic as well as eukaryotic organisms such
as fungi, cyanobacteria, and algae, are natural UV protectants [3]. Mycosporines, which
are primarily produced in fungi, consist of the nitrogen substituent of an amino acid or an
imino alcohol at the C3 position, forming the cyclohexenone ring, while MAAs have an
additional nitrogen substituent conjugated via imine linkage, forming the cyclohexenimine
core structure [4]. MAAs are low molecular weight (<400 Da), water-soluble, and colorless
UV protectants. They have a high molar extinction coefficient (ε = 28,100–50,000 M−1 cm−1),
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and their maximum absorption wavelength lies within 309 to 362 nm. These compounds
possess a wide array of bioactivities, such as antioxidative, anti-inflammatory, anti-aging,
and antitumor activities [1]. Majority of research on cyanobacterial MAAs focuses on
specific areas, such as the identification of bioactive compounds, in-depth examination of
their molecular mechanisms of action, and the evaluation of their bioactivities via in vitro,
in silico, and in vivo analyses.

Lately, the gene-centric approach, or bottom-up approach, has been used to explain
the biosynthetic abilities of cyanobacteria by combining in silico studies with functional
genomics to link the genomic context, known as biosynthetic gene clusters (BGCs), to target
desired metabolites [5]. These days, it is easier to discover the cyanobacterial BGCs of
diverse compound families mainly through a number of in silico analysis tools available
for cyanobacterial genomic data, including antiSMASH and PRISM [6–8]. These resources
have made it easier to understand the cyanobacterial MAAs biosynthesis.

Most of the identified cyanobacterial BGCs are silent, making them a greater challenge
in MAAs research. Synthetic biology approaches, such as metabolic engineering and strain
mutagenesis, have been employed to activate the silent BGCs of other bacterial phyla, for
instance, actinomycetes. However, the use of these approaches is less reported for the
discovery of cyanobacterial products, mainly because of the slow growth of cyanobacterial
strains and because these are genetically less amenable, suggesting an open area to discover
and characterize the potential novel compounds from cyanobacteria [9]. The production of
the encoded molecule on a large scale for usage at an industrial level has been successfully
accomplished through the introduction of targeted metabolite biosynthetic genes into a
suitable heterologous host. In order to produce specific metabolite analogues or to maximize
the production yield, genetic contents can be redesigned with the help of heterologous
expression of the targeted secondary metabolite [10,11]. In this paper, we present recent
advances in the production of cyanobacterial MAAs in suitable heterologous hosts. We will
go into detail on a number of metabolic engineering and synthetic biology techniques for
constructing BGCs and enhancing transcriptional and translational productivity.

2. Application of MAAs (Sunscreen) in Cosmetics

The idea of sunscreen usage has changed from being seen as only a UV-protective
compound to provide broad-spectrum defense against photoaging, DNA damage, and
dyspigmentation [12]. When selecting a sunscreen, one should take into account the
possibility that infrared and visible light contribute to photoaging. UV rays and visible
light will be shielded against by using a broad-spectrum tinted sunscreen with SPF of
at least 30, which will lessen their impacts on photoaging [12]. For mending skin aging,
healing, and avoiding wrinkle development, several microalgal extracts, including those
from Spirulina platensis, Chlorella vulgaris, and Dunaliella salina, can be utilized [13,14]. The
extracts might provide creative and potential replacements for current cosmetics, and they
encourage the development of new uses for cosmetics.

2.1. Photoprotection Prospects of MAAs

MAAs, which are hydrophilic and colorless, are synthesized by marine cyanobac-
teria [15,16], microalgae, macroalgae, etc., that function as an antioxidant by reducing
ROS-induced DNA damage and as a photoprotectant by protecting cells from UVR [16,17].
Only a small proportion of these so-called “broad-spectrum sunscreens” are truly efficient
at blocking both UV-A and UV-B rays [18]. The strong ability of MAAs to absorb UVR
between 309 and 362 nm defines them as a broad-spectrum sunscreen, making it essential to
incorporate MAAs as a UV-filter agent in sunscreens [19]. Due to their high photostability,
and resistance to heat, pH changes, and various solvents, they can be a very stable cosmetic
product [20]. The first sunscreen, called Helioguard 365, was developed by the Swiss Firm
Mibelle AG Biotechnology, utilizing a naturally occurring UV-blocking component known
as MAA, that contains a certain amount of porphyra-334 and shinorine derived from red
algae, Porphyra umbilicalis [21,22]. The MAAs derived from the algae Dunaliella, Arthrospira,
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and Chlorella function as sunscreens to mitigate the harm caused by UVR. Odontella aurita,
a kind of microalgae, also showed potential free radical scavenging action. Coelastrin A
and Coelastrin B, two new MAAs from Coelastrella rubescens, have photoprotective char-
acteristics [23]. The recently discovered MAAs from Klebsormidium, klebsormidin A and
klebsormidin B, demonstrated that UVR exposure dramatically induces their production
and intracellular enrichment, indicating the role of these molecules as natural UV sun-
screens [24]. However, there are still very few MAAs that are commercially available [25].
Additionally, there are two commercial products called Helioguard®365 and Helionori®

that both include an extract with an enhanced or specified MAAs content [26].
Porphyra-334 and shinorine both provided concentration-dependent protection when

UV-A exposure was evaluated. The recommended dosage for the best protection was
5 µg mL−1 [27]. According to Schmid et al. [26], the formulation they utilized for their
study contained 5% of Helioguard®365 (final MAA concentration of 0.005%), the same
base with 4% of a synthetic UV-B sunscreen and 1% of a synthetic UV-A sunscreen. It
is well-known that Helioguard®365 has anti-aging and photoprotective properties. In a
dose-dependent manner, Helioguard®365 concentrations of 0.125% and 0.25% increased
cell viability; at 0.25% of Helioguard®365, cell viability was increased by as much as
97.8% [26]. On applying a 2% concentration of Helioguard®365 to the cell lines, the SPF
value of the sunscreen increases from 7.2 to 8.2. Sunscreen containing porphyra-334 with
shinorine and mycosporine-serinol in the ratio of 4.1:2.9% have the SPF value of 8.37 ± 2.12,
whereas for porphyra-334 with shinorine and mycosporine-serinol when applied separately,
the SPF value was observed from 4 to 6 [28]. An algal extract having a combination of
palythine, asterina-330, shinorine, porphyra-334, and palythinol obtained from H. cornea
and G. longissima showed a concentration-dependent increase in the SPF value. At a density
of 13.9 mg DW of algae per cm−2, the SPF values of G. longissima and H. cornea, respectively,
were found to be 7.5 and 4.8. Both algal extracts increased TNF-α and IL-6 production,
while exhibiting no cytotoxicity toward human cells [29]. Shinorine and porphyra-334
extract, which is found in liposomes and is encapsulated in Helioguard®365, reduce the
lipid peroxidation of human skin, improve skin firmness and smoothness, and play a
role in the prevention of premature aging. Helionori® can prevent sunburn and preserve
membrane lipids because it has mycosporine-palythine, porphyra-334, and shinorine,
which make it photo- and heat-stable [30]. Biotechnologically, MAAs can be used for a
variety of commercial purposes, such as in dietary supplements, medicine, functional
organic devices, and others. Therefore, the commercialization of MAAs with multiple uses
is an exciting prospective endeavor [31].

2.2. Anti-Aging Prospects of MAAs

It might be challenging to characterize skin aging since it is a result of systems involving
heredity and environmental variables [32]. Unlike chronological aging, premature skin
aging, or photoaging, is brought on by exposure to environmental stress [33]. Clinical mani-
festations of photoaging include dryness, hyper- and hypo-pigmentation, leathery texture,
and wrinkles [33]. As already mentioned, cyanobacteria synthesize molecules that may be
used in skin moisturization, UV protection (MAAs and SCY), and shielding against ROS
(MAAs, SCY, PBPs, and polyphenols), making them intriguing for use in skin anti-aging
treatments [16]. These effects were also mentioned for fibroblasts, which are responsible for
the skin’s firmness and elasticity, as well. The extracellular matrix (ECM), which mainly con-
sists of collagen and elastin and provides firmness and elasticity, is produced by fibroblasts
within the dermis [34]. In studies employing normal human dermal fibroblasts (nHDFs)
exposed to UV-B radiation, it was shown that extracts from Arthrospira platensis increased
cell viability and reduced DNA damage by inhibiting thymine dimers and matrix metallo-
proteinases (MMP) [35]. Mycosporine-glycine, porphyra-334, palythine, and shinorine, the
most prevalent MAAs, were examined for their UV-protective properties in recent research
using a variety of cell models (human skin fibroblasts and HaCaT keratinocytes) to demon-
strate their effectiveness as possible sunscreens [20]. Additionally, a number of anti-aging
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actions, particularly those that target the elastic fibers of the extracellular matrix (ECM), such
as collagen and elastin, as well as their remodeling enzymes, have been identified [36,37].
Furthermore, there are two commercial products called Helioguard®365 and Helionori®

that both include an extract with an enhanced or specified MAAs content [26].
The prevention of skin aging is a result of several mechanisms, including skin hy-

dration, UV protection, stimulation of fibroblast growth, and an increase in antioxidant
capacity. Cyanobacteria produce substances that have been shown to interfere with all
these processes in the aforementioned areas, making them attractive for cosmetics meant to
delay the onset of skin aging.

3. Biosynthesis and Genetic Regulation of MAAs

Despite having different molecular structures, mycosporines are composed of a typical
cyclohexenone ring structure, which provides them the same spectral characteristics and
absorption maxima [38]. Studies have demonstrated that a cyanobacterium or a cyanobac-
terial ancestor acted as the progenitor of the enzymes for MAAs production [39–43]. MAAs
are synthesized in cyanobacteria using a four-enzyme pathway. It was discovered that
different cyanobacterial species exhibit significant genetic variation in the mys gene cluster,
which becomes involved in MAAs biosynthesis [44]. The latest studies on the biochemical
processes and genetic research have contributed to developing knowledge of the funda-
mental steps that are involved in the biosynthesis of MAAs. Anabaena variabilis has been
used to explain the initial step in the biosynthesis of MAAs. Therefore, it is believed that
cyanobacteria were the first producers of MAAs, and the genes for MAA biosynthesis
most likely spread to other organisms. The shikimate pathway is suggested as a potential
biosynthetic route for MAAs [45]. MAAs are synthesized from phosphoenolpyruvate (PEP)
and erythrose 4-phosphate (E4P) (an intermediate in the pentose phosphate pathway). PEP
and E4P react to form 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP), which is
catalyzed by the enzyme DAHP synthase. DAHP is further involved in the formation of 3-
dehydoquinate (3-DHQ), which is a six-membered carbon ring-like structure (Figure 1). The
3-DHQ produces 4-deoxygadusol (4-DG), which is subsequently followed by gadusol [42].
Through a separate route, sedoheptulose 7-phosphate (S7P), another intermediate product
of the PPP, is converted into 4-DG in the presence of the enzyme dimethyl 4-degadusol
synthase (DDGS; MysA) and an O-methyltransferase (O-MT; MysB) [46].

The common precursor for all MAAs in both pathways is 4-DG, and the conjugation of
this precursor with a glycine molecule results in a simple mono-substituted cyclohexenone-
type MAA, called mycosporine-glycine (MG). This further acts as a common intermediate in
the production of di-substituted (aminocyclohexene imine-type) MAAs, such as porphyra-
334 (P-334) and shinorine (SH). In some species, MAAs cannot be synthesized simply by
substituting an amino acid for 4-DG, but they are produced through shifting the side chains
of amino acids via condensation (for the esterification process and amidation), dehydration
(for the formation of double bonds), decarboxylation (for chain shortening), and oxidation
and reduction (for hydroxylation) [45]. The shikimic acid pathway has been scientifically
investigated in order to further comprehend how it affects the production of 4-DG, which
is the precursor molecule for MAAs biosynthesis [15]. A shikimate intermediate, [Ue14C]
3-dehydroquinic acid, was selectively taken up by Trichothecium roseum, which resulted
in structurally similar fungal mycosporines’ production [47]. When [14C] pyruvate was
studied for MAAs biosynthesis via phosphoenolpyruvate, radiolabeled MAAs having
more specificity were formed, while [14C] acetate (polyketide pathway) was unable to
produce MAAs [48]. Each species requires a different set of biosynthetic pathways for
producing MAAs, and these pathways are affected by many abiotic factors, such as salinity,
temperature, humidity, moisture loss, and other abiotic factors [49]. Cyanobacteria were
not able to produce MAAs in the presence of tyrosine, which inhibits the shikimic acid
pathway. A similar result was found in the case of Nostoc commune when it was exposed to
glyphosate, which inhibits the shikimic acid pathway. Therefore, the shikimic acid pathway
can be suppressed or inhibited by exogenous tyrosine or glyphosate [42].
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Enzymes and genes (in italics) involved in the bioprocess are mentioned on both sides of the arrows. 
PEP, phosphoenolpyruvate; E4P, erythrose 4-phosphate; DAHP, 3-deoxy-D-arabino-heptulosonate; 
S7P, sedoheptulose-7-phosphate; 3-DHQ, 3-dehydroquinate; EV, 2-epi-5-epi-valiolone. 

Figure 1. Schematic representation of the biosynthetic pathway of MAAs in cyanobacteria. Synthesis
from the shikimic acid pathway intermediate and the pentose phosphate intermediate is shown.
Enzymes and genes (in italics) involved in the bioprocess are mentioned on both sides of the arrows.
PEP, phosphoenolpyruvate; E4P, erythrose 4-phosphate; DAHP, 3-deoxy-D-arabino-heptulosonate;
S7P, sedoheptulose-7-phosphate; 3-DHQ, 3-dehydroquinate; EV, 2-epi-5-epi-valiolone.



Fermentation 2023, 9, 669 6 of 19

Solar radiation intensity and spectrum are additional factors that influence the biosyn-
thesis of MAAs [50]. MG and serine are condensed by an NRPS-like enzyme with the gene
ava_3855, producing shinorine as a result. O-MT is encoded by the gene ava_3857, while the
enzyme S7P cyclase, known as 2-epi-5-epivaliolone synthase (EVS), is encoded by the gene
ava_3858. The enzymes along with their genes that are involved in biosynthesis of MAAs
in different organisms are listed in Table 1. Together, these gene products catalyze the
production of 4-DG, the original precursor of mycosporine [51]. Demethyl-4-deoxygadusol
synthase and O-MT enzyme are synthesized by genes such as ava_3858 and ava_3857,
respectively, to produce 4-DG. The product ava_3856 promotes the addition of glycine to
4-DG to produce mycosporine-glycine (MG) [31]. The 4-DG acts as the prominent precursor
utilized in both pathways to produce all MAAs [52].

Table 1. The enzymes along with their genes that are involved in the biosynthesis of MAAs in
different organisms.

Organism Genes (Protein ID) Accession
No.

DDG Synthase O-MT ATP-Grasp NRPS-like D-Ala D-Ala
Ligase Homolog

Anaebena variabilis
ATCC29413

ava_3858
(ABA23463.1)

ava_3857
(ABA23462.1)

ava_3856
(ABA23461.1)

ava_3855
(ABA23460.1) - CP000117.1

Nostoc punctiforme
ATCC29133

npun_R5600
(ACC83905.1)

npun_R5599
(ACC83904.1)

npun_R5598
(ACC83903.1) - npun_F5597

(ACC83902.1) CP001037.1

Aspergillus nidulans
FGSC A4

an6403.4
(CBF69538.1)

an6402.4
(CBF69540.1)

an6402.4
(CBF69540.1) - - BN001301.1

Actinosynnema
mirum DSM 43827

amir_4259
(ACU38114.1)

amir_4258
(ACU38113.1)

amir_4257
(ACU38112.1) - amir_4256

(ACU38111.1) CP001630.1

In majority of cyanobacteria, an operon usually carries the genes for a demethyl-4-
deoxygadusol synthase and an O-MT, both of which are necessary for the biosynthesis of
4-DG [53]. The biosynthetic genes npR5600, npR5599, npR5598, and npR5597 are found in
Nostoc punctiforme ATCC 29133, while ava_3858, ava_3857, ava_3856, and ava_3855 are found
in A. variablilis. The exogenous supply of S7P in Escherichia coli resulted in heterologous
expression of the genes npR5600–npR5598, thereby producing MG [54]. The biosynthesis
of MAAs starts with the intermediate S7P of the PPP in N. punctiforme ATCC 29133 and
A. variabilis ATCC 29413 [15]. The O-MT gene (ava-3857) deletion in A. variabilis ATCC
29413 revealed that both the shikimate and PPP depend on this gene product for the biosyn-
thesis of MAAs [46]. When the production of MAAs was studied in four cyanobacteria,
such as Anabaena sp. PCC 7120, A. variabilis PCC 7937, Synechococcus sp. PCC 6301, and
Synechocystis sp. PCC 6803, MAAs were only produced in A. variabilis PCC 7937. It was
reported by genome mining that two sets of the 3-dehydroquinate synthase (DHQS) genes,
YP_324358 and YP_324879, were present in A. variabilis PCC 7937, and it was revealed by
genomic region analysis that YP_324358 contains an O-MT gene, YP_324357, downstream
to it, while the rest of the cyanobacteria lack these. Deoxygadusol, which makes up the
common core of all MAAs, is synthesized in the presence of YP_324358 and YP_324357
genes. In N. punctiforme ATCC 29133, when DHQ was combined with the DHQ synthase
and O-MT homologues (npR5600 and npR5599, respectively) in the presence of the co-
factors: nicotinamide adeninedinucliotide (NAD+), S-adenosylmethionine (SAM), and
Co2+, 6-deoxygadusol (6-DG) was not synthesized. The notion that a shikimate pathway
intermediate is involved in MAA biosynthesis was disproved. The 6-DG was synthesized
in the presence of SAM, NAD+, and Co2+. Therefore, it can be concluded that 6-DG and
glycine are converted into MG by the A. variabilis gene ava_3856, with the involvement
of ATP and Mg2+ cofactors [55]. The pathway for the production of MAA is the same in
N. punctiforme ATCC 29133 and A. variabilis, and the homologous genes (npR5598–5600)
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are involved [56]. Figure 2 represents the MAAs biosynthetic gene clusters of different
microorganisms. NpR5598 functions as an ava_3856 homologue in N. punctiforme, although
its specific activity has not been identified. Homologues of ava_3855 are not found in the
genome of N. punctiforme, and it was also lacking in cyanobacteria which contain MAA
clusters. MG was synthesized in E. coli by heterologous expression of mysA, mysB, and
mysC, represented by npR5600, npR5599, and npR5598 genes. Based on the fact that the N.
punctiforme gene product NpF5597 has conserved homologues that are spatially associated
with the MAA cluster in numerous cyanobacteria, it shows homologies to the recognized
amino acid-ligating enzymes [54].
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organisms. A. variabilis ATCC 29413 and N. punctiforme ATCC 29133 are known producers of MAAs.
Comparison of genomic regions of Anabaena variabilis ATCC 29413 and N. punctiforme ATCC 29133
with Aspergillus clavatus NRRL 1, Cylindrospermum stagnale PCC 7417, Actinosynnema mirum DSM
43827, and Pseudonocardia sp. P1 (modified from Miyamoto et al. [57]).

In a genome-mining study, it was reported that production of MAAs takes place
in cyanobacteria in the presence of homologs of the EVS gene and is absent in non-
producers [58]. In A. variabilis ATCC 29413, the genetics of MAAs and key processes
in MAAs production were studied [53].

4. Toolkits for Heterologous Production of MAAs

The production of MAAs from both native and heterologous hosts has been trans-
formed by recent developments in metabolic engineering methodologies and the use of
synthetic biology technologies [59]. Cloning and assembly can be the main focus for the het-
erologous expression of cyanobacterial MAAs, followed by BGC expression, heterologous
host selection, and product optimization (Figure 3).
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Figure 3. Major metabolic engineering and synthetic biology toolkits essential for heterologous pro-
duction of mycosporine-like amino acids (MAAs) are listed as: (a) Genome mining using cyanobac-
terial genomic databases to identify BGCs responsible for MAAs biosynthesis. Domain ‘A’ repre-
sents adenylation, and ‘C’, ‘T’, ‘E’, and ‘TE’ represent condensation, thiolation, epimerization, and
thioesterase, respectively. Acyl-CoA ligase (AL) and acyl-carrier protein (ACP) are additionally
needed to initiate the secondary metabolite biosynthesis. (b) Restriction digestion and ligation, a
primary approach of cloning and assembling BGCs, is most commonly utilized for heterologous
expression of MAAs. (c) Considerations for heterologous expression and product analysis in heterol-
ogous hosts (modified from Sharma et al. [60]).

4.1. Cloning and Assembly of BGCs

Cloning, which literally means the formation of multiple copies of a genome or a gene
of interest, involves fragmentation of the DNA strand to obtain the gene of interest and
amplifying it, ligation of the desired sequence into the vector, transfection of the vector
into the heterologous host cells, and finally, the screening or selection of the transformed
host cell [61,62]. Transferring genetic materials into a heterologous host is a crucial and
basic step in the heterologous production of any natural product. Cyanobacteria produce a
wide variety of secondary metabolites with diverse functions, ranging from biomedical,
antibacterial, antitumor, and antifungal activities [63–66]. Some of these naturally occurring
cyanobacterial products are produced in small quantities, necessitating a large culture to
achieve a high yield. Recently, a technique known as “biosynthetic gene clusters” (BGCs)
has integrated the use of genomics and bioinformatics to address demands associated with
genes [5]. For enhancing the production of MAAs in cyanobacteria, some crucial genes
from the biosynthesis process of MAAs must be cloned and heterologously expressed into
an appropriate host, such as E. coli. Biosynthetic gene clusters (BGCs) reveal the specialized
gene clusters that code for secondary metabolites using the bioinformatics techniques
(Figure 3a). Non-ribosomal peptide (NRP) is a type of BGC, which has diverse structures
and functions and is synthesized by non-ribosomal peptide synthetases (NRPSs) [67]. The
most suitable hosts for cyanobacterial BGCs are E. coli, Actinobacteria, and yeast [68]. Small
BGCs are directly cloned using the conventional restriction digestion and ligation method
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(Figure 3b). This method has been used to successfully clone cyanobacterial BGCs for
MAAs from C. stagnale PCC 7417 and for shinorine from Fischerella sp. PCC 9339 [56,69].

As discussed above in the biosynthetic pathways, 4-deoxygadusol (4-DG), which
is a common intermediate from both PPP and the shikimic acid pathway [49], is a key
compound for MAAs synthesis. An enzyme from the ATP-grasp superfamily, MysC,
catalyzes the conversion of 4-DG into MG by adding an amino acid, L-Gly, at the third
carbon position. MG acts as an immediate precursor for the synthesis of various MAAs and
contains an amino acid moiety at the C1 position. It is possible to clone these BGCs from
diverse cyanobacteria into an appropriate host for the synthesis of MAAs. According to
Walsh’s group, the MysC enzyme from A. variabilis ATCC 29413, just like other enzymes of
the ATP-grasp superfamily, phosphorylates 4-DG instead of L-Gly, and it was biochemically
confirmed that a non-ribosomal peptide synthetase (NRPs)-like enzyme, MysE, catalyzes
this step in the biosynthesis of shinorine from MG. In N. punctiforme ATCC 29133, BGCs lack
a NRPs gene, and instead, a D-Ala-D-Ala ligase-like enzyme gene, mysD, is present [54].
On expression of mysD, BGCs in a heterologous host, such as E. coli, produce three MAA
analogues, shinorine in majority, and porphyra-334 and mycosporine-2-Gly in minority,
confirming MysD’s involvement in the MAAs biosynthesis. Katoch et al. [56] isolated a gene
cluster, myl (mylA–mylE), from C. stagnale PCC 741. These genes show homology to MAAs
biosynthetic gene clusters of A. variabilis and N. punctiforme. The myl gene cluster was
amplified through PCR, cloned in the pET-28b plasmid, and expressed in a heterologous
host, E. coli, which resulted in increased production of MAAs, detected through HPLC
analysis [56].

4.2. Heterologous Hosts for Producing Cyanobacterial MAAs

Successful heterologous production of cyanobacterial MAAs critically requires the
selection of the most suitable production chassis. The high-throughput library expres-
sion of cyanobacterial biosynthetic gene clusters (BGCs) requires translational expression,
availability of biosynthetic precursors, and cofactors that are essential to complete all
biosynthetic steps. A suitable host comprises of certain attributes, such as a faster growth
rate, easy genetic manipulations, high stability, and should be easily manageable under
laboratory conditions. While many BGCs that encode cyanobacterial MAAs are known,
the slow growth and lack of genetic tools in the native producers hampers their modifica-
tion, characterization, and large-scale production. To produce MAAs in large quantities
for commercialization, heterologous hosts can be engineered to express cyanobacterial
BGCs. Numerous efforts have been undertaken to choose and enhance the most effective
heterologous hosts for the efficient expression and mass manufacture of MAAs (Figure 3c).
The successful production of MAAs using various heterologous hosts is listed in Table 2.

Due to its rapid growth, simple culture conditions, metabolic plasticity, and well-
known genetic manipulation tools, E. coli is the most frequently used host for the het-
erologous expression of BGCs [70,71]. Mycosporine-ornithine/mycosporine-lysine are
naturally produced by C. stagnale PCC 7417. These MAAs were effectively expressed in E.
coli BL21(DE3) utilizing the restriction digestion cloning method [56].

Other cyanobacteria and actinobacteria were identified to have homologous gene
clusters [72]. Among the 30 MAAs that are reported in cyanobacteria, shinorine com-
prising of glycine and serine constituents is generally used for the production of natural
sunscreens [73]. Majority of the research has focused on using hosts such as cyanobacteria,
E. coli, Streptomyces, and Corynebacterium to boost the supply of shinorine, a naturally
occurring sunscreen [57,69,72,74]. From the filamentous cyanobacterium Fischerella sp.
PCC9229, shinorine biosynthetic genes were expressed in the cyanobacterium Synechocystis
sp. PCC6803, yielding 2.37 mg/g DCW (0.71 mg/L) of shinorine, as reported by Yang
et al. [69]. The gene expression levels were improved by using multiple promoters.

MAA biosynthetic gene clusters from actinobacterium Actinosynnema mirum DSM 43827
were expressed in Corynebacterium glutamicum, leading to the production of 19 mg/L of
shinorine, as reported by Tsuge et al. [74]. However, it was reported that via the expression
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of the same biosynthetic genes from A. mirum DSM 43827 in Streptomyces avermitilis SUKA22,
the yield was 13.9 mg MAAs/g DCW, which accounted for 154 mg/L of shinorine and 188
mg/L of total MAA [57].

Due to its safety and well-researched metabolic pathways, S. cerevisiae can be a viable
host for heterologous expression of MAAs [75]. After extensive host engineering work, the
shinorine BGC from N. punctiforme and xylose assimilation genes from Scheffersomyces stiptis
were expressed in yeast. The introduction of xylose assimilation genes was an effort to boost
the S7P pool to make it accessible for shinorine production. These genetic manipulations in
yeast resulted in the production of 31.0 mg/L of shinorine, as reported by Park et al. [73].

Tsuge et al. [74] utilized gluconic acid (GA) as a carbon source for shinorine production,
where GA acts as a carbon flux to the PPP and increases the production of an intermediate
S7P. When the operon genes (amir4256, amir4257, amir4258, and amir4259) responsible for
shinorine synthesis were introduced into a Gram-positive bacterium, Corynebacterium glu-
tamicum, no shinorine production was noted in the presence of the lactate dehydrogenase
(ldhA) enzyme. In an ldhA-deficient strain (named YTK674), an unquantifiable amount of
shinorine was produced because it inhibited the lactic acid production in the late exponen-
tial and stationary phases, which prevented the pH decrease and thus prolonged the cell
growth. Deletion of the tal gene in the ldhA-deficient strain increased the accumulation of
S7P, leading to 5.3-fold higher shinorine production (Tsuge et al. [74]).

Table 2. Production of MAAs in heterologous hosts.

Name
Origin of

MAAs Gene
Cluster

Heterologous
Hosts

Cloning
Method Culture Conditions

MAAs
ReferencesContent

(mg/g DCW)
Titer

(mg/L)

Shinorine
Anabaena

variabilis ATCC
29413

E. coli -
Batch, LB medium, 20 ◦C,

20 h, 500 mM
IPTG induction

- 0.15 [72]

Shinorine Fischerella sp.
PCC9339

Synechocystis sp.
PCC6803 RDL

Batch, BG11 medium
(0.5 mM serine), 26 ◦C,

13 days
2.37 0.71 [69]

Shinorine Nostoc
punctiforme

Saccharomyces
cerevisiae RDL

Batch, SC-Trp medium
(8 g/L xylose and 12 g/L

glucose), 30 ◦C, 120 h
9.62 31.0 [73]

Mycosporine-
ornithine/

mycosporine-
lysine

C. stagnale PCC
7417 E. coli BL21 (DE3) RDL

Batch, LB medium with
50 µg · mL−1 kanamycin

and 34 µg·mL−1

chloramphenicol, up to
1 M IPTG induction

- - [56]

Shinorine
Actinosynnema

mirum
DSM43827

Streptomyces
avermitilis RDL

Batch, synthetic
production medium
(60 g/L glucose and

400 mM NH4Cl), 28 ◦C,
8 days

11.4 154.1 [57]

Shinorine
Actinosynnema

mirum
DSM43827

Corynebacterium
glutamicum

Infusion cloning
(ligation-

independent)

Fed-batch, brain heart
infusion (BHI) medium

(40 g/L sodium
D-gluconate and 0.5%
CaCO3), 30 ◦C, 72 h

- 19.1 [74]

Shinorine Nostoc
punctiforme

Saccharomyces
cerevisiae

JHYS133-6 strain
RDL

Batch, SC-Ura medium,
overexpression of

Ava3858 gene
17.0 47.7 [76]

Shinorine Nostoc
punctiforme

Saccharomyces
cerevisiae

JHYS133-6 strain
RDL

Batch, SC-Ura medium
(6 g/L xylose and 14 g/L

glucose), 30 ◦C,
170 rpm shaking

- 68.4 [76]
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4.3. Product Optimization in Engineered Hosts

A remedy for the poor yield production in the native organisms can be found by
engineering heterologous hosts to increase the synthesis of target compounds. According
to the needs of the target molecules, heterologous hosts can be engineered in a variety
of ways. For example, the target compound’s metabolic pathway genes can be isolated,
competitive pathways can be eliminated, biosynthetic pathway genes can be incorporated
into suitable host vectors, the supply of suitable biosynthetic precursors and cofactors can
be increased, and methods for maintaining and optimizing the target metabolic pathway
can be chosen. Katoch et al. [56] reported a new gene cluster (myl) responsible for MAA
biosynthesis in the cyanobacterium C. stagnale strain PCC 7417. The myl gene cluster was
homologous to MAA gene clusters (mylA to mylE) from certain cyanobacteria, such as N.
punctiforme, A. variabilis, and Aphanothece. Biosynthetic genes mylA to mylE were cloned
and expressed in E. coli. Analytical-scale HPLC was used to determine the compounds
encoded by these genes. The myl gene cluster expressed in E. coli is responsible for the
production of mycosporine-ornithine and mycosporine-lysine.

The heterologous expression of the cyanobacterial-targeted metabolite, shinorine, in S.
cerevisiae is an excellent example of host engineering [73] (Figure 4). The shinorine BGC
genes from N. punctiforme encoding DDGS (npR5600), O-MT (npR5599), ATP-grasp ligase
(npR5598), and D-ala-D-ala ligase (npR5597) were cloned into a multigene expression vector,
and the multiple copies were integrated at the Ty retrotransposon delta sites in the yeast by
homologous recombination [74,77]. Cloning was carried out under the control of PTDH3
or PTEF1, constitutive promoters resulting in generation of the coex413-NpR4 plasmid.
The control strain comprising of the p413GPD plasmid did not show any production of
shinorine, while S. cerevisiae comprising of the coex413-NpR4 plasmid showed production
of shinorine (0.46 mg/L and 0.085 mg/g DCW), suggesting the presence of functional
biosynthetic genes for the production of shinorine in S. cerevisiae [73].

Even though numerous biosynthetic genes’ integration has shown enhanced shinorine
production, the levels were still quite low. Low productivity may be caused by a shortage of
S7P, the substrate for the first enzyme, DDGS, in the shinorine biosynthesis pathway. Due
to the fact that S7P is an intermediary of the PPP, increased carbon flux in that direction may
be a solution to S7P shortage [68]. Three xylose assimilation genes, xyl1 encoding xylose
reductase, xyl2 xylose dehydrogenase, and xyl3 encoding xylose kinase from S. stipites,
were introduced into the yeast. These assimilatory genes mainly function to convert xylose
into xylulose-5-phosphate (X5P). X5P enters the PPP, resulting in increased levels of S7P,
which is involved in the shinorine biosynthetic pathway [73]. The CRISPR-Cas9 approach
was employed for overexpression of STB5 and TKL1. STB5 activates the expression of
multiple genes encoding enzymes that are involved in the regulation of PPP, while TKL1 is
a transketolase which combines PPP with the glycolysis by catalyzing the reactions between
S7P and G3P. TAL1, a transaldolase, is involved in catalyzing the interconversion of S7P
and G3P in PPP. Elimination of TAL1 mediated by CRISPR-Cas9 resulted in an enhanced
cellular pool of S7P [73]. When cells were grown in medium containing 12 g/L of glucose
and 8 g/L of xylose, the highest level of shinorine production, 31.0 mg/L and 9.6 mg/g
DCW, in the final engineered yeast was observed, as reported by Park et al. [73]. This
describes the potential of a suitable engineered host for the heterologous production of
cyanobacterial MAAs.

The research study performed by Park et al. [73] was further carried out by Jin et al. [76]
to efficiently produce shinorine in the heterologous host S. cerevisiae. The yeast strain
engineered by Park et al. [73] had a limited capacity to utilize xylose, demanding the
optimal ratios of xylose and glucose for mass production of shinorine. Jin et al. [76] further
attenuated the glycolytic pathway by eliminating two target genes, hxk2 and gcr2, thereby
driving the carbon flux towards the shinorine production. Hxk2, a hexokinase, catalyzes
the conversion of glucose into glucose-6-phosphate. Hxk2 is the main enzyme involved in
glucose utilization [78]. The transcription factor Gcr1 is essential in activating glycolytic
genes. Gcr2 acts as an activator molecule for Gcr1 [79]. Hxk2 is involved in regulation of
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glucose repression. Deletion of Hxk2 results in glucose de-repression, favoring shinorine
production. Jin et al. [76] additionally expressed the gene ava3858 from A. variabilis and
amir4259 from A. mirum, encoding for the DDGS enzyme. Overexpression of ava3858
resulted in 2.2-fold increased production of shinorine, in comparison to that of the previous
strain. However, overexpression of amir4259 exerted a slightly negative effect on shinorine
production. The highest shinorine production titer of 68.4 mg/L was reported by Jin
et al. [76].
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Figure 4. Metabolic pathway for heterologous expression of shinorine in Saccharomyces cerevisiae.
Xylose assimilation genes from Scheffersomyces stipitis and shinorine biosynthetic genes from Nostoc
punctiforme were introduced in the yeast cell. S7P is converted to shinorine via DDG, 4-DG, and MG
by sequential catalytic reactions of DDG synthase (DDGS), O-methyl transferase (OMT), ATP-grasp
ligase, and non-ribosomal peptides synthetase (NRPS), or D-ala-D-ala ligase. Xylose utilization genes
encoding xylose reductase (Xyl1), xylitol dehydrogenase (Xyl2), and xylulokinase (Xyl3) increased the
cellular pool of S7P, thereby resulting in increased shinorine production. G6P, glucose-6-phosphate;
F6P, fructose-6-phosphate; G3P, glycerol-3-phosphate; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-
phosphate; R5P, ribose-5-phosphate; X5P, xylulose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P,
erythrose-4-phosphate; DDG, 2-demethyl-4-deoxygadusol; 4-DG, 4-deoxygadusol; MG, mycosporine-
glycine (modified from Park et al. [73]).

The recent development of effective genome engineering tools such as CRISPR-Cas
has made it easier to improve the productivity of certain metabolites, including those from
cyanobacterial BGCs [80,81]. The CRISPR-Cas9 technique was primarily developed to
facilitate transcriptional regulation, genomic engineering, and marker-less gene deletion.
Prior reviews of the engineering of E. coli, yeast, and Streptomyces strains using CRISPR-Cas
systems have been published [82–84]. As previously indicated, the heterologous synthesis
of shinorine in yeast has already utilized CRISPR-Cas9-based gene inactivation [73].

4.4. Application of Heterologously Produced MAAs in Transcriptional Modulation of Genes

Specifically, after introducing the cyanobacterial 4-gene mys cluster, the primary MAA,
shinorine, was successfully synthesized in vitro in E. coli. A five-gene cluster, mylA–E, gener-
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ated from the cyanobacterium C. stagnale, was used to heterologously express the MAAs in
E. coli, which produced both mycosporine-lysine and the recently found MAA mycosporine-
ornithine. Further, 4-DG, a MAA precursor, and five distinct MAAs, including shinorine,
porphyra-334, mycosporine-glycine, palythine, and mycosporine-glycine-alanine, were pro-
duced as a result of the MAA gene cluster discovered in Nostoc linckia [52,56,85]. While few
findings have been reported in Streptomyces avermitilis SUKA22, heterologous expression of
these biosynthetic gene clusters led to the accumulation of MAAs such as porphyra-334
and shinorine [57].

Recent studies disclose how shinorine, mycosporine-glycine, and porphyra-334 mod-
ulate the transcription of various species’ immune-regulatory and anti-inflammatory
genes [36,86,87]. According to Suh et al. [36], mycosporine-glycine treatment significantly
reduced the levels of COX-2 mRNA that are activated by ultraviolet radiation (UVR) and
cause inflammation in the human keratinocyte cell line HaCaT. The expression of UVR-
suppressed, elastin genes, and the procollagen C proteinase enhancer was elevated by all
MAA treatments. Becker et al. [86] reported that shinorine and porphyra-334 both enhanced
the activity of nuclear factor NF-κB in the NF-κB/AP-1 reporter myelomonocyte cell line
THP-1-blue, but NF-κB induction was stronger with shinorine. However, porphyra-334
dramatically decreased the NF-κB response in cells activated by LPS, whereas shinorine
only slightly increased the NF-κB activity that was superinduced by LPS. Porphyra-334
was previously shown to have an inhibitory impact on the production of NF-κB-dependent
inflammatory genes, namely IL-6 and TNF-κB, in UV-A-irradiated skin fibroblasts, as re-
ported by Ryu et al. [87]. Similar to that, porphyra-334 has been found by Gacesa et al. [88]
to activate the nuclear factor erythroid 2-related factor 2 protein (Nrf2) signaling pathway
in UV-A-exposed cells. However, there has not been any proof of nuclear Nrf2 translocation
by porphyra-334 without concomitant ROS generation by UV-A radiation. They discovered
that after treatment of MAAs in cells pre-exposed to UV-A-generated oxidative stress,
enhanced expression of Nrf2-targeted downstream genes were found. Surprisingly, the
expression levels of the glutamate-cysteine ligase modifier subunit (gclm), with glutamate-
cysteine ligase (gclc) and heme oxygenase-1 (hmox-1) genes, were unaffected by MAA
treatment in cells that had not previously experienced oxidative stress. This surprising
finding enlightened that MAAs become antagonists of Kelch-like ECH-associated protein
1–nuclear factor erythroid 2-related factor 2 protein (Keap1–Nrf2) binding only after be-
ing exposed to oxidatively stressed cellular circumstances. In their investigation, Gacesa
et al. [88] speculated that UV-A-activated kinases may impair the connection between
Keap1 and Nrf2, allowing porphyra-334 and shinorine to interfere with Keap1–Nrf2 bind-
ing at doses inadequate to do so, in cells not exposed to UV-A. The expression of the matrix
metalloproteinase-1 (mmp-1) gene is a well-acknowledged indicator of the photoaging
caused by oxidative stress in human skin [89]. MMP-1 expression significantly dropped
in cells treated with MAAs after UV-A exposure, evidencing a definite protective effect.
Again, only cells that had already been exposed to radiation showed evidence of transcrip-
tional control by MAAs. These findings appear to confirm that MAAs may activate the
cytoprotective Keap1–Nrf2 pathway by competing with the Keap1 receptor. Although
we hypothesize that increased MAA levels to UVR-produced oxidative stress might be
beneficial for future therapeutic development of these natural products, the molecular
stress-signaling pathway of this activation is obviously still unclear and requires further
investigation.

5. Conclusions and Future Perspectives

Cyanobacteria produce a plethora of natural products, having diverse structures and
biological activities. MAAs, one such natural product, are photoprotective compounds
found in cyanobacteria, harboring a wide range of bioactive activities, including pharmaceu-
ticals, biomedical, anti-cancerous, and antibacterial properties. MAAs can also be utilized
to replace various synthetic chemicals used in the UV-protection sunscreens and are thus
a great resource for the cosmetics industry. The major bottleneck in commercializing this
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photoproduct is its low production rate and capital demand of biorefineries for larger-scale
production. Recently, synthetic biology has opened the doors for large-scale production
of these photoprotective compounds by utilizing the genomics and metabolomics. In our
review, we discussed the approach of synthetic biology, which involves the heterologous
expression of the BGCs of MAAs biosynthetic pathways into the desirable hosts. The
selection of the desired BGCs, integrating them into a suitable vector, and the heterologous
expression into the suitable host are a few approaches discussed in this review. Currently,
researchers are becoming increasingly interested in the production of cyanobacterial natural
products via heterologous expression.

The heterologous expression of MAAs can be achieved using recombinant DNA tech-
nology or metabolic engineering. Metabolic engineering may involve deletion of unwanted
BGCs, including transcriptional terminators, modification of regulators, and engineering
of tRNAs. The heterologous hosts (e.g., E. coli, yeast, and Streptomyces) could serve as
platforms for structural diversification through precursor-directed biosynthesis, mutasyn-
thesis, and combinatorial biosynthesis. For easily detecting and purifying heterologous
MAAs production, BGCs of unwanted metabolites should be deleted from the host strains.
Extensive modification of heterologous genes and the corresponding enzymes at different
levels may result in better production rates. Systems and synthetic biology can be used as
an integrative approach, to assist the engineering of desirable heterologous hosts for MAAs
production. However, there has been relatively little research on this specific strategy of
enhancing MAAs production via heterologous expression, and this needs to be further
investigated. Therefore, this is a hot topic of research for the upcoming scientists.
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