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Abstract: Astaxanthin is a xanthophyll carotenoid possessing impressive nutraceutical, antioxidant,
and bioactive merits. Traditionally, astaxanthin is extracted from crustacean wastes via solvent
extraction methods. However, the rigid structure of shells that comprise complex proteins and
chitin challenges the extraction process. This investigation addressed an efficient microbial-assisted
method to facilitate astaxanthin recovery from crab exoskeleton waste utilizing chitinolytic and
proteolytic microorganisms. Herein, we evaluated the effect of pretreatment of the exoskeleton
waste with a newly isolated probiotic strain, Bacillus amyloliquefaciens CPFD8, showing remarkable
protease and chitinase activity and a proteolytic Saccharomyces cerevisiae 006-001 before solvent
extraction, using acetone/hexane, on astaxanthin recovery. Furthermore, the antioxidant and anti-
inflammatory activities of the recovered astaxanthin were inspected. Results revealed that both
strains boosted the astaxanthin yield from the crab (Callinectes sapidus) exoskeleton compared with
solvent extraction using acetone/hexane. Under optimum conditions, astaxanthin yield was 217 and
91 µg/g crab exoskeleton in samples treated with B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001,
respectively. Interestingly, pretreatment of crab exoskeleton waste with B. amyloliquefaciens CPFD8
yielded more than 6-fold astaxanthin compared with the solvent extraction method that yielded just
35 µg/g. This increase could be attributed to the proteolytic activity of B. amyloliquefaciens CPFD8
that rendered deproteinized shell chitin accessible to chitinase, facilitating the penetration of solvents
and the recovery of astaxanthin. The recovered astaxanthin exhibited excellent antioxidant activity in
scavenging DPPH or ABTS free radicals with IC50 values of 50.93 and 17.56 µg/mL, respectively. In
addition, the recovered astaxanthin showed a remarkable anti-inflammatory impact on LPS-induced
murine macrophage RAW264.7 cells and significantly inhibited the production of nitric oxide, TNF-
α, and IL-6 compared with the untreated control. These findings suggest the potential use of the
developed microbial-assisted method utilizing chitinolytic and proteolytic B. amyloliquefaciens CPFD8
to maximize the recovery of bioactive astaxanthin from crab (C. sapidus) exoskeleton waste.

Keywords: astaxanthin extraction; crustacean waste; chitinase activity; antioxidant activity;
anti-inflammatory; microbial-assisted extraction
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1. Introduction

Astaxanthin is a fat-soluble xanthophyll carotenoid synthesized by certain bacteria,
fungi, and algae and found in crustaceans and various aquatic animals [1]. Recently, as-
taxanthin has received considerable attention due to its extraordinary merits such as its
superior antioxidant and anti-inflammatory activity. It has been reported that global natural
astaxanthin production has steadily increased from 44 tons in 2013 to 68 tons in 2014, with
an average rate of 11.23% per year [2]. Consequently, astaxanthin has become a highly de-
manded metabolite, and its global market size was estimated at USD 1943 million in 2022 [3].
The leading driving factor for the market growth of astaxanthin is its demand from various
applications such as nutraceuticals, pharmaceuticals, cosmetics, aquaculture and animal
feed, and the food industry. It possesses significantly superior antioxidant activity, even
more than vitamin E and β-carotene [4]. Hence, astaxanthin is a well-documented nutraceu-
tical for cardiovascular disease prevention [5,6], skin protection [7–9], antidiabetic [10,11],
anticancer [12,13], anti-obesity [14,15], anti-inflammatory [16,17], antiaging [18,19], natural
food colorant [20], and feed supplement in poultry and aquaculture [21–23]. Structurally,
astaxanthin is a 40-carbon tetraterpene consisting of two terminal β-rings joined by an
unsaturated polyene chain (Figure 1). The presence of 11 conjugated double bonds de-
termines the pinkish-orange color of astaxanthin and is responsible for its antioxidative
potential [24–26]. As a member of the xanthophyll subclass of carotenoids, astaxanthin pos-
sesses oxygen-containing hydroxyl and carbonyl groups attached to each ionone ring [27].
The presence of oxygen atoms on both terminals of the terpenoid chain confers a remarkable
polarity of the molecule. Owing to this unique polar–nonpolar structure, astaxanthin can
fit the hydrophobic polyene chain (lipophilic) inside the bilayer lipid in the cell plasma
membrane, and its polar terminal ionone rings (hydrophilic) can be positioned near its
surface [28]. Consequently, the dual lipophilic and hydrophilic properties allow astaxanthin
to extend into the bilayer of the cell membrane, enhancing cell defense and conferring
exceptional beneficial roles.
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Commercial astaxanthin is obtained mainly from natural sources or by chemical syn-
thesis. So far, synthetic astaxanthin dominates the global market, though the current appeal
of natural astaxanthins has grown substantially [29,30]. Despite the low cost of synthetic
astaxanthin, natural sources have many advantages over synthetic astaxanthin. In this
regard, natural astaxanthin has better pigmentation and antioxidant activities compared
with synthetic ones. It has been reported that natural astaxanthin has over 50 times stronger
antioxidant activity than synthetic astaxanthin, and the latter may not be suitable as a
human nutraceutical supplement due to safety concerns [31]. Moreover, synthetic astax-
anthins are poorly soluble due to their crystalline nature, while natural astaxanthins are
lipid-soluble, non-crystalline, and exhibit better absorption properties [32]. Thus, natural
astaxanthins surpass synthetic ones for food and feed applications. It has believed that
algae, yeast, and bacteria constituted the primary natural sources of astaxanthin. Fur-
thermore, several aquatic animals such as salmon, trout, krill, and crustaceans, including
shrimp, crab, crayfish, and lobsters, contain considerable levels of astaxanthin, conferring
their reddish coloration [33]. Indeed, aquatic animals can not synthesize astaxanthin or
other carotenoids by themselves, but they accumulate the digested astaxanthin obtained
from their diet. On this point, aquatic zooplanktons fed on marine β-carotene-rich algae
convert β-carotene to astaxanthin in their bodies; consequently, they are ingested by aquatic
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animals that accumulate astaxanthin [22]. Apart from pigmentation, astaxanthin plays
crucial roles in the health and reproduction of aquatic animals, especially crustaceans. The
essential role of astaxanthin in reproductive performance, including egg production and
quality, has been demonstrated. It has been reported that the accumulated astaxanthin in
crustaceans’ hepatopancreas migrates to the ovaries in the late stages of maturity. Addition-
ally, astaxanthin boosts the crustaceans’ immune system, disease resistance, and resistance
to abiotic stressors such as temperature and pH [22,34,35]. Crustaceans accumulate high
concentrations of astaxanthin in their exoskeleton in the form of carotenoproteins, such
as crustacyanin, that exhibit red, purple, and blue to blue-black [36]. The crustaceans’
astaxanthin can be found in complex forms associated with proteins (carotenoproteins) and
lipids (carotenolipoprotein) exhibiting blue to green coloration [37]. Industrial crustacean
processing generates accumulated crustacean shells waste as by-products, reaching 50–70%
of the raw weight [38]. Hence, shell biorefinery may offer an ecological and economical so-
lution to valorize shells as a source of valuable materials such as astaxanthin. Traditionally,
solvent extraction is the most common method for astaxanthin extraction from crustaceans’
exoskeleton using acetone, isopropanol, hexane, ethyl acetate, and other solvents [39–41].
However, rigid structure and complex composition of crustaceans’ exoskeleton constitute
a critical bottleneck for astaxanthin recovery from their residues [42]. Crustacean shells
ordinarily consist of protein (20–40%), chitin (15–40%), mineral salts (20–50%), and small
amounts of lipids varying with species and seasons [43]. The firm exoskeleton, its high
chitin content, and the complex forms of astaxanthin in conjugation with lipids and pro-
teins limit the diffusion of the solvent and remain challengeable for astaxanthin extraction.
Therefore, several extraction strategies have been proposed to overcome these obstacles.
Recently, astaxanthin was extracted from crab shell wastes by integrating microwave pre-
treatment and supercritical fluid extraction [42]. Additionally, ultrasound-based extractions
have been reported as a practical approach for improving the extraction processes by
generating microcavities that enhance solvent penetration [44]. It has been suggested that
ultrasound-induced cavitation generates fragmentation of the shell matrix, boosting the
solubilization of bioactive compounds, and thus enhancing their extraction by solvents [45].
Moreover, the high-pressure extraction (HPE) method improved the yield of extracted as-
taxanthin from crustaceans due to enhancing the penetration of the solvents and improving
the intermolecular physical interactions [46]. In this manner, high-pressure disorders the
fiber structure and damages the cellular membranes, leading to the higher diffusion of
solvents and improves astaxanthin extraction. In addition, accelerated solvent extraction
(ASE) combined with pulsed electric fields (PEF) pretreatments significantly increased
astaxanthin recovery [47]. Despite enhancing astaxanthin recovery, these combined chem-
ical and physical pretreatment methods require special equipment and are considered
energy-consuming strategies and could affect the structure and activity of astaxanthin.
Alternatively, green eco-friendly strategies such as microbial fermentation and pretreatment
of crustacean shells with hydrolytic enzymes have recently emerged. In this regard, it has
been reported that Aeromonas hydrophila is capable of recovering astaxanthin from shrimp
shell wastes [48]. Similarly, astaxanthin was recovered from crayfish “Procambarus clarkii”
using probiotics strains such as Saccharomyces cerevisiae, Candida utilis, Lactobacillus lactis and
Bifidobacterium lactis [49]. However, the role of these strains in releasing of astaxanthin from
crustacean wastes and the mechanism of recovery are not fully understood. Additionally,
the application of proteolytic enzymes such as alcalase and bromelain for deproteinization
of crustacean waste was found to promote astaxanthin recovery [50]. In a recent study,
astaxanthin was easily extracted from shell residue after removal of protein and chitin by
treatment with recombinant protease and chitinase [51]. Although this biological approach
facilitated astaxanthin recovery, the use of recombinant enzymes is not a cost-effective
choice. Here, we addressed a microbial-assisted process for enhanced astaxanthin recovery
from the crab exoskeleton involving simultaneous hydrolysis of proteins and chitin in
the crab exoskeleton using chitinolytic and/or proteolytic B. amyloliquefaciens CPFD8 and
S. cerevisiae 006-001prior to solvent extraction.
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2. Materials and Methods
2.1. Microoganisms and Stock Cultures

The proteolytic yeast, S. cerevisiae 006-001, was purchased from the culture collection
of the Reginal Centre for Mycology and Soil, Al-Azhar University, Cairo, Egypt. B. amyloliq-
uefaciens CPFD8 exhibiting a remarkable chitinolytic and proteolytic activity was isolated
and identified from fermented milk (Figure S1) [52,53].

2.2. Crab Waste Preparation

Two species of crabs, Callinectes sapidus and Portunus pelagicus, were bought from
the local fish market. All internal organs from the crabs were peeled out, and the crab’s
exoskeleton, made up of the carapace and legs, was collected as waste. Afterward, the
exoskeletons were dried in an oven for 8–10 h at 55–60 ◦C. Finally, the dried exoskeleton
waste was crushed with a home blinder and passed through a sieve to obtain a fine powder
(1–3 mm particle size). The prepared powder samples were collected in clean, labelled
containers and stored at 4 ◦C.

2.3. Chemical Extraction of Astaxanthin

To extract astaxanthin, 10 g of the exoskeleton powder of each crab species were
combined with 50 mL of a mixture of hexane and acetone at various ratios (1:1, 1:2, and 1:3)
in a 250-mL flask, vortexed for 30 s, and then heated at 50 ◦C for 10 min. Subsequently, the
waste materials were removed by centrifugation at 5000× g for 10 min, and the supernatants
were filtered through 0.45 µm filters. Then, the resulting extracts were evaporated under
reduced pressure using a rotary evaporator. The obtained astaxanthin was dissolved in
dimethyl sulfoxide (DMSO), and its concentration was determined spectrophotometrically
at a wavelength of 476 nm as described elsewhere [54]. A standard curve using astaxanthin
(Sigma-Aldrich, St. Louis, MO, USA) was established and the concentration of the recovered
astaxanthin was expressed as µg/g exoskeleton powder.

2.4. Microbial-Assisted Extraction of Astaxanthin

In attempts to boost the recovery of astaxanthin, the dried crab exoskeleton powders
were pretreated with the selected chitinolytic proteolytic bacterial strain CPFD8 and the
proteolytic yeast strain S. cerevisiae 006-001, in separate experiments, prior to the chemical
extraction process. Practically, 10 g of each dried crab exoskeleton powder were added
to 100 mL a fermentation medium (6 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl) in
250-mL flasks as a sole carbon and nitrogen source. Then, B. amyloliquefaciens CPFD8 was
inoculated, and the flasks were incubated in a shaking incubator (150 rpm) at 30 ◦C for
5 days. In another set, S. cerevisiae 006-001 was inoculated into 100 mL of modified Czapek–
Dox broth (Condalab, Spain) containing 10 g of the dried crab exoskeleton powder, and
the flasks were incubated in a shaking incubator (150 rpm) at 30 ◦C for 5 days. Afterward,
each fermentation culture was lyophilized, and the astaxanthin was extracted from each
freeze-dried powder by the above-described chemical method, and quantified.

2.5. Effect of Pretreatment Conditions on Astaxanthin Recovery

The optimum fermentation conditions for astaxanthin recovery from C. sapidus ex-
oskeleton waste were determined by the one-factor-at-a-time method, keeping others
constant. In brief, the effect of temperature on astaxanthin recovery was studied by cultivat-
ing B. amyloliquefaciens CPFD8 or S. cerevisiae 006-001 for 5 days at different temperatures
ranging from 20 to 50 ◦C as independent treatments. The influence of the initial pH of
the fermentation media (at the optimum temperatures) was investigated by adjusting the
pH of the fermentation media at various levels ranging from 3 to 10 before sterilization.
The optimum incubation period for astaxanthin recovery was determined by inoculating
the fermentation media with each microbial strain and cultured at their optimum temper-
ature and pH values. Then, the recovered astaxanthin was quantified daily over 7 days.
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Each experiment was repeated three times and the extracted astaxanthin concentration
was estimated.

2.6. Enzymatic Activity

The potential role of B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001 in astaxanthin
extraction from crab exoskeleton waste was investigated by performing the fermentation
processes at their optimum conditions. Afterward, the fermentation cultures were cen-
trifuged at 15,000× g for 15 min at 4 ◦C. The obtained cell-free supernatants were assayed
for extracellular chitinase, protease, and lipase activities. The chitinase activity was assayed
by the dinitrosalicylic acid (DNS) method using colloidal chitin as a substrate [55]. In
brief, the reaction mixture consisted of 1 mL of 1% colloidal chitin suspension in 50 mM
phosphate buffer (pH 6.8), and 0.5 mL of the cell-free supernatant as a source of the enzyme
was incubated for 30 min at 50 ◦C. Subsequently, the reaction was terminated by adding
1 mL of DNS reagent and boiling the mixture for 10 min. Afterward, the absorbance of the
developed color was measured at 540 nm. A standard curve was plotted using N-acetyl
glucosamine. One unit (U) of chitinase activity was defined as the amount of enzyme
that released 1 µmol N-acetyl glucosamine from colloidal chitin per min under reaction
conditions. Protease activity was estimated by mixing 0.5 mL of the cell-free supernatant
with 2 mL of 1% casein in 50 mM phosphate buffer (pH 6.8). After incubation at 37 ◦C for
15 min, the reaction was terminated by the addition of 2.5 mL of 100 mM trichloroacetic
acid (TCA) solution. After centrifugation at 15,000× g for 5 min, 2.5 mL of 500 mM sodium
carbonate was added to the supernatant, followed by the addition of 1 mL of 0.5 mM
Folin–Ciolcalteu reagent. Then, the mixture was incubated for 30 min at room temperature,
and the absorbance of the developed color was determined at 660 nm using an EPOCH2
spectrophotometer. One unit of protease activity was defined as the amount of enzyme that
catalyzes the conversion of 1 µmol casein per min [56]. Lipase activity was estimated using
p-nitrophenyl laurate (pNPL) as substrate [57]. Briefly, 0.5 mL of the cell-free supernatant
was added to 2 mL of reaction buffer (0.1 M KH2PO4; 0.1% gum Arabic, 0.2% deoxycholate,
pH 8.0). After incubation at 37 ◦C for 5 min, 200 µL of 8 pNPL “solubilized in isopropanol”
was added. After incubation at 37 ◦C for 15 min, the reaction was terminated by adding
0.5 mL of 3 M HCl and centrifuged at 10,000× g for 10 min. Then, 1 mL of NaOH solution
(2 M) was added to 0.5 mL of the supernatant, and absorbance was measured at 420 nm.
One unit of lipase activity was defined as the amount of enzyme that released 1 µmol of
p-nitrophenol from pNPL per min.

2.7. 13C-NMR and HPLC Analysis

In this study, 13C NMR spectra analysis was performed on the astaxanthin extracts
recovered from crab exoskeletons using the chemical and microbial-assisted techniques.
The spectra were acquired by a Bruker Advance III 400 MHz device (Bruker, Rheinstetten,
Germany). Based on the residual carbon resonances of the appropriate deuterated solvent,
chemical shifts about TMS are reported and referenced. High-performance liquid chro-
matography (HPLC) (Agilent 1260 series) equipped with a diode array detector (DAD)
and an Eclipse C18 column (250 mm, 4.6 mm, 5 m, Eclipse) was used to estimation the
astaxanthin content of the extracts [58,59].

2.8. Antioxidant Activity of Astaxanthin

To investigate the antioxidant activity of astaxanthin, 1,1-diphenyl-2-Picrylhydrazyl
(DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scav-
enging assays were performed [60–62]. The DPPH solution (0.2 mM) was prepared by
dissolving 7.89 mg of DPPH in 100 mL methanol. Various concentrations of astaxanthin
solution (0.3 mL) were mixed with 2.7 mL of DPPH solution. The mixtures were shaken
vigorously and left at room temperature in the dark for 30 min. Afterwards, the absorbance
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was recorded at 517 nm, and the radical scavenging activity was calculated using the
following equation:

DPPH radical scavenging % = [(A0 − A1)/A0] × 100 (1)

where A0 is the absorbance of the DPPH solution and A1 is the absorbance of the sample
after 30 min.

On the other hand, ABTS stock solution 1 was prepared by dissolving 96.02 mg of
ABTS in 25 mL of acetic acid buffer (pH 4.5), while stock solution 2 was prepared by
dissolving 66.24 mg of potassium persulfate (K2S2O8) in 100 mL acetic acid buffer (pH 4.5).
To prepare the ABTS reaction solution, equal volumes of stock solutions 1 and 2 were
mixed and kept in the dark at room temperature for 12–16 h. Finally, 2.80 mL of ABTS
reaction solution was diluted to 65 mL in acetate buffer (pH 4.5) to obtain the ABTS working
solution. The ABTS assay was conducted in 96-well plates. Briefly, 200 µL ABTS working
solution was mixed with 10.0 µL astaxanthin solutions of various concentrations and kept
in the dark for 7 min. Afterward, the absorbance was measured at 734 nm using an Epoch
2 microplate spectrophotometer (BioTek, Santa Clara, CA, USA). The scavenging effect of
the sample was calculated as follows:

ABTS radical scavenging % = [(A0 − A1)/A0] × 100 (2)

where A0 is the absorbance of the blank solution and A1 is the absorbance of the sample
after 7 min.

The antioxidant activity of astaxanthin and ascorbic acid were determined and their
IC50 values which represent the concentrations of the samples required to scavenge
50% of the DPPH or ABTS free radicals were calculated by GraphPad Prism software
(Version 7.0.0).

2.9. Anti-Inflammatory Activity of Astaxanthin

The anti-inflammatory potential of the extracted astaxanthin was investigated using
the murine macrophage RAW264.7 cell line (American Type Culture Collection, ATCC,
Rockville, MD, USA). The cell line was maintained in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% heat-inactivated fetal bovine serum (Gibco, Thermo
Fisher Scientific, Cambridge, UK), 2 mM L-glutamine, and antibiotics (100 µg/mL strepto-
mycin and 100 units/mL penicillin). The macrophage RAW264.7 cells were cultured in a
water-jacketed incubator (BINDER GmbH, Tuttlingen, Germany) at 37 ◦C under 5% CO2 in
a high-humidity atmosphere. To assess the anti-inflammatory effect, the Raw 264.7 cells
were exposed to various concentrations of astaxanthin for 24 h and then stimulated by
lipopolysaccharides (LPS) from Pseudomonas aeruginosa (Sigma-Aldrich, St. Louis, MO,
USA) at a final concentration of 1 µg/mL, and the cells were incubated at the same condi-
tions for an additional 24 h. Additionally, untreated cells and cells treated with LPS alone
served as control. Afterward, nitric oxide (NO) and immunologically active mediators,
including tumor necrosis factor (TNF)-α and interleukin (IL)-6 were determined. In brief,
the production of NO by the RAW264.7 cells was measured calorimetrically using the
Griess reagent (Promega, Madison, WI, USA). Practically, 100 µL of culture supernatants
were incubated with 50 µL of Griess reagent and incubated at room temperature for 15
min. The absorbance was recorded at 540 nm using an Epoch 2 microplate reader. The
nitrite concentration of each sample was determined using a freshly prepared sodium
nitrite as standard. TNF-α was measured by ELISA using a mouse-specific TNF-α ELISA
Kit (Elabscience, Houston, TX, USA), and IL-6 was determined using a mouse-specific IL-6
ELISA kit (Elabscience, Houston, TX, USA) according to the manufacturer’s instructions.

2.10. Statistical Analysis

The data presented in each experiment are the mean of triplicate assays. The measured
data were subjected to the analysis of variance (ANOVA). The significant differences
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between treatments were compared with the critical difference at 5% level of probability by
Duncan’s test using IBM SPSS software version 22.

3. Results
3.1. Astaxanthin Recovery

Results revealed that astaxanthin recovered from C. sapidus was significantly higher
than that recovered from P. pelagicus, and superior extraction was achieved by using
acetone/hexane solvent in a ratio of 1:1, in all cases (Figure 2). In the chemical extraction
method, the maximum extraction of astaxanthin was obtained from C. sapidus with a
yield of 35.26 µg/g of crab exoskeleton waste using acetone/hexane (1:1 v/v) as a solvent
system. On the other hand, only 19.46 µg/g astaxanthin was recovered from P. pelagicus
exoskeleton waste under the same conditions. Interestingly, pretreatment of C. sapidus
exoskeleton waste with B. amyloliquefaciens CPFD8 boosted the recovery process, yielding
92.2 µg/g astaxanthin. The enhanced recovery of astaxanthin was also observed when
crab exoskeleton waste was pretreated with S. cerevisiae 006-001 but to a smaller extent.
The C. sapidus exoskeleton waste yielded 66.26 µg/g astaxanthin upon pretreatment with
S. cerevisiae 006-001 prior the chemical extraction.
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loliquefaciens CPFD8 before solvent extraction (B), and exoskeleton pretreated with S. cerevisiae 006-001
before solvent extraction (C).

3.2. Effect of Pretreatment Conditions on Astaxanthin Recovery

In this study, the impact of temperature, pH, and incubation period on the astaxanthin
yield was investigated. Results revealed that the optimum temperature for maximum
recovery of astaxanthin was 30 and 40 ◦C for S. cerevisiae 006-001 and B. amyloliquefaciens
CPFD8, respectively (Figure 3A). The optimum pH value was observed at 8.0 and 6.0 for
B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001, respectively (Figure 3B). The effect of
the incubation period was investigated by the cultivation of B. amyloliquefaciens CPFD8
and S. cerevisiae 006-001 on the C. sapidus exoskeleton waste for various incubation periods
prior to the extraction process. The maximum astaxanthin recovery was attained after
3 and 4 days of incubation with B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001, respec-
tively (Figure 3C). Under the optimum conditions, the astaxanthin yield was 217.96 and
91.23 µg/g when C. sapidus exoskeleton waste was exposed to B. amyloliquefaciens CPFD8
and S. cerevisiae 006-001, respectively.
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waste by B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001, prior to solvent extraction. Effect of
temperature (A), pH (B) and incubation period (C).

3.3. Enzymatic Activity

Results revealed that B. amyloliquefaciens CPFD8 cultivated on C. sapidus exoskeleton
waste as the sole carbon and nitrogen sources secreted extracellular protease, chitinase, and
lipase enzymes while S. cerevisiae 006-001 secreted protease only (Table 1).

Table 1. Extracellular enzymatic activity of B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001
cultivated on C. sapidus exoskeleton waste.

Enzyme Enzyme Activity (U/mL)

B. amyloliquefaciens CPFD8 S. cerevisiae 006-001

Chitinase 18.6 ± 2.1 -
Protease 127.6 ± 19.2 (a) 44.8 ± 5.4 (b)

Lipase 7.2 ± 1.9 -
The same letter in each row indicates no significant difference according to Duncan’s multiple range test (p < 0.05).
Symbol: ± represents standard deviation.

3.4. 13C-NMR and HPLC Analysis
13C-NMR analysis identified astaxanthin as the major carotenoid in the samples ex-

tracted from C. sapidus (Figure S2). The two peaks between 7.004 and 8.557 ppm denoted
the presence of methine protons on the main chain of astaxanthin. Because of the symmetry
loss, these peaks demonstrated that astaxanthin existed as two sets in the monoesterified
molecules. At 2.505 ppm, four protons represented the carbonyl and four pr tons repre-
sented the methylene protons. The methyl moieties were represented by the signals at
2.022 and 1.83 ppm. In the region between the 1.307 and 1.593 ppm signals, a signal that
represented the methylene protons on the astaxanthin fatty acid moiety could be seen. The
protons of the methylene moiety were identified by overlapping peaks appearing between
1.830 and 2.022 ppm. The astaxanthin molecule’s OH moiety was represented by a wide
signal that was discovered at 3.892 ppm. Furthermore, HPLC verified and quantified the
extracted astaxanthin compared with standard astaxanthin. Results of HPLC analysis
confirmed the successful recovery of astaxanthin and estimated the concentration of the
recovered astaxanthin (Figure S3).

3.5. Antioxidant Activity

Results revealed the remarkable antioxidant potential of astaxanthin extracted from C.
sapidus with efficient DPPH and ABTS radical scavenging activity. Clearly, the IC50 value
of astaxanthin and ascorbic acid against DPPH was 50.93 and 39.73 µg/mL, respectively.
In addition, the extracted astaxanthin showed superior ABTS radical scavenging activity
compared with ascorbic acid. The IC50 value of astaxanthin and ascorbic acid against ABTS
was 17.56 and 28.46 µg/mL, respectively (Figure 4).
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3.6. Anti-Inflammatory Activity

Clearly, treatment of the murine macrophage RAW264.7 cells with LPS resulted in a
marked increase in NO, TNF-α, and IL-6 production. However, co-treatment of cells with
astaxanthin induced significant attenuation of LPS-induced production of NO, TNF-α, and
IL-6 production in a dose-dependent manner (Figure 5). The production of NO was reduced
by 88% in LPS-induced cells treated with 30 µg/mL of astaxanthin. Results showed no
significant difference in TNF-α production by LPS-induced cells treated with astaxanthin up
to 15 µg/mL. Further increase in astaxanthin concentration resulted in significant reduction
in TNF-α production compared with cells treated with LPS only. More than 68% reduction
was recorded in LPS-induced cells treated with 40 µg/mL astaxanthin. Regarding IL-6,
about 76% reduction was observed in LPS-induced cells treated with 35 µg/mL astaxanthin.
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4. Discussion

In this study, C. sapidus yielded considerably more astaxanthin than P. pelagicus in
all investigated solvent systems. Moreover, the best solvent system for astaxanthin was
acetone/hexane (1:1 ratio). Increasing the proportion of acetone (a polar solvent) in the
hexane/acetone solvent mixture reduced astaxanthin extraction. This effect could be at-
tributable to increasing the polar solvents, which favored other component extraction while
preventing astaxanthin extraction. Accordingly, C. sapidus was chosen as an astaxanthin-
rich source and acetone/hexane (1:1 ratio) as the most efficient extraction solvent system.
Being a lipophilic compound, astaxanthin has been traditionally extracted from its natural
sources by solvent extraction. Compared with algal astaxanthin, the extraction of astax-
anthin from crustacean wastes by solvents only resulted in low yields due to the complex
structures of the crustacean exoskeletons that limit the diffusion of solvents. Principally,
crustacean exoskeletons (shells) contain chitin nanofibrils complexed with proteins to
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form long chitin-protein fibers embedded in the mineral matrix [63,64]. The presence of
chitin and proteins in the crustacean exoskeletons forms a barrier that reduce the ability
of solvents to penetrate the firm shell and dissolve astaxanthin. Therefore, the digestion
of the chitin and proteins in the exoskeleton could enhance the extraction of astaxanthin.
Hence, we investigated the effect of pretreatment of the scrab exoskeletons with microbial
strains exhibiting chitinase and/or protease activity prior to the extraction on the extraction
efficiency. Consequently, B. amyloliquefaciens CPFD8 showing remarkable proteolytic and
chitinolytic activity was isolated. In this regard, B. amyloliquefaciens is a probiotic strain
that has been isolated from various sources including fermented food products [65–67].
Similarly, various probiotic strains belonging to the genus Bacillus with beneficial enzymatic
activity and generally regarded as safe (GRAS) have been reported [68–72]. In the present
study, the pretreatment of C. sapidus exoskeleton waste with B. amyloliquefaciens CPFD8
(before optimization) resulted in a more than 2.6-fold increase in astaxanthin recovery
compared with the chemical extraction method using acetone/hexane (1:1 v/v) as a solvent
system. As mentioned above, crustacean exoskeletons are firm structures consisting of
protein, chitin, and mineral salts, in which astaxanthin is found in conjugation with lipids
and proteins. Obviously, pretreatment of crab exoskeleton waste with B. amyloliquefaciens
CPFD8 enhanced the efficacy of astaxanthin recovery compared with S. cerevisiae 006-001.
Hence, the potentiation of astaxanthin recovery could be attributed to the secretion of chiti-
nase, protease, and lipase. On the other hand, S. cerevisiae 006-001 secretes protease only.
These findings highlighted the enzymatic power of B. amyloliquefaciens CPFD8 compared
with that of S. cerevisiae 006-001 which correlated with the enhanced recovery of astaxanthin.
Unlike B. amyloliquefaciens CPFD8, S. cerevisiae 006-001 lacks chitinase and lipase activity
and secreted less than half of the protease activity, thus resulting in lower astaxanthin
recovery. In the case of B. amyloliquefaciens CPFD8, the proteolytic activity rendered shell
chitin accessible to chitinase. Therefore, astaxanthin was easily extracted from exoskele-
ton residue after pretreatment with B. amyloliquefaciens CPFD8 that could be attributed to
protein and chitin hydrolysis. It has been believed that astaxanthin in shrimp shell and
crustaceans is mostly bound to proteins, forming carotenoprotein or carotenolipoprotein
complexes that appear as different colors in living organisms [29]. So, the proteolytic and
lipolytic activity could enhance the release of astaxanthin. It has been reported that β-
crustacyanin is the responsible pigment for the blue color in C. sapidus [73,74]. The binding
of the carotenoid astaxanthin in the protein multimacromolecular complex crustacyanin is
responsible for the blue coloration [75]. β-Crustacyanin is formed by two closely positioned
astaxanthin molecules encapsulated in protein [76]. Thus, protease-producing B. amyloliq-
uefaciens CPFD8 and S. cerevisiae 006-001 facilitate astaxanthin recovery by dual action.
Their proteases deproteinize the shell allowing the penetration of solvents and degrade
the protein molecules to which astaxanthin is bounded. In this context, various powerful
extracellular enzymes from B. amyloliquefaciens strains such as protease, chitinase and lipase
have been extensively reported [77–83]. In a similar study, astaxanthin was recovered from
shrimp wastes using Lactobacillus acidophilus DSM 29,979 and Streptococcus thermophilus over
submerged fermentation [84]. Likewise, astaxanthin was extracted from a shrimp waste
using Lactobacillus plantarum and L. acidophilus [85]. In a recent study, enhanced astaxanthin
extraction process from shrimp shell waste was conducted using ethyl acetate after the
treatment with recombinant chitinase and protease [51]. Our study highlighted the role of
chitinolytic and proteolytic microorganisms as potential candidates in microbial-assisted
extraction of astaxanthin. It is worth to mention that the optimum conditions (40 ◦C, pH
8.0 and 3 days of incubation), more than 6-fold increase in astaxanthin yield was attained
by pretreatment of the exoskeleton waste with B. amyloliquefaciens CPFD8 compared with
that obtained by the traditional solvent extraction method.

In this study, the biological activity of the B. amyloliquefaciens CPFD8-mediated astaxan-
thin extract was investigated. The recovered astaxanthin exhibited remarkable antioxidant
activity with feasible DPPH and ABST radical scavenging potential. It is worth mention-
ing that the recovered astaxanthin exhibited higher ABST radical scavenging potential
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compared with ascorbic acid. These findings agree with previous literature reporting
on the antioxidant activity of astaxanthin [30,86–90]. Several studies elucidated the un-
usual antioxidant activities of astaxanthin in vitro and in vivo. Astaxanthin is well-known
powerful carotenoid antioxidant that efficiently removes active oxygen and inhibits the
production of lipid peroxide caused by ultraviolet light [91]. It has been suggested that the
strong antioxidant efficacy of astaxanthin is due to its unique chemical structure with long
conjugated double bonds (polyene chain) [92]. It has been thought that the polyene chain
of astaxanthin accomplishes the antioxidant activities by quenching singlet oxygen and
scavenging radicals to terminate chain reactions [26]. In a recent study, astaxanthin exerted
a potent protective effect against oxidative stress and exhibited obvious ability to counteract
lipid peroxidation and ferroptotic cell death in neuroblastoma cell model [93]. In addition
to its superior antioxidant merits, our investigation demonstrated the anti-inflammatory
action of astaxanthin extracted from C. sapidus by the described microbial-assisted method.
We observed impressively protective effects of astaxanthin on LPS-induced macrophage
RAW264.7 cells with reduced NO, TNF-α, and IL-6 production compared with untreated
LPS-induced cells. These findings concord with previous literature that showed a decrease
in NO, TNF-α, and IL-6 levels upon treatment with astaxanthin [94–97]. Inflammation is
a defense mechanism in response to harmful stimuli such as pathogens, damaged cells,
and certain compounds to remove the injurious stimuli [98]. Unfortunately, chronic inflam-
mation activated by the imbalance between the excessive production of proinflammatory
mediators and the low production of anti-inflammatory mediators leads to several self-
destructive conditions [99]. The intracellular messenger “NO” regulates some cellular
functions, such as inflammation and pathogen elimination [100]. Nonetheless, excess NO
reacts with superoxide (O2

−) to produce a strong oxidant peroxynitrite (ONOO−) that
attributes to much of the cytotoxicity of NO [101]. Additionally, TNF-α and IL-6 are proin-
flammatory cytokines responsible for a broad spectrum of functions, including cytotoxic
and cytostatic effects [102]. Thus, anti-inflammatory natural products such as astaxanthin
could be used to alleviate the undesired inflammatory responses.

5. Conclusions

The findings of this investigation indicated the higher astaxanthin content of exoskele-
ton waste of C. sapidus compared with that of P. pelagicus. Among various investigated
solvent systems, acetone/hexane (1:1 v/v) showed superior astaxanthin extraction efficacy.
The developed microbial-assisted process involving the pretreatment of crab exoskele-
ton waste with chitinolytic and/or proteolytic microorganisms significantly enhanced
the recovery of astaxanthin from the shells. Particularly, pretreatment of the waste with
B. amyloliquefaciens CPFD8 yielded more than 6-fold astaxanthin compared with the tra-
ditional solvent extraction method. We showed the secretion of extracellular chitinase,
protease and lipase B. amyloliquefaciens CPFD8 cultivated on crab exoskeleton waste as the
sole carbon and nitrogen sources, which may be attributed to the digestion of chitin and
proteins in the exoskeleton, facilitating the release and recovery of astaxanthin. The inferior
activity of S. cerevisiae 006-001 in terms of astaxanthin recovery could be due to the lack
of chitinase and lipase activity. The developed process recovered astaxanthin in an active
form, possessing antimicrobial, antioxidant, and anti-inflammatory activity. These findings
suggest the potential use of the developed microbial-assisted method utilizing chitinolytic
and proteolytic microorganisms to maximize the recovery of bioactive astaxanthin from
crustacean exoskeleton waste.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation9060505/s1, Figure S1: Isolation and identification
of chitinolytic and proteolytic B. amyloliquefaciens CPFD8. Figure S2: 13C-NMR spectra of astaxanthin
extracted from crab exoskeleton; Figure S3: HPLC chromatograms of astaxanthin extracted from
crab exoskeleton.
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24. Zajac, G.; Machalska, E.; Kaczor, A.; Kessler, J.; Bouř, P.; Baranska, M. Structure of Supramolecular Astaxanthin Aggregates
Revealed by Molecular Dynamics and Electronic Circular Dichroism Spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 18038–18046.
[CrossRef]

25. Budriesi, R.; Micucci, M.; Daglia, M.; Corazza, I.; Biotti, G.; Mattioli, L.B. Chemical Features and Biological Effects of Astaxanthin
Extracted from Haematococcus Pluvialis Flotow: Focus on Gastrointestinal System. Biol. Life Sci. Forum 2022, 12, 31. [CrossRef]

26. Ambati, R.R.; Moi, P.S.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its
Commercial Applications—A Review. Mar. Drugs 2014, 12, 128–152. [CrossRef] [PubMed]

27. Liu, X.; Xie, J.; Zhou, L.; Zhang, J.; Chen, Z.; Xiao, J.; Cao, Y.; Xiao, H. Recent Advances in Health Benefits and Bioavailability of
Dietary Astaxanthin and Its Isomers. Food Chem. 2023, 404, 134605. [CrossRef] [PubMed]

28. Yamashita, E. Let Astaxanthin Be Thy Medicine. PharmaNutrition 2015, 3, 115–122. [CrossRef]
29. Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A Review of Its Chemistry and Applications. Crit. Rev.

Food Sci. Nutr. 2007, 46, 185–196. [CrossRef]
30. Kumar, S.; Kumar, R.; Kumari, A.; Panwar, A. Astaxanthin: A Super Antioxidant from Microalgae and Its Therapeutic Potential. J.

Basic Microbiol. 2022, 62, 1064–1082. [CrossRef]
31. Capelli, B.; Bagchi, D.; Cysewski, G.R. Synthetic Astaxanthin Is Significantly Inferior to Algal-Based Astaxanthin as an Antioxidant

and May Not Be Suitable as a Human Nutraceutical Supplement. Nutrafoods 2014, 12, 145–152. [CrossRef]
32. Patel, A.K.; Tambat, V.S.; Chen, C.W.; Chauhan, A.S.; Kumar, P.; Vadrale, A.P.; Huang, C.Y.; Di Dong, C.; Singhania, R.R. Recent

Advancements in Astaxanthin Production from Microalgae: A Review. Bioresour. Technol. 2022, 364, 128030. [CrossRef] [PubMed]
33. Maoka, T. Carotenoids in Marine Animals. Mar. Drugs 2011, 9, 278–293. [CrossRef] [PubMed]
34. Han, T.; Li, X.; Wang, J.; Wang, C.; Yang, M.; Zheng, P. Effects of Dietary Astaxanthin (AX) Supplementation on Pigmentation,

Antioxidant Capacity and Nutritional Value of Swimming Crab, Portunus Trituberculatus. Aquaculture 2018, 490, 169–177.
[CrossRef]

35. Jagruthi, C.; Yogeshwari, G.; Anbazahan, S.M.; Shanthi Mari, L.S.; Arockiaraj, J.; Mariappan, P.; Learnal Sudhakar, G.R.;
Balasundaram, C.; Harikrishnan, R. Effect of Dietary Astaxanthin against Aeromonas Hydrophila Infection in Common Carp,
Cyprinus Carpio. Fish Shellfish Immunol. 2014, 41, 674–680. [CrossRef]

36. de Carvalho, C.C.C.R.; Caramujo, M.J. Carotenoids in Aquatic Ecosystems and Aquaculture: A Colorful Business with Implica-
tions for Human Health. Front. Mar. Sci. 2017, 4, 93. [CrossRef]

37. Routray, W.; Dave, D.; Cheema, S.K.; Ramakrishnan, V.V.; Pohling, J. Biorefinery Approach and Environment-Friendly Extraction
for Sustainable Production of Astaxanthin from Marine Wastes. Crit. Rev. Biotechnol. 2019, 39, 469–488. [CrossRef]
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