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Abstract: Fermentation is a widely used process in the biotechnology industry, in which sugar-
based substrates are transformed into a new product through chemical reactions carried out by
microorganisms. Fermentation yields depend heavily on critical process parameter (CPP) values
which need to be finely tuned throughout the process; this is usually performed by a biotech
production expert relying on empirical rules and personal experience. Although developing a
mathematical model to analytically describe how yields depend on CPP values is too challenging
because the process involves living organisms, we demonstrate the benefits that can be reaped
by using a black-box machine learning (ML) approach based on recurrent neural networks (RNN)
and long short-term memory (LSTM) neural networks to predict real time OD600nm values from
fermentation CPP time series. We tested both networks on an E. coli fermentation process (upstream)
optimized to obtain inclusion bodies whose purification (downstream) in a later stage will yield
a targeted neurotrophin recombinant protein. We achieved root mean squared error (RMSE) and
relative error on final yield (REFY) performances which demonstrate that RNN and LSTM are indeed
promising approaches for real-time, in-line process yield estimation, paving the way for machine
learning-based fermentation process control algorithms.

Keywords: E. coli; neurotrophin; OD600nm; fermentation; process optimization; machine learn-
ing; LSTM

1. Introduction

As it can be grown to high cell densities and on inexpensive medium, Escherichia coli
is the host of choice to express recombinant proteins. Furthermore, this microorganism
has been extensively studied, and hundreds of different strains and expression vectors
are available, offering a wide range of possibilities used in combination [1]. However,
optimizing the expression of a recombinant protein in Escherichia coli is always a challenging
task as, to be overexpressed, every protein needs the culture conditions to be fine-tuned, a
process which is already time consuming. This is even more challenging when this protein
is either a growth factor, e.g., a neurotrophin [2,3], or accumulated in an inert form in
inclusion bodies (IB). It becomes even more difficult still when the situation includes both
scenarios, that is to say, when the protein is accumulated within the cell as an inactive
moiety [4], because in this form it cannot be easily monitored or dosed [5], e.g., in the case
of a soluble green fluorescent protein [6].
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If the recombinant protein is a neurotrophic factor, accurate determination of its
biological activity requires a cellular assay to be performed within a couple of weeks.
Furthermore, to characterize the amount of protein accumulated within inclusion bodies,
cells need to be broken and protein dosed in a denatured form, e.g., in an UPLC assay. All
the aforementioned activities require a considerable amount of time. An approach to speed
up the assessment of productivity and improve the production rate of such proteins is
tracking the indirect parameters to monitor the fermentation trend. Within this framework,
we tracked the optical density at 600 nanometers (OD600nm), a classical fermentation
parameter used as a proxy variable for produced biomass. From this absorbance, it is indeed
possible to estimate the bacterial concentration in the culture medium. As all fermentations
have been carried out in the same culture medium using the same expression vector and the
same Escherichia coli strain, it is reasonable to think that OD600nm is the most relevant proxy
variable for the produced biomass, reflecting the production of inclusion bodies in which
the recombinant protein accumulates. Furthermore, in our pre-industrial research and
development (R&D) setup, biotechnological production processes are based on prokaryotic
fermentation in which a microorganism is genetically modified to produce a protein of
interest. As the production process is a system that uses living cells, whose physiology
may change with respect to the growth environment, the management and control of
the production process is very complex and delicate. This complexity mainly depends
on the interaction between the environment and the microorganism and is influenced
by numerous process variables such as culture media composition, pH value, dissolved
oxygen, temperature, mass transfer, microorganism growth rate, etc. Because production
processes must be robust in order to obtain a high yield of recombinant protein while
guaranteeing a pre-established quality, the monitoring and controlling all these variables
is mandatory to reach industrial production objectives. Optimization of the production
process in terms of yield and reproducibility can be achieved through the study of the
relationships between the process variables. In this framework, analytical mathematical
modeling and deterministic control of industrial processes involving living organisms
is a very challenging task that has been widely described in the literature, introducing
several approximations leading to results that can only be partially exploited in a pre-
industrial environment. On the other hand, an empirical approach would necessitate a large
number of expensive and time-consuming multivariable experiments, which are not always
compatible with the requirements of industry. With these premises, ML techniques can
be considered to be very promising alternatives, especially in ever-changing contexts that
require the flexibility to frequently adapt to new process conditions. Major contributions
by ML approaches have increased the speed of process data analysis while reducing
the number of experiments required and the number of independent variables to be
monitored, eventually allowing for the identification of optimal process conditions. In
this context, machine learning methods have been investigated for process optimization
in biogas productions [7,8] and wastewater treatments [9,10]. Only more recently have a
few attempts at modeling fermentation processes with machine learning been explored
[11,12]. For example, in [13], the authors reviewed how ML methods have been applied so
far in bioprocess development, especially in strain engineering and selection, bioprocess
optimization, upscaling, monitoring, and control of bioprocesses. For each topic, they
highlighted successful application cases and current challenges and pointed out several
domains that can benefit from further progress in the field of ML. In [14], traditional
knowledge-driven mathematical approaches such as constraint-based modeling (CBM) and
data-driven black-box approaches such as ML were reviewed (both independently and in
combination) as powerful methods for analyzing and optimizing fermentation parameters
and predicting related yields. Benchmarks for artificial neural network (ANN) and support
vector machine (SVM) models were provided in [15], which offers a series of effective
optimization methods for the production of an antifungal lipopeptide biosurfactant. Among
machine learning models, the general regression neural network (GRNN) appears to be the
most suitable ANN model for the design of the fed-batch fermentation conditions for the
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production of iturin A because of its high robustness and precision, and the SVM model
appears to be a very suitable alternative. An interesting example of the synergistic use
of ML models was given in [16], where the authors combined descriptors derived from
fermentation process conditions with information extracted from amino acid sequence
to construct an ML model based on XGBoost classifiers, support vector machines (SVM)
and random forests (RF) that predicts the final protein yields and the corresponding
fermentation conditions for the expression of a target recombinant protein in the Escherichia
coli periplasm. Another example of the synergistic use of ML models for bioprocess
optimization is provided in [17], where the authors used ANN and genetic algorithms
(GA) to model and optimize a fermentation medium for the production of the enzyme
hydantoinase by radiobacter trained with experimental data reported in the literature. In
their approach, GA was used to optimize the input space of the NN models to find the
optimum settings for maximum enzyme and cell production, thereby integrating two ML
techniques for creating a powerful tool for process modeling and optimization. Finally,
an example of how ML models are paving the way for ML-based process controllers was
provided in [18], where an optimized decision-making system (OD-MS) algorithm in ML
for optimizing the enzymatic hydrolysis saccharification and fermentation conditions and
maximizing the related yield was studied to find the optimum parameter conditions for
obtaining a better yield. In this work, we developed a ML model based on LSTM networks
and fed by ten culture critical process parameters (CPP) to accurately predict real-time
and final OD600nm values. Historical series for the evolution of such ten-dimensional state
vectors were derived and used as inputs for the network, and the OD600nm values were
used as labels. Furthermore, such online descriptors have been complemented by further
global variables obtained off-line post-fermentation, such as recombinant protein dosage,
induction time, and inclusion body weight. Those extra parameters have been used to
confirm the different fermentations trends and select the best ones to train the system. Being
in a pre-industrialization phase, we are not strictly bound to CPP ranges obtained from
conventional process validation studies and thereby approved from regulatory agencies.
In fact, we are free to explore the design space in building our training set before refining
the most promising CPP ranges to be deposited to regulatory agencies for subsequent
production stages. Finally, the optimal critical process parameters ranges identified will
be used for transferring the process to the good manufacturing practice (GMP) plant just
before producing clinical batches for human use.

2. Materials and Methods
2.1. Fermentations

Fermentations have been run on a one-liter scale, which according to us is the perfect
format for handling parallel cultures and, at the same time, producing sufficient material
for the downstream process. Overnight cultures were run in shaking flasks in order to
inoculate the fermenters with 20 mL of an exponentially growing culture.

2.1.1. Strain and Plasmid

Escherichia coli Bl21 (DE3) has been used as the host strain. The recombinant protein gene
was cloned under the control of the T7 promoter in a kanamycin-selectable expression vector.

2.1.2. Fermentations

Culture medium: The original terrific broth (TB) medium has the following com-
position per liter: 24 g yeast extract, 12 g soy-peptone, 4.8 g potassium di-hydrogen
orthophosphate, 2.2 g di-potassium hydrogen ortho-phosphate, and 5 g glycerol. The
fed-batch medium was composed of 300 g/L of glycerol and yeast extract and 50 mg/L
kanamycin. As indicated in the text, the medium has been modified by reducing the yeast
extract quantity in the fed-batch medium or by substituting glycerol as the carbon source
with glucose. In this case, the sugar solution was separately autoclaved and then aseptically
added to the medium. All cited chemical components have been purchased from Merck.
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Inoculum development: A total of 25 µL of a research cell bank vial were inoculated in
25 mL of TB containing 50 µg/mL kanamycin in a 125 mL baffled sterile single-use shake
flask. The flask was incubated at 28 ◦C for 16 h on a rotary shaker at 180 rpm. Bioreactors
containing 700 mL of TB medium supplemented 50 mg/L kanamycin were inoculated with
20 mL of this overnight seed.

Fermentations were performed in a battery of eight independent 1 L autoclavable
stirred fermenters (Applikon MiniBio, Figure 1) each one equipped with an Applikon
My-Control unit and connected to a central computer containing the Lucullus software
registering all the fermentation parameters. Each fermenter was equipped with pH, dis-
solved oxygen, and temperature probes, and optical density values were estimated through
polynomial interpolation of the experimental data. Temperature was set at 30 ◦C for the
culture batch phase and to the target temperature during the fed-batch phase. Agitation
was provided by two axially mounted six-bladed Rushton turbines. Dissolved oxygen (DO)
was controlled at 50% air saturation using a sequential cascade of agitation between 500
and 1500 rpm and aeration between 0.5 to 1.5 L/min of compressed air and up to 1 L/min
pure oxygen in cascade. The pH was controlled at 7.0 using 10% phosphoric acid and 25%
ammonium solution. Antifoam 204 (Sigma-Aldrich—Merk Life Science S.r.l., Via Monte
Rosa, 93—20149 Milano Italy) diluted 1 to 10 in culture media was added automatically
to control foaming. The addition trigger was given by a conductivity probe mounted
5 cm below the fermenter head. During the fed-batch phase, a near-exponential strategy
was used to dispense the 200 mL of medium. More precisely, the feeding solution was
added as follows: for the first hour, the flow rate was 0.3 mL/min, then at induction, the
flow rate was gradually increased by 0.1 mL/min each half hour and kept constant at
0.9 mL/min for the last hour of induction. The last four fermentations were ran at
20 ◦C, and the pumping rate was fixed at 0.3 mL/min during the entire feeding phase. A
summary of the fermentations performed is reported in Table 1, where in the seven first
fermentations, we can observe a good correlation between OD600nm, biomass, and inclusion
body production.

Figure 1. Photo of the eight independent 1 L MiniBio units. Each unit was equipped with a controller
dosing the different critical process parameters. All controllers were connected to a computer
equipped with the Lucullus software acting as an interface and recording the process parameters.
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Table 1. Fermentations with corresponding final OD600nm, biomass, inclusion body weight, and
OD600nm/IB ratio values.

Run Final OD600nm Biomass (g) IB (g) Ratio
OD600nm/IB

8 63.4 66.6 13.5 4.7
11 55 54.4 12 4.6
12 62.7 59.3 12 5.2
16 56 51 10.8 5.2
22 51.1 53.6 10 5.1
23 50.5 58.4 12.4 4.1
24 52 53.9 10.1 5.1
25 50.3 302 NA NA
26 55.6 301.1 NA NA
27 44.6 66.3 NA NA
28 32.4 69.3 NA NA

2.1.3. Inclusion Body Recovery

At the end of the fermentation, biomass was harvested by centrifugation (15 min
at 8000 rpm with rotor GS3 Sorvall), and the pellet was resuspended in 0.1 M Tris with
0.01 M EDTA at pH 8.0 and homogenized at 800 ± 50 bars for four 4 cycles (Panda, GEA
Italia, Via Angelo Maria da Erba Edoari 29/A—43123 Parma, Italy ). The solution was
then centrifuged and washed twice with the same buffer. The last pellet, corresponding to
inclusion bodies, was stored at −70 ◦C for further use.

2.2. Machine Learning Pipeline
2.2.1. Data Preparation

This section describes the phases of data selection and pre-processing needed to
prepare the data with the aim to exploit a machine learning approach.

Parameter Selection. The first step of the data preparation is the analysis of the CPPs to
identify and select a subset of CPPs useful for the algorithm. Table 2 shows the selected
CPP with their nomenclature in the data.

Table 2. Critical process parameters (CPPs).

Critical Process Parameters
(CPP) Unit Nomenclature

pH unit m_pH
Dissolved Oxygen % m_ls_opt_do

Temperature ◦C m_temp
Stirrer rpm m_stirrer

Pure Oxygen L dm_o2
Compressed Air L dm_air
Pump 1 (Base) Rpm dm_spump1
Pump 2 (Acid) Rpm dm_spump2

Pump 3 (Antifoam) Rpm dm_spump3
Pump 4 (Feed) Rpm dm_spump4

Induction Binary induction

Fermentation Selection. Before performing the pre-processing, we selected a subset
from the available fermentation batches (see Figures 2 and 3 and also supplementary file
for discarded fermenatation batches). The selection was performed considering both the
quality and quantity of the data, as well as by analyzing whether the fermentation had a
standard and canonical progress. Moreover, we trimmed selected data to remove missing
or inconsistent values. Thus, the selected fermentations were 8, 11, 12, 16, 22, 23, 24, 25, 26,
27, and 28.
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(a) pH (b) Dissolved Oxygen

(c) Temperature (d) Stirrer

(e) Pure Oxygen (f) Compressed Air

(g) Pump 1 (Base) (h) Pump 2 (Acid)

Figure 2. Cont.
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(i) Pump 3 (Antifoam) (j) Pump 4 (Feed)

(k) Induction

Figure 2. Plots for the critical process parameters (CPP).

(a) Available fermentation batches. (b) Selected fermentation batches.

Figure 3. Fermentation batch selection.

Cumulative to Non-Cumulative Data. Some CPPs, e.g., “spumps”, are acquired in
the form of cumulative data, meaning that the sensor registers the sum between the
measured value and the previously registered value at each timestamp. More formally, the
current value is obtained as v(t) = v(t− 1) + m(t), where v is the registered value and
m is the measured value. As a consequence, the obtained values monotonically increase
during the acquisition. Nonetheless, such an implicit information codification makes it
harder for the machine learning algorithm to learn hidden correlation in the data. As
a consequence, because cumulative data provide the same fundamental information of
non-cumulative data, the first step of data pre-processing is to transform cumulative data
into non-cumulative data by defining m as follows: m(t) = v(t)− v(t− 1).

Data Normalization. Machine learning approaches require that both training and
test data are equally distributed. Accordingly, we normalize the data with the standard
technique of the z-score. The z-score transforms the data distribution with a mean µ
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and standard deviation σ into a normal Gaussian distribution with mean 0 and standard
deviation 1, as follows:

z(t) =
v(t)− µ

σ
(1)

where z(t) is the value after the normalization and σ is the standard deviation. To equally
normalize both the training and test data, we select data from fermentation 16 to compute
the mean and the standard deviation.

Data Sequencing. To correctly format the data being processed by the selected algorithm,
we needed to create discrete data sequences through the grouping of contiguous timestamps
(see Section 2.2.2). With this aim, we use an approach based on a sliding window that
progressively scans and groups data together. We use a stride, meaning that the window
goes through the data by jumping of a number of timestamps defined by the stride value
each iteration. We set the size of the sliding window to 20 and the stride to 5.

OD600nm Interpolation. The CPP data and the OD600nm data have a temporal incon-
sistency, because CPP values are acquired with a frequency of one per minute, whereas
the OD600nm values are acquired with a frequency of one per hour. However, the machine
learning algorithm requires that the sampling frequency is equal for both the CPP and
OD600nm values. To overcome this issue, we interpolate OD600nm values by linearly mixing
values obtained from separately fitted linear and polynomial interpolations. Specifically,
the interpolated values are obtained with the following expression:

i(t) = α ∗ l(t) + β ∗ p(t) (2)

where i(t) is the final interpolated value, l(t) is the linearly interpolated value, and p(t) is
the polynomially interpolated value. We used a sixth-degree polynomial, which adds a
smoothing component to the non-derivable curve obtained from local linear interpolation
(piecewise linear). In doing so, we separately fit linear and polynomial interpolation curves
and then linearly combined the two using α and β weights. By setting α = β , we assigned
the same weight to the linear and polynomial interpolation curves in the construction of the
final fitted value, i.e., the arithmetic mean between the linear and polynomial interpolated
values. The choice of using a sixth-degree polynomial and the choice of letting α = β
were driven by experimental observations. In fact, although these choices do not grant an
overall smoothness to the final interpolating curve as would be the case by letting α = 0,
the combined choice effectively reduces the intangible effect of having discontinuities in the
derivative function of the final interpolating curve upon known experimental values, while
at the same time preventing unrealistic swings between consecutive ones as would be the
case using a fitting polynomial of a higher degree. By setting α = β = 0.5, we obtained a
mean R2 score of 99.93, and an example of it is shown in Figure 4.

Figure 4. Interpolation of the OD600nm values. The blue line is the interpolated data, and the red Xs
are the experimental values of batch 8. The interpolation allows an effective approximation of the
trend of the OD600nm values during the fermentation.
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2.2.2. Deep Learning Model

Fermentation processes involve living organisms that evolve over time and, conse-
quently, both the CPP and OD600nm values evolve as well and are strongly influenced
by values assumed at previous timestamps. This evolution is handled well by machine
learning models that are able to process sequences of data rather than single data, revealing
hidden correlations across timestamps.

Recurrent neural networks and long-short term memory models [19] are neural net-
works specifically devised to work on sequential data typical of tasks such as action
recognition in videos[20], language translation [21], speech recognition [22], and image
captioning [23].

Different from feed-forward neural networks (FFNNs) [24], these types of models do
not assume the independence of input data across time. As a consequence, when working
with data sequences, the output at the current timestamp is obtained by examination of input
data throughout the whole sequence, including data from past timestamps within the sliding
window limits. Therefore, the input data have a size of (ws, s) and the output has a size of
(ws, 1), where ws is the window size, and s is the number of input features. In this work, we
use an architecture composed of the following modules:

• Fully connected layer;
• RNN/LSTM module;
• Fully connected layer.

The first fully connected layer allows the mapping of input data onto a high-dimensional
latent space. We experimentally proved the effectiveness of this choice. Instead, the
second fully connected layer allows obtaining the final OD600nm predictions. The model is
illustrated in Figure 5.

Figure 5. Neural network architecture used for the estimation of the OD600nm (RNN cells are also
considered as an option for LSTM cells). The architecture is applied to time sequences of size 20
and progressively processes the full data sequence with a stride of 5 data points. At a fixed time, 11
CPPs are given; this results in a 20 × 11 dimension of the inputs. Such inputs are individually fed
to a single fully connected neural network layer and produce a new vector (hidden layer 1) which
is in turn fed to a two-layer LSTM (or RNN) module. Such a module is recurrent, meaning that
vectors are not processed independently in time, rather, cell outputs are fed to the cell itself at the
next time instance (left figure), meaning that predictions are based on a history of 20 samples. Two
extra (non-recurrent) fully connected layers are stacked to produce a one-dimensional output at each
time instance, namely, the OD600nm prediction. For more details, please refer to the python code
provided along with this article at https://github.com/MattiaLitrico/Smart-Fermenter (accessed on
23 May 2023).

https://github.com/MattiaLitrico/Smart-Fermenter
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We used a grid search method for hyperparameter value optimization, as detailed in
Table 3.

Table 3. Hyperparameters used for the network architecture.

Hyperparameter Value

Input size 11
Time sequence length 20

Stride 5
Latent space size 16

Number of recurrent layers 2

3. Experiments

We performed experiments using the architecture described in the previous section.
Both the training and testing were preceded by a data pre-processing stage. We trained our
model using a learning rate of 0.001, a batch size of 256, and an SGD optimizer.

3.1. Setup

As mentioned in Section 2.2.1 (Fermentation Selection), we performed a preprocessing
stage to select a subset of fermentations suitable to train, validate, and test the machine
learning model. The selection criteria are based on the quality and consistency of the
acquired data. Firstly, we defined the “canonical” fermentation settings, in which we
removed the fermentations that have not been accomplished using the canonical settings.
This category includes the preliminary fermentations used to establish the canonical set-
tings, as well as some fermentations that use glycerol as a carbon source (see Figure 3).
Secondly, we excluded fermentations that suffered from some failure during the process, as
well as fermentations with no production of the recombinant protein. Lastly, we trimmed
data points (mainly from the tail ends) from some of the batches (e.g., 25, 26, 28) for which
we did not have periodic OD600nm readings.

3.2. Evaluation Criteria

The use of a machine learning algorithm requires the availability of both a training
set and a test set. The former is the subset of the data used to train the algorithm. On the
contrary, the latter is used to evaluate its prediction performances. We used the leave-one-
out cross-validation (LOOCV) [25] method to evaluate the model, in which the number of
folds is equal to the number of fermentations in the data set. With all other fermentations
acting as a training set and the chosen fermentation acting as a single-item test set, the
learning algorithm is applied once for each fermentation. By doing so (i) we were able to
evaluate the generalization ability of the algorithm in various scenarios and (ii) we achieved
a reliable and unbiased estimate of the model performance.

3.3. Evaluation Metrics

To evaluate the proposed approaches, we compute two metrics: root mean squared
error (RMSE) [26] and relative error on final yield (REFY). The RMSE is a standard machine
learning metric commonly used as a performance indicator for a regression model. By
computing the square root of the mean value of the squared differences between model
predictions and the ground-truth values, it gives an estimate of the model’s predictive
power (accuracy). The RMSE is described by the following expression:

RMSE =

√
1
tn

Σtn
t=1(pt − yt)2 (3)

where tn is the total number of observations in the fermentation, pt is the model prediction,
and yt is the ground truth OD600nm value at timestamp t.
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Additionally, we introduce the REFY metric that measures the absolute error at the
last timestamp of the fermentation. This allows the REFY to be influenced by only the
accuracy at the end of the fermentation rather than during all the fermentation. Moreover,
the final prediction is the value that matters the most. The REFY is described by the
following expression:

REFY =
|ptn − ytn |

ytn

· 100% (4)

4. Results

The quantitative results reported in Table 4 demonstrate that both networks, i.e., LSTM
and RNN perform well with comparable average root mean squared error (RMSE) and
relative error on final yield (REFY) values, though RNN outperforms by a slight margin.
However, we observed that point-wise RMSE is slightly higher in the initial yield estimation
points, which is undeniably due to the lack of context (history) available at the beginning
of CPP data. However, the models generalize better as we move along the successive
timestamps. We also observe a plateau in the final yield estimation points of batches 8, 12,
and 25.

Overall, the REFY of batches 8 and 25 are comparatively high, with an average RMSE.
The RMSE of batch 11 yield estimation is high for both networks, with a slightly high REFY
for the LSTM network only. The yield estimation of batch 12 is comparatively the least
accurate of all batches. In Section 5.2, we discuss all the potential reasons behind such
outcomes. Nevertheless, yield estimation for most batches, i.e., 16, 22, 23, 24, 26, 27, and 28
are quite promising, paving the way for machine learning-based black-box modeling of the
fermentation process.

Table 4. Results based on LSTM and RNN networks.

Batch RMSE REFY (%) Final Yield
LSTM RNN LSTM RNN Ground Truth

8 3.26 3.50 13.68 15.74 62.83
11 7.08 7.22 7.85 * 1.24 54.84
12 9.18 8.20 18.15 15.03 61.69
16 3.53 3.16 3.07 1.62 54.72
22 4.08 2.89 2.39 3.16 * 50.83
23 1.63 2.34 0.47 * 2.41 50.31
24 2.47 2.52 1.87 0.18 * 51.51
25 3.85 3.84 20.10 11.58 44.72
26 2.13 2.17 10.56 6.07 43.57
27 3.01 4.36 4.31 * 12.63 * 44.75
28 4.90 3.85 0.31 9.61 44.58

avg.(std.) 4.10(2.24) 4.00(1.97) 7.52(6.80) 7.21(5.60) 51.30(6.76)

* In these cases, prediction is higher than the actual final yield.

5. Discussion
5.1. Production

All fermentations were run in parallel in 1 L fermenters equipped with a software
interface able to store critical parameters in real time. This strategy allows execution of
several fermentations in parallel and enables direct, real-time evaluation of the influence of
specific parameters during the cultures. Furthermore, such a volume is a good compromise
between ease of use and quantity of recombinant protein produced. This aids in setting
up and optimizing downstream processes and, at the same time, providing material to
preclinical pharmaceutical departments. In fact, the availability of even grams of material
to be purified eases downstream process development and further related upscaling. In
this project, fermentations have been developed to obtain high yields with middle cell
densities. In fact, as reported in Table 1, a total of 10 to a maximum of 13.5 g of inclusion
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bodies can be recovered from each fermentation with OD600nm values spanning from 52 to
63. This is due to the combination of different factors such as rich culture medium, which
favors Escherichia coli growth and rational design space exploration.

A further point to consider is the reduced fermentation time, which at the one-liter
scale hardly exceeded 10 h. The short fermentation time combined with high inclusion
body yield are very promising achievements for project upscaling and industrialization.

It is also important to note that even when expression system has been modified, as in
the last four fermentations where the neurotrophic factor was engineered to be expressed
in a soluble form and not accumulate in inclusion bodies, the system is still able to predict
the final culture OD600nm value. This accuracy rate for network prediction was possible
because the same Escherichia coli strain, expression vector, and culture medium were used.
Most important, this can be considered to be a worst-case test or a special challenge that
was successfully completed by the ML model. We have shown that training the ML model
on a specific strain growing in a specific medium allows the same model to also predict final
culture OD600nm in different conditions and with different versions of the neurotrophin
expressed in a soluble or insoluble form, as detailed in the next section.

5.2. ML Prediction Results

We supply qualitative results in Figure 6 for analyzing estimation quality and initiating
discussion. The high REFY performances on batches 8 and 12 are due to these batches
having a final yield much higher than the average final yield (see Table 4); this is an unusual
condition that made it difficult for the models to infer from the training data. Nevertheless,
by examining the REFY and Figure 6a, we observe that the model performs well on batch 8
until the yield estimation settles on the final value.

As can be seen in Figure 3b, batches 11 and 12 possess a different experimental yield
trend (with higher values when compared to other batches) which also contributes to
the higher RMSE (see Figure 6b,c where the estimations are less accurate from the very
initial timestamps). Furthermore, an unusually high trend can be observed in the pump 1
(dm_spump1) values in batches 12 and 27 which affects the corresponding yield estimates
as can be noted from the magnitude of the anomaly in pump 1 (base) values (see Figure 2g).
The high REFY performance on batch 25 can be explained by the very low pure oxygen
(dm_O2) in the last timestamps of the fermentation (see Figure 2e).

Altogether, this implies that models struggle to predict the OD600nm in unusual CPP
trends, i.e., trends underrepresented in the training data, with a consequent lack of general-
ization ability. In addition, the results highlight the importance of computing both metrics
(RMSE and REFY) for capturing the real behavior of the models during all the fermentation.
Nonetheless, the generalization ability could possibly be improved with more training data,
further exploring the design space hyper-volume adjacent to the experimental conditions
to be found in batches 8, 11, 12, and 25. Such exploration is currently out of the scope of
this study, because the models’ performances and process robustness are satisfying and
promising for transfer into a GMP plant for clinical production.
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(a) Batch-8 (b) Batch-11

(c) Batch-12 (d) Batch-16

(e) Batch-22 (f) Batch-23

(g) Batch-24 (h) Batch-25

Figure 6. Cont.
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(i) Batch-26 (j) Batch-27

(k) Batch-28

Figure 6. Qualitative results obtained by the LSTM and RNN networks.

6. Conclusions

In this work, we demonstrated the general applicability of machine learning ap-
proaches to predict real-time and final yields of fermentation processes designed to recover
recombinant proteins of biotechnological interest. We trained our ML model to predict
real time OD600nm values from CPP historical series. This black-box model allows for the
early termination of a process that is recognized to be diverging from normal conditions by
monitoring real-time CPP values. Furthermore, it is trained on CPPs only, i.e., we did not
include any MPPs as inputs, upon which (by definition) no control would be possible. Thus,
the (black-box) relationship we developed between OD600nm and CPP values paves the way
for a ML-driven control system by offering a reliable alternative to numerous trial-and-error
experiments for identification of the optimal fermentation conditions and related yields.
In fact, optimal CPP set points maximizing OD600nm value are recommended in real time
by the prediction algorithm on the basis of the learned (not yet analytical) relationship
inferred from the training data. The model was trained on a set of fermentations run in a
short period of time and tested on very different protocols as in the last four fermentations
reported in Table 1, where the fed batch phase temperature was set to 20 ◦C and the cultures
were run overnight. Furthermore, even though culture medium and Escherichia coli strain
were the same in all fermentations, the protein was expressed in a soluble form and did
not accumulate in inclusion bodies. Being able to predict the final fermentation OD600nm in
those conditions is a further “validation” of the ML model. In fermentation 28, the final
OD600nm was lower than usual, and this can be explained by the phenomenon of cell lysis
during the overnight culture phase. This cell lysis is probably due to a complete substrate
depletion during the overnight induction. Exploring the design space allowed construction
of a black-box relationship between the critical process parameters and the OD600nm value
on the one hand, and allowed setting the best possible fermentation protocol on the other.
RNN and LSTM neural networks were optimized to predict real time and final OD600nm
values from fermentation CPP time series. The errors associated with yield predictions
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from both networks demonstrate that RNN and LSTM are promising tools to design control
strategies relying upon black-box models trained on CPP time series and related yields
from past fermentations.

Furthermore, it is very interesting to note that when a fermentation problem is
encountered (as in run 12) the prediction cannot be accurate, because CPP trends are
very different from those observed in training. This is particularly evident for run 12 in
Figure 2, where we can cross compare the green pH curve (panel a) with Pump 1 (panel g)
and observe that they have different trends with respect to other fermentations.

The same phenomenon can be seen in run 11, where the maximum allowed stirrer
speed was set 100 rpm higher than the usual value. This higher mixing speed has a positive
influence on the culture broth oxygenation. As a result, we have a lower pure oxygen
consumption and as a consequence, two CCP have been concomitantly affected in this run,
resulting in predictions that were only partially aligned with the ground truth towards the
end of the fermentation.

In both cases, the model has been able to rapidly highlight fermentation trends that
were drifting from the “normal” or expected ones. This is very encouraging for further
model development with the aim of becoming the reference “expert” that is able to warn the
operator driving a real GMP fermentation that a deviation from normal process is ongoing.
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//www.mdpi.com/article/10.3390/fermentation9060503/s1: List and discussion of discarded fer-
mentation batches.
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