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Abstract: Use of low-salt fish sauce (Yulu) is limited due to its perishable property and rapid loss of
unique flavor. In this study, a salt-tolerant strain, Bacillus subtilis B-2, with high protease production
was used as a microbial starter for low-salt Yulu fermentation. A total of 133 volatile compounds were
detected through HS-SPME-GC-MS. Most aldehydes, alcohols, ketones, furans, and hydrocarbons
reached their maximum at 15 d, while most esters, aromatic compounds, acids, nitrogen compounds,
and sulfur compounds peaked at 45 d. The 16S rRNA gene high-throughput sequencing showed that
Bacillus remained in high abundance during fermentation, reaching 93.63% at 45 d. The characteristic
volatile flavor was obviously improved while the microbial contamination was significantly reduced
in low-salt Yulu fermented with B. subtilis, compared with those without a microbial starter. The
correlation network map suggested that the significant decrease in Pseudomonas, Achromobacter,
Stenotrophomonas, Cyanobium, Rhodococcus, Brucella, Tetragenococcus, and Chloroplast contributed most
to the decreasing richness and evenness of the microbial community, while Bacillus was the only
genus playing a key role in the inhibition of spoilage microorganisms and improvement of volatile
flavor after B. subtilis addition. This study suggests the potential use of salt-tolerant B. subtilis as a
special starter for industrial Yulu fermentation in the future.

Keywords: low-salt fish sauce; Bacillus subtilis; microbial community; microbial diversity; volatile
flavor; correlation network map

1. Introduction

Fish sauce, also known as Yulu in China, is a famous aquatic condiment in Asian
countries made from low-cost sea fish [1-3]. Traditional Yulu is usually fermented in
high salinity (25-30%) in order to inhibit the growth of various spoilage microorganisms.
However, high salt content slows down the flavor formation in Yulu because the metabolism
of flavor-producing microorganisms is also suppressed in such an environment [4,5]. The
fermentation cycle to obtain a good quality Yulu is rather long (1-3 years). Therefore, it is
imperative to accelerate the fermentation speed of Yulu on an industrial scale.

Yulu fermentation can be accelerated using low salt. However, in a low-salt envi-
ronment, Yulu’s quality rapidly declines [6]. Therefore, it is necessary to add an appro-
priate microbial starter to suppress the growth of spoilage microorganisms. Recently,
strains with high protease production, especially isolated from traditional Yulu, have been
used as a microbial starter for Yulu fermentation, such as Virgibacillus halodenitrificans [1],
Planococcus maritimus [7], Halobacterium sp. [8], and Penicillium citrinum [9]; these strains

Fermentation 2023, 9, 515. https:/ /doi.org/10.3390/fermentation9060515

https://www.mdpi.com/journal /fermentation


https://doi.org/10.3390/fermentation9060515
https://doi.org/10.3390/fermentation9060515
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://orcid.org/0000-0003-1479-6831
https://orcid.org/0000-0001-8729-9583
https://orcid.org/0000-0002-0557-3225
https://doi.org/10.3390/fermentation9060515
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation9060515?type=check_update&version=1

Fermentation 2023, 9, 515

20f11

can accelerate the enzymatic hydrolysis of proteins and improve the amino acid nitrogen
content of Yulu. However, not many research has focused on the change in flavor of Yulu
after the addition of protease-producing microbial starter though it is known that the
acceleration of Yulu fermentation is often accompanied by the loss of its unique flavor.
Additionally, research has also overlooked the changes in microbial community when a
microbial starter is used [10,11]. Therefore, studies on these aspects are important to reveal
whether a microbial starter can adapt to the Yulu fermentation environment and play a role
in improving its flavor.

In our previous study, Bacillus subtilis B-2, a strain with high protease production, was
screened from traditional Yulu [12]. This strain has high salt tolerance and stable protease
production ability under high salt conditions, and has the potential to protect against the
spoilage microorganisms during the fermentation of Yulu in low-salt environment. In
this study, B. subtilis B-2 was used as the microbial starter for low-salt Yulu production.
The changes in volatile compounds and microbial community during the fermentation of
low-salt Yulu with this strain were analyzed using HS-SPME-GC-MS and 165 rRNA gene
high-throughput sequencing, respectively. The characteristic volatile flavor compounds
and microbial community in Yulu fermented with B. subtilis B-2 were also compared with
Yulu without the microbial starter addition, followed by revealing their change mechanisms
through a correlation network map. This study will be helpful in developing an effective
method to improve the volatile flavor compounds and inhibit the spoilage microorganisms
in low-salt Yulu fermentation.

2. Materials and Methods
2.1. Microbial Starter and Pre-Culture

The salt-tolerant Bacillus subtilis B-2, which was stored in the China General Micro-
biological Culture Collection Center (CGMCC No. 23784), was maintained on the LB
agar slant (10 g/L peptone, 5 g/L yeast extract powder, 10 g/L NaCl, and 18 g/L agar;
pH 7.0) at 4 °C. Pre-culture of B. subtilis was performed according to a previous study [13].
Briefly, the strain was first transferred on a fresh YEPD agar slant and incubated at 37 °C
for 24 h. Thereafter, a loopful of the slant culture was transferred into 50 mL liquid LB
medium (10 g/L peptone, 5 g/L yeast extract powder, and 10 g/L NaCl; pH 7.0) in 250 mL
Erlenmeyer flask and was incubated at 37 °C and 180 r/min for 24 h.

2.2. Yulu Processing

After pre-culture, the strain was centrifuged for 15 min at 4 °C and 12,000 g. After
resuspension in saline solution, the strain was used as the microbial starter to produce
low-salt Yulu.

Low-salt Yulu was made from iced blue round scad (Decapterus maruadsi) according to
the previous study [5]. Briefly, the minced whole fish was added to the fermenters with
18% NaCl and the microbial starter at 1 x 10 CFU/g fish, while the saline solution of the
same volume added in the minced fish was used as the control group. Glass fermenters
were used to store the minced fish and were covered with eight layers of gauze to maintain
a semi-anaerobic environment. The Yulu was stirred every 5 d. After fermentation at 35 °C,
the liquid sample fermented with the microbial starter was taken at 5 d (BS5), 10 d (BS10),
15 d (BS15), 30 d (BS30), and 45 d (BS45), respectively, while Yulu fermented without the
microbial starter was taken at 45 d (C45) for further analysis.

2.3. Volatile Compound Analysis

The volatile compounds in Yulu were analyzed using HS-SPME-GC-MS [14]. Briefly,
after addition of internal standard 2,4,6-trimethylpyridine (100 uL and 50 mg/L), the liquid
Yulu (5.0 g) was put into the headspace vial and incubated for 10 min at 300 r/min and
60 °C. The HS-SPME was carried out using the DVB-PDMS extraction needle at 300 r/min
and 60 °C for 40 min. The volatile compounds were determined on the HP-INNOWAX
column (60 m x 0.25 mm x 0.25 um) via the 7890-5977 GC-MS system (Agilent, Santa
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Clara, CA, USA). The carrier gas was helium at 1.2 mL/min in the splitless mode. GC-MS
was conducted as follows: 40 °C for 5 min, 40-240 °C at 5 °C /min, 240-250 °C at 10 °C
/min, and 250 °C for 6 min. The ion source and quadrupole temperature was set to 230 °C
and 150 °C, respectively. The scan range was a full scan of 29-450 Da. After identification in
the NIST database (v17.0) using AMDIS, the concentration of each volatile compound (Cy)
was calculated according to the following equation:

_AxXMi

Cx*AiXMy

where, C, is the concentration of each volatile compound (mg/kg), Ay is the peak area of
each volatile compound, A, is the peak area of 2,4,6-trimethylpyridine, M; is the weight of
2,4,6-trimethylpyridine (ug), and My is the weight of Yulu (g).

2.4. Microbial Community Analysis

The Yulu sample (20 g) was centrifuged for 10 min at 4 °C and 12,000 r/min. The micro-
bial precipitation was used for the 165 rRNA gene high-throughput sequencing [15]. Briefly,
the genomic DNA was obtained using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Nor-
cross, GA, USA). The primer pairs, including 338F (5'-ACTCCTACGGGAGGCAGCAG-3)
and 806R (5'-GGACTACHVGGGTWTCTAAT-3') were used for the V3-V4 region amplifica-
tion of 165 rRNA genes via PCR. Purified PCR amplicons were analyzed using paired-end
sequencing on the MiSeq PE300 platform (Illumina, San Diego, CA, USA). The raw reads
were demultiplexed and quality-filtered using Fastp v0.19.6, and were then merged using
Flash v1.2.11. The operational taxonomic unit of 97% similarity cutoff was clustered using
Uparse v7.0.1090 and was then used for taxonomy analysis via RDP Classifier v2.11.

2.5. Statistical Analysis

All experiments were performed in triplicate and the data were expressed as mean = stan-
dard deviation. The heatmap of volatile compounds was developed by MetaboAnalyst v5.0 [16].
The similarity in volatile compounds among various fermentation groups was analyzed using
principal component analysis (PCA). The « diversity of microbial community was determined via
Mothur v1.30.2 based on the abundance of operational taxonomic unit, while PCA was used for
the 3 diversity analysis [4]. The correlation network map was constructed using Cytoscape v.3.8.1
based on the Pearson’s correlation coefficient [17].

3. Results and Discussion
3.1. Change in Volatile Compounds during Yulu Fermentation

The change in volatile compounds in Yulu during fermentation with B. subtilis is
shown in Figure 1 and Table S1. A total of 133 volatile compounds were identified from
Yulu, including 25 aldehydes, 19 esters, 17 alcohols, 17 hydrocarbons, 13 ketones, 12 aro-
matic compounds, 11 acids, 10 nitrogen compounds, 6 furans, and 3 sulfur compounds
according to their functional groups. As shown in the PCA results (Figure 1A), three dis-
tinct groups were found during fermentation with B. subtilis, including early fermentation
(BS5 and BS10), middle fermentation (BS15), and late fermentation (BS30 and BS45); the
volatile compounds in the BS15 group were more different than the other fermentation
groups. As shown in Figure 1B, the total concentration of volatile compounds in each clas-
sification increased as the fermentation went on. The total concentration of hydrocarbons,
aldehydes, alcohols, ketones, and furans reached their maximum in the BS15 group, while
the total concentration of esters, aromatic compounds, acids, nitrogen compounds, and sul-
fur compounds peaked in the BS45 group. Among the volatile compounds, hydrocarbons,
aldehydes, esters, and alcohols had the highest total concentrations.
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Figure 1. Change in volatile compounds of Yulu during fermentation with B. subtilis. (A) Similar-
ity analysis of volatile compounds among different fermentation groups via PCA. (B) Change in
total concentration of volatile compounds in each classification in different fermentation groups.
(C) Heatmap of volatile compounds in each classification in different fermentation groups.

The heatmap of volatile compounds during Yulu fermentation with B. subtilis is pre-
sented in Figure 1C. Aldehydes, ketones, and alcohols are formed similarly through lipid
oxidation or amino acid catabolism, and most of them contribute significantly to the whole
flavor in various fermented foods owing to their low thresholds [4,18,19]. In this study,
most aldehydes, ketones, and alcohols shared similar trends during fermentation; their
highest concentrations were in middle fermentation (BS15 group), followed by the BS45
group. Various types of aldehydes were found in Yulu during fermentation with B. subtilis,
including straight-chain aldehydes, branched aldehydes, olefine aldehydes and phenyl
aldehydes. Hexanal was one of the most abundant straight-chain aldehydes, which reached
0.409 mg/kg after 15 d fermentation and remained 0.100 mg/kg at the end of fermentation.
Hexanal is also reported to be abundant in Yulu [7,20]. Nonanal was another important
straight-chain aldehyde which reached 1.322 mg/kg after 15 d fermentation, but disap-
peared after 30 d. In addition to straight-chain aldehydes, many branched aldehydes,
such as 3-methylbutyraldehyde and 2-methylbutyraldehyde, peaked after 45 d fermen-
tation, reaching 0.835 and 0.385 mg/kg, respectively. Plenty of olefine aldehydes were
also found in Yulu, especially for lilac aldehyde D with the maximum concentration of
1.379 mg/kg after 15 d fermentation and 0.540 mg/kg after 45 d fermentation. The maxi-
mum concentrations of (E)-2-octenal, (E,E)-2,4-heptadienal, 2-hexenal, (Z)-13-octadecenal,
and 2-ethyl-2-butenal reached 0.335, 0.239, 0.154, 0.150, and 0.116 mg/kg, respectively, in
the BS15 group. Plenty of (E)-2-nonenal (0.408 mg/kg) and (E)-2-decenal (0.271 mg/kg)
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were also found at 15 d, but disappeared after 30 d. Meanwhile, phenyl aldehydes were
found in abundance in Yulu, especially for benzaldehyde and 3-ethylbenzaldehyde, whose
maximum concentrations were 1.073 and 0.339 mg/kg in the BS15 group, followed by 0.705
and 0.174 mg/kg in the B545 group, respectively. Benzaldehyde has also been reported to
be abundant in other fermented aquatic products [21-23].

Plenty of saturated alcohols were observed in this study, especially glycerin, which in-
creased with the increasing fermentation time and peaked in the BS45 group (0.668 mg/kg).
However, glycerin is odorless, having no effect on the overall flavor of Yulu. In addition,
high concentrations of 1-octanol, 1-nonanol, and 1-heptanol were observed with the maxi-
mum concentrations of 0.384, 0.307, and 0.270 mg/kg, respectively, in the BS15 group. In
addition to saturated alcohols, various unsaturated alcohols were also found during Yulu
fermentation, and the highest alcohols were concentrated in 1-octen-3-ol, 2-octen-1-ol, and
1-penten-3-ol with the maximum concentrations of 0.780, 0.238, and 0.205 mg/kg, respec-
tively, in the BS15 group. Interestingly, 1-octen-3-ol and 1-penten-3-ol also widely exist in
other kinds of Yulu [5,14]. In this study, 2-undecanone, 3,5-octadien-2-one, 2-nonanone,
and 1,4-cyclohexanedione were abundant during fermentation of Yulu with the maximum
concentrations of 1.228, 0.667, 0.302, and 0.124 mg/kg, respectively. Both 2-undecanone
and 2-nonanone are also rich in the fermented tilapia sausage [15].

Acetic acid and L-lactic acid were mainly produced during carbohydrate fermentation
in lactic acid bacteria [24]. In this study, high concentrations of L-lactic acid and acetic acid
were found in the late fermentation of Yulu with maximum concentrations of 1.155 and
0.128 mg/kg, respectively, suggesting the high activity of lactic acid bacteria during that
period. Long (C14-C18) and medium (C6—C12) chain acids are mainly formed through
the hydrolysis of triglycerides and phospholipids, while hexanoic acid, octanoic acid and
nonanoic acid are formed through lipid oxidation [24]. In this study, hexanoic acid and
octanoic acid were mostly observed in the B545 group, reaching 0.276 and 0.243 mg/kg,
respectively, while nonanoic acid and decanoic acid peaked in the BS15 group, reaching
0.143 and 0.147 mg/kg, respectively. These acids are also abundant in the low-salt Yulu
produced with the addition of T. muriaticus. However, most of the volatile acids have a
high flavor threshold [25], causing little effect on the overall flavor of Yulu.

Volatile esters in foods are generally formed through the enzymatic condensation of
acids and alcohols [26,27]. Different from aldehydes, ketones, and alcohols, most of esters
in the low-salt Yulu possessed their highest concentrations in the BS45 group. Methyl
tetradecanoate had the highest concentration of 1.021 mg/kg in the BS45 group. This ester
is also the most abundant in the low-salt Yulu fermentation with T. muriaticus [5]. Although
ethyl acetate reached the maximum at the beginning of fermentation (0.941 mg/kg), it
remained 0.502 mg/kg at the end of fermentation. High concentrations of ethyl acetate
are also found in other fermented Yulu [14,28], suggesting its key role in the characteristic
flavor of Yulu. Methyl hexadecanoate, methyl palmitoleate, methyl dodecanoate, and
methyl pentadecanoate also were in high abundance in Yulu, with the concentrations >
0.10 mg/kg at the end of fermentation.

A total of four furans were abundant during the fermentation with the concentra-
tions >0.10 mg/kg at 45 d, including 2-ethylfuran, cis-2-(2-pentenyl)furan, trans-2-(2-
pentenyl)furan, and 2-pentylfuran. Similarly, 2-ethylfuran and 2-pentylfuran are also
abundant in other fermented aquatic products [14,29]. Most of the nitrogen compounds
possessed low concentrations, except trimethylamine which reached 0.145 mg/kg at 45 d.
For sulfur compounds, only the concentration of 4-methyl-5-thiazolylethanol was over
0.10 mg/kg at 45 d. Although plenty of hydrocarbons and aromatic compounds were
present during fermentation with B. subtilis, they might contribute little to the overall char-
acteristic flavor of Yulu owing to their high flavor thresholds [4,30]. D-Limonene was one
of the highest concentrated hydrocarbons with the maximum concentration of 1.519 mg/kg
in the BS15 group and 1.296 mg/kg at the end of fermentation.
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3.2. Change in Microbial Community during Yulu Fermentation

The change in microbial community during Yulu fermentation with B. subtilis is shown
in Figure 2. The o diversity analysis can evaluate the change in richness and evenness of
microbial community [31,32]. In this study, all coverage index in the fermentation groups
was over 0.999, indicating the good coverage of high-throughput sequencing (Figure 2A).
As shown in Figure 2A, higher Sobs, Chao, and ACE indexes were observed in early
fermentation. They all fell to the bottom in the BS30 group, suggesting minimum richness
during this period. At the end of fermentation, all these three indexes slightly increased,
indicating the improvement in richness of the microbial community. The Shannon index
first increased and then decreased during Yulu fermentation, and it was the maximum in
the BS30 group, while the Simpson index followed the opposite trend, suggesting highest
evenness in the BS30 group and low evenness in the BS5 and BS45 groups (Figure 2A).
The (3 diversity analysis can evaluate the similarity in microbial community in different
samples [4]. As shown in Figure 2B, the microbial community in the B45 group had more
difference than the other fermentation groups, while the microbial community in the BS5,
BS10, and BS15 groups was much similar.
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Figure 2. Change in the microbial community of Yulu during fermentation with B. subtilis. (A) «
diversity, (B) 3 diversity, and (C) microbial taxonomic composition at phylum and genus levels in
different fermentation groups.

The microbial composition in Yulu during fermentation with B. subtilis is further
studied. As shown in Figure 2C, there were only three phyla with a relative abundance of
over 0.1%. Firmicutes and Proteobacteria were the top phyla with a total relative abundance
of over 96% in the overall fermentation. As Yulu fermentation processed, the relative
abundance of Firmicutes first decreased and then increased to the maximum, reaching
94.60% at the end of fermentation, while the relative abundance of Proteobacteria followed
the opposite trend. The high relative abundance of Firmicutes probably resulted from the
addition of B. subtilis, which belongs to the Firmicutes genera. As shown in Figure 2C,
there were nine microbial genera (relative abundance >0.1%) in Yulu during fermentation
with B. subtilis. As fermentation progressed, Bacillus obtained the prominent position in
Yulu, in that its relative abundance first decreased from 93.64% at 5 d to 73.50% at 30 d and
then increased to 93.63% at 45 d. Pseudomonas, Stenotrophomonas, and Chloroplast showed
similar trends; their relative abundance first increased and then decreased, peaking in the
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B30 group, while the abundance of Achromobacter, Tetragenococcus, Rhodococcus, Cyanobium,
and Brucella significantly increased and reached the maximum at 45 d.

3.3. Improvement in Volatile Flavor of Yulu after B. subtilis Addition

The characteristic volatile flavor compounds in Yulu produced with B. subtilis addition
at the end of fermentation (BS45) were further compared with those without microbial
starter addition (C45). As shown in Figure 3A, 11 volatile aldehydes were identified as
the characteristic flavor aldehydes in Yulu fermented with B. subtilis according to the
concentrations and thresholds. Interestingly, except (E)-2-octenal, benzaldehyde, and 3-
ethylbenzaldehyde, all the other characteristic aldehydes were improved by B. subtilis,
especially hexanal, 2-methylbutyraldehyde, 3-methylbutyraldehyde, lilac aldehyde D,
(E,E)-2,4-heptadienal, (Z)-13-octadecenal, and 2-ethyl-2-butenal, contributing to the in-
crease in pleasant grass, fat, and flower flavors in Yulu. A total of six volatile alcohols were
identified as the characteristic flavor alcohols in the low-salt Yulu fermented with B. subtilis,
and were all found to be improved after comparison with the C45 group. The long-chain
saturated alcohols 1-octanol, 1-nonanol, and 1-heptanol all possess pleasant fat, flower, and
fruit flavors with low thresholds (<0.15 mg/kg) [4]. In this study, the concentrations of
these alcohols all exceeded their thresholds and were significantly enhanced by B. subtilis,
contributing to the improvement of the overall flavor in Yulu. As an unsaturated alcohol,
1-octen-3-ol is one characteristic flavor alcohol found in plenty of fermented aquatic prod-
ucts [14,15,33,34] because of its low flavor threshold (0.001 mg/kg) and high concentration.
In this study, the concentration of this alcohol remarkedly exceeded its threshold and was
significantly improved by B. subtilis, contributing to the improvement of mushroom flavor
in Yulu. In addition, the significant increase in 1-penten-3-ol after the addition of B. subtilis
resulted in the increase in pleasant roasted onion flavor [5] in Yulu. A total of four volatile
ketones were identified as the characteristic flavor ketones in the low-salt Yulu and were
all improved by B. subtilis. Among these ketones, 2-undecanone and 2-nonanone have the
sweet, fruit, and grass flavors with low thresholds (<0.01 mg/kg) [4,15]. In this study, both
ketones in the BS45 group exceeded their flavor thresholds and were obviously higher than
those in the C45 group, contributing to the improvement of the overall flavor in Yulu.
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Figure 3. Comparison of (A) characteristic volatile flavor compounds, (B) « diversity indexes, and
(C) microbial genera in low-salt Yulu fermented with B. subtilis and without microbial starter at the
end of fermentation. Comparison of the difference between the C45 and BS45 groups was performed
using student’s t-test (* p < 0.05 and ** p < 0.01).
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A total of six volatile acids were identified as the characteristic flavor acids in Yulu
and they were all improved by B. subtilis, except acetic acid. Similarly, a total of six volatile
esters were identified as the characteristic flavor esters in Yulu and were all improved
by B. subtilis. The higher concentrations of methyl tetradecanoate, ethyl acetate, methyl
hexadecanoate, methyl palmitoleate, methyl dodecanoate, and methyl pentadecanoate
were helpful in forming the fruity and sweet flavors in Yulu. Four volatile furans were
identified as the characteristic flavor furans in Yulu. Except for the significant decrease in
trans-2-(2-pentenyl)furan, most of the furans showed no significant change after the addi-
tion of B. subtilis. Trimethylamine was the characteristic volatile flavor nitrogen compound
in low-salt Yulu fermented with B. subtilis. Trimethylamine is produced through reduction
or demethylation of trimethylamine N-oxide, especially under anaerobic conditions [35]. It
is one of the main compounds in fish and fish products [5,34]. B. subtilis could significantly
inhibit trimethylamine formation in low-salt Yulu, leading to the decrease in the unpleasant
fishy flavor. Similarly, the addition of T. muriaticus can completely inhibit the trimethy-
lamine formation in low-salt Yulu at the end of fermentation [5]. In low-salt Yulu fermented
with B. subtilis, 4-methyl-5-thiazolylethanol was the only characteristic volatile flavor sulfur
compound. The significant increase in 4-methyl-5-thiazolylethanol improved the fat and
cooked beef flavors in Yulu. As the only one characteristic volatile flavor hydrocarbon, the
significantly improved D-limonene played an important role in the improvement of orange
flavor [19] in Yulu.

3.4. Inhibition of Spoilage Microorganisms in Yulu after B. subtilis Addition

The o diversity and microbial composition of the microbial community in low-salt
Yulu fermented with B. subtilis at the end of fermentation (BS45) were compared with
those without microbial starter addition (C45). The « diversity can effectively reveal the
degree of microbial contamination in the environment [5,29]. As shown in Figure 3B, the
Sobs, Chao, ACE indexes significantly decreased from 291, 371, and 367 to 92, 150, and
146 after the addition of B. subtilis, respectively. Similarly, the Shannon index significantly
decreased from 2.38 to 0.39, while the Simpson index significantly increased from 0.16 to
0.87 after B. subtilis addition. These results indicated that the richness and evenness of
the microbial community in Yulu were all significantly lowered by B. subtilis as a result
of the obvious decrease in microbial contamination. Moreover, only the abundance of
Bacillus significantly increased from 0.04% to 93.63% after the addition of B. subtilis, while
all the other microorganisms were all inhibited, especially spoilage microorganisms, such
as Pseudomonas, Achromobacter, Stenotrophomonas, Cyanobium, Rhodococcus, and Brucella
with their abundance decreasing from 31.34%, 14.80%, 12.25%, 12.46%, 9.85%, and 4.51%
t0 2.62%, 0.91%, 0.85%, 0.19%, 0.54%, and 0.18%, respectively (Figure 3C). These results
suggested that B. subtilis was more suitable to adapt to the Yulu fermentation environment
than the other microorganisms, probably due to its salt-tolerant characteristic.

3.5. Change Mechanism of Volatile Flavors and Spoilage Microorganisms in Yulu
after B. subtilis Addition

The correlation network map can clearly show the relational degree between dif-
ferent indicators [17,36,37]. In this study, the correlation network map was constructed
based on the Pearson’s correlation among different indexes in the BS45 and C45 groups
(Figure 4). The Sobs, Chao, ACE, and Shannon indexes showed significantly negative
relation with Bacillus but obviously positive relation with Pseudomonas, Achromobacter,
Stenotrophomonas, Cyanobium, Rhodococcus, Brucella, Tetragenococcus, and Chloroplast. Mean-
while, the Simpson index exhibited the totally opposite correlation. These results indicated
that the increase in Bacillus played a key role in decreasing microbial contamination which
was mainly due to the significant decrease in Pseudomonas, Achromobacter, Stenotrophomonas,
Cyanobium, Rhodococcus, Brucella, Tetragenococcus, and Chloroplast after B. subtilis addition.
Meanwhile, except unpleasant trimethylamine, most of the characteristic pleasant volatile
flavor compounds showed significantly positive correlation with Bacillus but were signifi-
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cantly negatively related with Pseudomonas, Achromobacter, Stenotrophomonas, Cyanobium,
Rhodococcus, Brucella, Tetragenococcus, and Chloroplast. 1t indicated that the improved volatile
flavor in Yulu mainly resulted from the higher abundance of Bacillus. B. subtilis possessed
good protease production ability under high salt conditions, contributing to the increase in
enzymatic hydrolysis of fish proteins and production of free amino acids. As important
precursors of volatile compounds, the increasing free amino acids were beneficial for the
increase in volatile compounds.
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Figure 4. Correlation network map constructed using Pearson’s correlation coefficient between the
microbial genera and characteristic volatile flavor compounds or « diversity indexes in the B545
and C45 groups. The red and blue lines indicated the significantly positive and negative correlation
(Irl >0.6 and p < 0.05), respectively.

4. Conclusions

During low-salt Yulu fermentation with B. subtilis, there were 133 volatile compounds,
among which hydrocarbons, aldehydes, esters, and alcohols were the compounds with the
highest total concentrations. Most aldehydes, alcohols, ketones, furans, and hydrocarbons
reached their maximum concentrations in the BS15 group, while most esters, aromatic
compounds, acids, nitrogen compounds, and sulfur compounds peaked in the BS45 group.
Bacillus remained prominent in Yulu with a relative abundance of 93.63% at 45 d. Higher
characteristic volatile flavor compounds and lower microbial contamination were found in
Yulu fermented with B. subtilis than that in the absence of a microbial starter. The correla-
tion network map suggested that the increase in Bacillus played a key role in decreasing
microbial contamination which was mainly due to the significant decrease in Pseudomonas,
Achromobacter, Stenotrophomonas, Cyanobium, Rhodococcus, Brucella, Tetragenococcus, and
Chloroplast after B. subtilis addition. The improved volatile flavor in Yulu mainly resulted
from the higher abundance of Bacillus. The salt-tolerant B. subtilis can perform as a potential
starter to improve the volatile flavor and inhibit the spoilage microorganisms in low-salt
Yulu in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/fermentation9060515/s1, Table S1: Change of volatile
compounds (mg/kg) during the fermentation of low-salt Yulu with B. subtilis.
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