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Abstract: This study investigated the feasibility of producing L-lactic acid (LA) from dry corn stalk
(DCS) that was pretreated by ensiling by an anaerobic microbial community consisting of Bacillus
coagulans, Lactobacillus fermentum, and Enterococcus durans. After 28 days of ensiling, the LA and acetic
acid content in the microsilage was 2.04 ± 0.08% and 0.38 ± 0.01%, respectively, and the pH was
4.47 ± 0.13. Enterococcus and Lactobacillus became the dominant microbiota during the ensiling process.
Twenty-eight-day-old microsilage was then subjected to fermentation by B. coagulans to produce LA in
a simultaneous saccharification and co-fermentation process. The enzymatic hydrolysis yield reached
>96%. The maximal concentration of LA reached 18.54 ± 0.52 g/L with a substrate concentration of
5%, where the yield of LA was 0.31 ± 0.01 g/g DCS and the optical purity of the product LA was
>97%. Anaerobic ensiling is viable for the pretreatment of biomass for the production of value-added
chemicals.

Keywords: dry corn stalk; ensiling; microbial community; high-throughput sequencing; lactic acid

1. Introduction

Converting lignocellulose biomass (LCB) into sustainable value-added products is
an urgent global need. In nature, the degradation and recycling of organic carbon are
mainly mediated by anaerobic microorganisms, which work together to degrade straw in
a divide-and-conquer manner [1]. However, although many microbial strains have been
screened from anaerobic ecosystems, there is not yet an artificial microbial community
capable of sustaining the high conversion yields required to degrade lignocellulose for
use in the bioenergy and renewable chemicals markets [2]. Bioprocessing of agricultural
biomass is also hampered by the need for extensive pretreatment and separation steps to
decrease the impact of lignin and to hydrolyze the carbohydrate polymers into fermentable
sugars (glucose, xylose, and so on) [3]. Many hydrolysis byproducts have toxic effects
on individual microorganisms [4]. Therefore, it is attractive to employ decomposition
strategies using dynamic anaerobic communities, in which the microorganisms belong to
complementary lignocellulose-degrading groups that distribute decomposition products
and metabolites among members and hence mitigate the overall toxicity to the community.
Emerging methods in microbial enrichment, sequencing, and bioinformatics offer new
opportunities to decipher the functions of anaerobic microbial communities and use them
in the sustainable production of bioenergy and chemicals.

Microbial communities can achieve task division and functional complementarity
through the interactions between microorganisms, and they have important applications
in the fields of bioremediation, high-value-added chemical synthesis, biofuel production,
and pollutant degradation [5]. Researchers have added exogenous microorganisms to
enhance microsilage production [6]. During the fermentation process, the abundance and
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diversity of genes encoding microbial carbohydrate-active enzymes increased significantly,
especially those responsible for the degradation of starch, arabinoxylan, and cellulose [7].
The recalcitrance of complex organic polymers such as lignocellulose is one of the main ob-
stacles to the sustainable production of bio-based chemicals from biomass [8]. Researchers
developed a model microbial community for lignocellulose degradation, whose specific
goal was to reduce the production of formaldehyde toxins during the decomposition of
methoxylated aromatic compounds. This community included lignin-degradation agents
such as Pseudomonas putida and cellulose-degradation agents such as Cellulomonas FIMI.
The uniqueness of the system lay in the addition of Methylorubrum extorquens, which can
grow on formaldehyde, to degrade the toxic intermediates [9]. Researchers have reviewed
various studies on the “bottom-up” route to construct microbial communities with a limited
number of culturable strains for more efficient lignocellulose conversion [10].

Research results show that the anaerobic ensiling of agricultural dry straw can be used
as a new treatment method for the directional transformation of bio-based chemicals [11].
However, such research has only focused on whether the dry straw can be successfully
ensiled in anaerobic conditions and whether the nutrient composition of the resulting
microsilage is suitable for use as feed for cattle and sheep or as raw material for biogas
fermentation [12]. The ensiling of straw is a complicated and uncontrollable operation, the
product quality is unstable, and the process is not repeatable. Research involving ensiling
pretreatment for the conversion of straw to high-value-added bio-based chemicals (such as
butanol and lactic acid (LA)) has not received much attention. However, a small number
of research results show that the ensiling of straw can decrease the required treatment
intensity of the straw to achieve efficient conversion to bio-based chemicals [13].

In this study, the research object was the anaerobic ensiling process of dry corn stalk
(DCS). A synthetic community of lactic acid bacteria (LAB), including Bacillus coagulans
NBRC 12583, Lactobacillus fermentum KF5, and Enterococcus durans 075, efficiently and
selectively degraded the lignocellulose of DCS. The total bacterial community composition
and relative abundance of the microbial (bacterial and fungal) taxa in the process of DCS
degradation were analyzed by high-throughput sequencing, and changes (succession) in
the microbial community structure were clarified. The purpose of this study was to lay a
foundation for understanding the synergism among microorganisms in the process of DCS
degradation. Furthermore, the feasibility of converting the product microsilage into LA
was investigated using simultaneous saccharification and co-fermentation (SSCF) with B.
coagulans NBRC 12583. We demonstrated that the anaerobic ensiling pretreatment method
applied here is viable for use in biomass transformation. Our study provides support for
the biological pretreatment of DCS for the production of LA.

2. Materials and Methods
2.1. DCS and Bacterial Strains

DCS was obtained from Henan Tianguan Group Co., Ltd., Henan Province, China.
The material used contained 33.95 ± 0.93% glucan, 17.99 ± 0.55% xylan, 27.72 ± 0.79%
acid-insoluble lignin (AIL), 2.71 ± 0.03% acid-soluble lignin (ASL), and 2.25 ± 0.01% ash.
Commercial cellulase Cellic Ctec2 was provided by Novozyme (Tianjin, China) with a
filter paper activity of 120 filter paper units (FPU)/mL. B. coagulans NBRC 12583 (ATCC
7050), L. fermentum KF5 (ATCC 23271), and E. durans 075 (ATCC 19432) were screened
from pickled vegetables from Sichuan, China, and identified by 16S rRNA gene sequence
analysis. Simplified De Man, Rogosa, and Sharpe (MRS) medium was prepared according
to the requirements of B. coagulans NBRC 12583, L. fermentum KF5, and E. durans 075. The
ingredients were 20 g/L glucose, 10 g/L yeast extract, 2 g/L diammonium hydrogen citrate,
5 g/L sodium acetate, 0.3 g/L MgSO4, 2 g/L K2HPO4, and 0.23 g/L MnSO4.

2.2. Microbial Ensiling

DCS microsilage samples were prepared and collected at the Zhengzhou University
of Light Industry. A diagram of the anaerobic fermentation and sampling processes is
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shown in Figure 1. Simply, ensiling was carried out using crushed DCS. The microsilage
was adjusted to a water content of 60%. The DCS was thoroughly mixed with B. coagulans
NBRC 12583 (1.0 × 106 cells per gram of DCS), L. fermentum KF5 (1.0 × 106 cells per gram of
DCS), E. durans 075 (1.0 × 106 cells per gram of DCS), and distilled water. In the anaerobic
fermentation container (Figure 1) used for the ensiling, 1.0 kg (wet weight) of DCS was
packed. The top of the fermentation container was sealed with water to ensure an anaerobic
environment for ensiling. The fermentation containers were stored at room temperature
for 49 days. Samples were taken every 7 days for determination and were designated as
DCS1, DCS2, DCS3, DCS4, DCS5, DCS6, and DCS7, respectively. The prepared samples
were stored at −20 ◦C.
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Figure 1. Production diagram for ensiling used in this study with the sampling points indicated.
DCS: dry corn stalk; DCS1–DCS7: DCS microsilage for 7, 14, 21, 28, 35, 42, and 49 days, respectively.

2.3. Enzymatic Hydrolysis of Materials

To investigate the effect of the ensiling pretreatment on DCS, enzymatic hydrolysis
experiments were carried out on the resulting microsilage. DCS4 samples (autoclaved,
5.0 g dry matter) were mixed with 100 mL of 0.1 mol/L citric acid buffer (pH 4.80) and
cellulase (10 FPU g−1 cellulose) at 50 ◦C (in a constant-temperature oscillating water bath,
200 rpm) for 48 h in a 250 mL sealed triangular bottle. The supernatant was sampled
periodically (at 8, 16, 24, 32, 40, 48, 56, 64, and 72 h, respectively) during the enzymatic
hydrolysis to calculate the hydrolysis yield from Formulas (1) and (2) after determining
the concentrations of glucose and xylose. For the enzymatic hydrolysis, triplicate reactions
were performed separately, and the results were averaged.

Cellulose hydrolysis yield (%) = (Total glucose in enzymatic hydrolysate (g)
× 0.9)/(Initial cellulose content of raw material (g)) × 100%

(1)

Hemicellulose hydrolysis yield (%) = (Total xylose in enzymatic
hydrolysate (g) × 0.88)/(Initial hemicellulose content of raw material (g)) × 100%

(2)

2.4. LA Batch Fermentations

Fermentation to produce LA was carried out by simultaneous saccharification and co-
fermentation (SSCF) with DCS4 (autoclaved) as the substrate; the substrate concentration
was 5% during the fermentation process. Cellulase was added at 10 FPU g−1 cellulose.
SSCF was started by inoculation with 10% (v/v) B. coagulans NBRC 12583. Details of the
ability of B. coagulans NBRC 12583 to metabolize glucose, xylose, and complex sugars to
produce LA are shown in the Supporting Information (Tables S1–S3). SSCF was carried out
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in a 5 L fermenter (BIOSTAT B, Sartorius, Germany) at 52 ◦C and 100 rpm, and 3 mol/L
NaOH solution was used to maintain the pH at 6.0. The SSCF was performed for 84 h, and
samples were collected every 12 h. The concentration of LA in the system was determined,
and the conversion yield of LA was calculated from Formula (3).

LA yield (g/g DCS) = (Total LA in fermentation broth (g))/(Initial weight of DCS (g)) (3)

2.5. High-Throughput Sequencing Analysis

Samples of DCS and silage were sent to Sangon Biotech (Shanghai, China) Co., Ltd.,
for high-throughput sequencing analysis of bacteria and fungi. The bacterial amplification
region was V3–V4 of the 16S rRNA gene, and the fungal amplification region was ITS1–
ITS2. The main processes were as follows: (1) sample pretreatment; (2) extraction of DNA;
(3) PCR amplification; (4) purification and recovery of DNA; and (5) sequencing.

The paired-end reads obtained by sequencing were first spliced by overlap, and then
the sequence quality was controlled and filtered after distinguishing the samples. Then,
operational taxonomic unit (OTU) clustering analysis and species taxonomic analysis were
performed. On the basis of the analysis results, a variety of diversity indices of OTUs were
analyzed, and the sequencing depth was determined.

2.6. Chemical Composition of DCS Samples

Cellulose, hemicellulose, and lignin were determined by the National Renewable
Energy Laboratory (NREL, CO, USA) using a two-step hydrolysis method [14]. Samples
were accurately weighed (to give W0 in g, accurate to 0.0001 g), 3 mL of 72% sulfuric
acid was added, and the mixture was reacted at 30 ◦C for 60 min. The hydrolysate was
rinsed into a 100 mL screw-cap bottle using 84 mL of distilled water. The bottle was kept at
121 ◦C for 60 min. The liquid was then filtered after cooling. The concentrations of glucose
(Cglu), xylose (Cxyl), and arabinose (Cara) were determined by high-performance liquid
chromatography (HPLC); see below for the analysis conditions. The contents of cellulose
and hemicellulose were calculated using Equations (4) and (5). The remaining filtrate was
measured at 205 nm using a spectrophotometer (with 4% sulfuric acid as the blank control).
The content of ASL was calculated using Equation (8). The filter residue was baked at
105 ◦C to a constant weight of W1 (in g), held at 550 ◦C for 2 h, and then weighed again (to
give W2, in g). The AIL and ash contents were calculated using Equations (6) and (7).

Cellulose(%) = (Cglu × 87 × 0.90 × 10−3)/W0 × 100% (4)

Hemicellulose(%) = ((Cxyl + Cara) × 87 × 0.88 × 10−3)/W0 × 100% (5)

AIL(%) = (W1 − W2)/W0 × 100% (6)

Ash(%) = W2/W0 × 100% (7)

ASL(%) = (D × A × L)/(110 × W0) × 100% (8)

For Equation (7), L is the total volume of the reaction system (mL), D is the dilution
ratio of filtrate, and A is the absorption coefficient of corn stalk at 205 nm.

2.7. Determination of Free Organic Acids and pH

Sterilized H2O was added to 2–3 g samples (the ratio of sterilized H2O to raw material
was 10:1). After shaking for 30 min, the supernatant was obtained by centrifugation at
11,167× g for 10 min and the pH value was determined. The supernatant was filtered
(0.22 µm), and the composition of organic acids was determined by HPLC.
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2.8. HPLC Analysis Conditions

Glucose, xylose, arabinose, LA, acetic acid, and propionic acid were determined by
HPLC using a Bio-Rad Aminex HPX-87H column (300 × 7.8 mm, 9 µm particle size;
Hercules, CA, USA). The column temperature was 65 ◦C, and the flowrate of the mobile
phase (5 mM H2SO4) was 0.6 mL/min.

2.9. Optical Purity Calculation of LA

The content of L-LA was measured using an SBA-40C Biosensor Analyzer (Shandong
Province Academy of Sciences, China), and the total LA content was measured by HPLC.
The formula for calculating the optical purity of L-LA was:

Optical purity (%) = (L-LA)/(Total LA) × 100% (9)

2.10. Characterization of DCS and Microsilage

The morphology of the DCS and microsilage was investigated by scanning electron
microscopy (SEM, JSM-6490 LV). The crystal structure of the DCS and microsilage was
investigated by X-ray diffraction (XRD; XRD-6100Lab). The XRD analysis conditions were
as follows: pipe flow 20 mA, pipe pressure 40 kV, scanning range 5◦–80◦, and scanning
speed 2◦/min. The formula for calculating the crystallinity index (CrI) of the sample was:

CrI = (I002 − Iam)/I002 × 100% (10)

where I002 is the intensity of the main crystallite at 22.5◦, and Iam is the minimum intensity
corresponding to the peak in the amorphous region around 18.0◦.

2.11. Statistical Analysis

All treatments were performed in triplicate unless specified otherwise. Analysis of
variance (ANOVA) was used to statistically analyze the data. The Origin Pro 9.1 software
(Origin Lab, Northampton, MA, USA) was used to perform the statistical analyses and
draw graphs.

3. Results and Discussion
3.1. Characteristics of Microsilage

The pH value, fermentation time, and the content of organic acids (especially LA and
acetic acid) in DCS microsilage can be considered important indicators of the success of
microbial ensiling [15]. The pH value in the DCS decreased from 6.59 ± 0.02 to 4.47 ± 0.13
after 28 days (Figure 2), at which point the fermentation pattern was controlled to avoid
undesirable activities of microbes with acid stress caused by the production of both acetic
acid and LA. In the early stage of ensiling, organic acids were produced by the LAB
via the use of water-soluble carbohydrates (such as glucose 1.73 ± 0.05% (w/w) and
xylose 2.44 ± 0.09% (w/w)) in the DCS, which could not be detected in the reaction
system after fermentation for 7 days. In DCS4, the contents of LA and acetic acid were
2.04 ± 0.08% (w/w) and 0.38 ± 0.01% (w/w), respectively (Figure 2). Butyric acid is a
common indicator of insufficient preservation [16]; butyric acid was not detectable in the
microsilage, showing efficient preservation. Traces of xylose and arabinose were detected in
the microsilage. Both of them are related to the degradation of hemicellulose. Hemicellulose
fixes the shape of the plant cell wall; as growing straw matures, the content of hemicellulose
gradually increases and enhances the hardness of the plant material [17]. The degradation
of hemicellulose showed that the microorganisms in the ensiling mixture could destroy
the internal structure of the straw, which was beneficial for the subsequent enzymatic
hydrolysis and fermentation of the material.
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3.2. Effect of Ensiling on Carbohydrate Fractions of DCS

According to the traditional theory, lignin plays an important role in limiting the
enzymatic conversion of biomass, and thus traditional research usually focuses on how
to remove lignin to improve the efficiency of the enzymatic hydrolysis of raw materials.
However, some studies have shown that a reduction in lignin content alone cannot fully
explain the resistance of lignocellulose to enzymatic hydrolysis. Indeed, >50% delignifica-
tion has been reported to possibly lead to the collapse of cellulose pores, decreasing the
accessibility of the cellulose [18]. The restrictive effect of lignin on enzymatic hydrolysis is
mainly due to spatial hindrance from the lignin network structure [19]. A slight change
in the lignin content can significantly improve the efficiency of enzymatic hydrolysis [20].
These findings show that changes in the macromolecular microstructure of lignocellulosic
materials play an important role in the process of enzymatic hydrolysis, but simply de-
creasing the content of lignin is not sufficient to facilitate their use in biorefining. This is
also the problem for most physicochemical pretreatment technologies for biomass (such as
steam explosion at 170–220 ◦C, dilute acid hydrolysis, or alkaline, organic solvent, or ionic
liquid treatment). The use of various physicochemical methods to completely destroy the
structure of raw materials can achieve the maximum removal of lignin and can improve
the conversion efficiency in enzymatic hydrolysis to some extent, but it cannot clarify the
synergistic mechanism of enzymatic hydrolysis from the molecular level.

As can be seen from Table 1, the ensiling of DCS had no significant effect on the
cellulose fractions of the DCS, whereas hemicellulose was degraded during the ensiling,
indicating that there was little carbohydrate loss during the process. The complete ensiling
process thus destroyed the internal structure of the DCS while retaining most of the
cellulosic biomass, which would be expected to greatly promote the reuse of the cellulose
for subsequent LA fermentation. The low hemicellulose content might have been caused by
the combined effect of the enzymatic and acid hydrolysis during ensiling. Hemicellulose is
the most susceptible fraction of lignocellulose to enzymatic or acid/alkaline hydrolysis [21].
The partial degradation of raw material components could lead to the destruction of the
internal structure of the LCB. In addition, the LCB degradation led to an increase in the
AIL content during ensiling, but not to a decrease in bioaccessibility, which was confirmed
by the subsequent enzymatic hydrolysis and LA fermentation results.
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Table 1. The compositions of dry matter fraction of DCS and DCS microsilage (g/100 g dry matter).

Cellulose Hemicellulose AIL ASL Ash

DCS 33.95 ± 0.93 17.99 ± 0.55 27.72 ± 0.79 2.71 ± 0.03 2.25 ± 0.01
DCS1 33.31 ± 0.86 17.57 ± 0.63 27.14 ± 0.85 3.10 ± 0.03 2.23 ± 0.01
DCS2 33.71 ± 0.97 17.39 ± 0.47 28.48 ± 0.91 3.15 ± 0.02 2.56 ± 0.03
DCS3 32.65 ± 0.73 16.98 ± 0.51 28.66 ± 0.73 3.06 ± 0.03 2.45 ± 0.01
DCS4 32.16 ± 0.82 15.89 ± 0.33 27.41 ± 0.56 2.97 ± 0.08 2.32 ± 0.06
DCS5 32.85 ± 0.96 15.65 ± 0.41 28.65 ± 0.81 3.08 ± 0.02 2.46 ± 0.02
DCS6 32.66 ± 0.63 15.14 ± 0.45 27.53 ± 0.63 3.15 ± 0.07 2.48 ± 0.02
DCS7 32.12 ± 0.76 14.85 ± 0.21 26.99 ± 0.58 3.15 ± 0.02 2.45 ± 0.03

The numbers in parentheses are standard deviations (n = 3). DCS: dry corn stalk; DCS1–DCS7: DCS microsilage
for 7, 14, 21, 28, 35, 42, and 49 d, respectively; DM: dry matter; AIL: acid-insoluble lignin; ASL: acid-soluble lignin.

3.3. 16S rRNA Gene Sequencing Analysis of the Bacterial Community

In terms of the relative abundance, Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes were the dominant phyla in all the samples (Figure 3A1). Proteobacteria was
the most abundant phylum, especially in sample DCS1, where its relative abundance of
OTUs was 66.15%. In DCS4 (i.e., after 28 days of ensiling), the highest relative abundance
was shown by Firmicutes (57.55%). Contrastingly, Bacteroidetes were much more abundant
in DCS (14.40%) than in DCS4 (1.79%).
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At the genus level (Figure 3B1), the dominant bacteria in the DCS raw material were
Streptophyta (11.43%), Sphingomonas (9.88%), Pantoea (7.56%), Stenotrophomonas (7.03%),
and Curtobacterium (4.16%). There were few Enterococcus (0.02%) and Lactobacillus (0.00%)
units in the raw material. However, after fermentation, which involved the addition of
the exogenous bacteria B. coagulans, L. fermentum, and E. durans, Enterococcus and Lacto-
bacillus became the dominant genera. The inoculation of Enterococcus and Lactobacillus
(1.0 × 106 cells per gram of DCS) could inhibit the rapid proliferation of a small number of
epiphytic microorganisms in the DCS, resulting in a niche priority effect [22]. The relative
abundance of Enterococcus was 0.02% in the DCS raw material, but it was 25.18% in sample
DCS2 and 52.17% in DCS3. Potentially, the Enterococcus influenced the pH of the microsi-
lage and increased the amount of LA, especially during the early stage of ensiling. At
low pH, the undesirable growth of spoilage microorganisms in microsilage is avoided [23].
However, Enterococcus has a lower acid-stress-tolerance at a low-pH environment than
Lactobacillus [24]. Therefore, it might be deduced that Lactobacillus was more competitive
than Enterococcus and dominated in the later stages of the fermentation in the present study.
Indeed, the dominant bacteria in sample DCS4 were Lactobacillus, with a relative abundance
of 44.95%, compared with 0.00% in the DCS raw material. It is reasonable to suppose that
the Lactobacillus inoculated into the microsilage in this study proliferated. Streptophyta
(11.43%) and Sphingomonas (9.88%) were the dominant genera in the DCS raw material, but
they became less abundant in the microsilage samples. The high relative abundance of
Lactobacillus and Enterococcus and the high LA concentration and low pH in the microsilage
in the present study were consistent with previous findings [25].

As shown in the bacterial principal component analysis (PCA) diagram (Figure 3C1),
at the OTU level, the variance contribution of PC1 was 95.42%. The variance contribution of
PC2 was 4.57%. The two PCs thus reflected 99.99% of the total bacterial species information
in the samples. The results indicated apparent differences in the bacterial communities
between the DCS and the ensiled material. However, the samples obtained at time points
after 14 days of ensiling were not clearly separated from each other, which indicated that
the bacterial community changed only slowly in the later stage of ensiling [26].

3.4. ITS1–ITS2 Sequencing of the Fungal Community

At the genus level (Figure 3B2), the dominant fungi in the DCS raw material were
Colletotrichum (25.71%), Fusarium (19.90%), Sarocladium (8.35%), and Aureobasidium (8.29%),
which gradually dropped to <1% abundance in the process of ensiling. After the exogenous
enhanced fermentation, Meyerozyma and Clavispora became the dominant fungal taxa. The
dominant fungi in sample DCS4 were identified as Clavispora, with a relative abundance
of 60.43%, compared with 0.03% in the DCS raw material. The relative abundance of
Meyerozyma was 0.29% in the DCS raw material, but it dramatically increased to 69.92%
in sample DCS3 and then fell to 27.58% in DCS4. Colletotrichum (25.71%) and Fusarium
(19.91%) were the main fungal genera in the DCS raw material, but they became less
abundant in the microsilage samples. As shown in the fungal PCA diagram (Figure 3C2), at
the OTU level, the variance contribution of PC1 was 100%. The distance between samples
DCS2, DCS4, and DCS6 was the shortest, indicating that the fungal composition of these
samples was the most similar at the OTU level. Natural ensiling is a traditional technology
for forage preservation. LAB generally play an important role. In this paper, exogenous
LAB and epiphytic bacterial communities were used for the straw microsilage to promote
the internal structural degradation of LCB. Because of the anaerobic environment and low
pH value of the system, the proportion of fungi was low [27].

Generally speaking, the microbial community diversity decreases and stabilizes during
ensiling. The exogenous LAB added in the process here became the dominant microbiota.
Our results showed that the microbial pretreatment method applied here potentially en-
abled the further use of the ensiled straw.
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3.5. Cell Wall of DCS Samples

It can be seen (Figure 4, 0 days) that the surface of the DCS raw material was flat and the
structure was dense, which would restrict the use of the lignocellulose by microorganisms.
The DCS was composed of hemicellulose, lignin, and cellulose, where the lignin layers
surrounding hemicelluloses and cellulose in the plant cell walls protected them from
deconstruction [28]. However, degradation by microorganisms and their enzymes changed
the surface structure of the lignocellulosic materials significantly. Here, a series of regular
mesh structures were formed on the straw surface in DCS4, while there were signs of
collapse in the center of the mesh (Figure 4, 28 days). The collapse of the pores in the
microsilage was mainly due to degradation of the hemicellulose, indicating that some of
the hemicellulose was metabolized by microorganisms in the process of ensiling, which
was consistent with the results in the detection of hemicellulose components (Table 1).
SEM showed that the pretreatment of the DCS with mixed LAB promoted the accessibility
of the lignocellulose, which is expected to be beneficial for the degradation efficiency in
subsequent enzymatic hydrolysis and LA fermentation [29].
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Among several influencing factors, crystallinity is considered to significantly affect the
enzymatic saccharification of LCB. The amorphous part of straw includes not only amor-
phous cellulose but also hemicellulose and lignin [30]. Here, XRD was used to measure the
crystallinity of the whole material, including the hemicellulose and lignin as well as amor-
phous cellulose [31]. The XRD patterns of the DCS with different ensiling times showed
diffraction peaks for crystalline cellulose at 15.9◦ and 22.0◦ and amorphous cellulose at
18.4◦. The crystallinities of the cellulose in the samples DCS (the raw material), DCS1,
DCS2, DCS3, DCS4, DCS5, DCS6, and DCS7 were 58.57%, 61.39%, 61.65%, 63.54%, 62.60%,
62.10%, 61.37%, and 61.19%, respectively (details are shown in the Supporting Information
Figure S1, DTG curves and infrared spectroscopy analysis of corn stalk samples are shown
in the Supporting Information Figures S2 and S3). The degradation and modification
of the amorphous components hemicellulose and lignin may have decreased the overall
amorphous characteristics of the material [32]. The component analysis (Table 1) showed
that the content of hemicellulose decreased during the ensiling and that the consumption
of hemicellulose was higher than that of cellulose. The crystallinity was higher than that of
DCS due to a relative decrease in the amorphous content after ensiling. However, during
the ensiling process, the crystallinity of the material first increased and then decreased,
which was consistent with the change in the hemicellulose content, indicating that the
amorphous components were released in the early stage of fermentation and metabolized
in the later part.
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3.6. SSCF of Microsilage for LA Production

After 28 s of ensiling, i.e., in DCS4, the contents of LA and acetic acid were 2.04 ± 0.08%
(w/w) and 0.38 ± 0.01% (w/w), respectively. The pH value decreased from 6.59 ± 0.02 in
DCS to 4.47 ± 0.13 in DCS4. An ensiling time of 28 days was required to obtain a stable
product from the DCS. The microbiota was relatively stable, and the dominant bacteria in
DSC4 were Lactobacillus and Enterococcus. After the degradation of the DCS for 28 days,
a series of regular mesh structures were formed on the straw surface, while there were
signs of collapse in the center of the mesh. For these reasons, the substrate used for LA
fermentation was DCS treated microbially for 28 days (i.e., DCS4). This material was then
fermented by B. coagulans NBRC 12583. To decrease the inhibition of hydrolytic enzymes
by the accumulation of sugars via metabolism, researchers developed the SSCF process, in
which substrate saccharification and fermentation occur in the same reactor [33]. Studies
have demonstrated that SSCF can accelerate the rate of hydrolysis and saccharification of
substrate, decrease the required volume of the reactor, and improve the yield of LA [34].
A further advantage of using SSCF here is that the optimal temperature of the cellulase
is consistent with the fermentation conditions for B. coagulans [35]. B. coagulans has been
reported as a potential industrial LA producer because of its ability to grow and produce
LA at high temperatures. Moreover, it can produce optically pure L-LA, and it is suitable
for SSCF because of its ability to use glucose and xylose, which enables the simultaneous
conversion of cellulose and hemicellulose from LCB [36].

To explore the best conditions for enzymatic hydrolysis and LA fermentation from
microbially pretreated DCS, B. coagulans NBRC 12583 was added 36 and 48 h after the
addition of cellulase, respectively. After 36 h of cellulase hydrolysis, the glucose and
xylose concentrations were 15.23 ± 0.62 g/L and 10.93 ± 0.29 g/L, respectively. The
highest observed LA concentration was then 12.06 ± 0.21 g/L, 12 h after the addition of
B. coagulans. After 48 h of cellulase hydrolysis, the glucose and xylose concentrations were
18.12 ± 0.66 g/L and 11.72 ± 0.32 g/L, respectively (Figure 5). The enzymatic hydrolysis
yields of cellulose and hemicellulose reached 96.97 ± 0.90% and 97.10 ± 0.33% respectively.
The highest observed LA concentration was then 18.54 ± 0.52 g/L, 16 h after of the
addition of B. coagulans. The optical purity of LA was 97.06 ± 1.29%, and the LA yield was
0.31 ± 0.01 g/g DCS. Thus, the time of adding B. coagulans to the fermentation system was
a key factor for optimizing the system.
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Data on the quantitative conversion of raw materials to products are important for
the evaluation of a biochemical process for the production of bio-based chemicals. To
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systematically evaluate the conversion process of DCS, statistical analysis of the ensiling
pretreatment was performed. As can be seen from Figure 6, the recovery yields of cellulose
and hemicellulose in the ensiling pretreatment were 87.81% and 81.88%, respectively,
indicating that the sugars were protected in the process of the destruction of the structure
of the straw.
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In the SSCF of the material obtained by ensiling for 28 days, after 48 h of enzymatic
(i.e., cellulase) hydrolysis and 16 h of fermentation by B. coagulans, the concentration of LA
in the fermentation broth reached 18.54 ± 0.52 g/L, the LA yield was 0.31 ± 0.01 g/g DCS
(Figure 6), and the sugar (glucose and xylose)–acid conversion yield was 62.92%. Thus,
31.37 g of LA was obtained from 100 g of DCS (dry matter, DM). On the basis of our analyses,
using the processes described here, it would take 3.19 t of DCS (DM) and 82 L of cellulase to
produce 1 t of LA. In the work of Ouyang et al. [37], using dilute sulfuric acid pretreatment,
B. coagulans was successfully applied to produce LA from wheat straw (35.80% cellulose
and 20.45% hemicellulose) in a one-pot system, and the LA yield was 0.44 g/g. The LA
conversion from wheat straw pretreated with H2SO4-steam explosion by B. coagulans MA-
13 and B. coagulans IPE22 was 0.27 g/g and 0.46 g/g, respectively [38]. In the work of
Zhang et al. [39], using a process consisting of biomass pretreatment by dilute sulfuric acid
and subsequent SSCF, 46.12 g of LA could be produced from 100 g of dry wheat straw with
a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU/g
cellulose with B. coagulans IPE22. Here, using corn stalk deconstructed by an anaerobic
microbial community as the substrate, the LA yield was 0.31 g/g, similar to that in the
above studies. The criteria for evaluating the viability of a biomass pretreatment method
are as follows: avoidance of the degradation of cellulose; production of the maximum
amount of simple sugars; avoidance of the formation of byproducts harmful to hydrolysis
and fermentation; and economic controllability [40]. Compared with other pretreatment
methods, anaerobic ensiling pretreatment has the advantages of being a simple process
with a high sugar yield, a low production of inhibitors, and a low cost. It represents a new
solution for biomass use. Several weeks are generally needed to reach stability in microbial
pretreatment. However, biomass plants have a stacked demand during the process of
collecting straw, and raw materials will not be processed within a short time. If the
microbial pretreatment is conducted concurrently with on-farm storage, the pretreatment
time ceases to be a problem.

Emerging methods in microbial enrichment, sequencing, and bioinformatics provide
new opportunities to decipher the functions of microbial communities. In the anaerobic
ensiling process, the abundance and diversity of genes encoding carbohydrate-active
enzymes (CAZymes) need to be resolved, especially the genes responsible for degrading
starch, arabino-xylan, and cellulose, in order to improve the quality of silage. In addition, in
the process of lactic acid fermentation, it is necessary to adopt a method of high-substrate-
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fed batch SSCF to simultaneously and efficiently convert cellulose and hemicellulose
into LA.

4. Conclusions

In this study, the research object was the anaerobic ensiling process of DCS. A synthetic
community of lactic acid bacteria including B. coagulans NBRC 12583, L. fermentum KF5, and
E. durans 075 efficiently and selectively degraded the lignocellulose of DCS. Further, the
feasibility of converting the product microsilage into lactic acid was investigated using SSCF
with B. coagulans NBRC 12583. We demonstrated that the anaerobic ensiling pretreatment
method applied here is viable for use in biomass transformation. Our study provides
support for the biological pretreatment of DCS for the production of lactic acid. LCB is
the most abundant renewable resource on earth, but most of is not used effectively and
rationally. If the anaerobic ensiling of straw can be carried out in the field, it can alleviate
environmental pollution and also decrease the problems related to straw storage in factories
(such as needing a large storage area for the straw, the ease of contamination of stored straw
with mildew, and the possibility of spontaneous combustion). Anaerobic ensiling can be
accomplished by an operational method that is low-cost and easy. Continuous ensiling
equipment is available in the market, which begins the ensiling process while harvesting
the straw.
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