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Abstract: Saccharomyces cerevisiae is the most important industrial microorganism used to fuel ethanol
production worldwide. Herein, we obtained a mutant S. cerevisiae strain with improved capacity for
ethanol fermentation, from 13.72% (v/v for the wild-type strain) to 16.13% (v/v for the mutant strain),
and analyzed its genomic structure and gene expression changes. Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment revealed that the changed genes were mainly enriched in the pathways
of carbohydrate metabolism, amino acid metabolism, metabolism of cofactors and vitamins, and
lipid metabolism. The gene expression trends of the two strains were recorded during fermentation
to create a timeline. Venn diagram analysis revealed exclusive genes in the mutant strain. KEGG
enrichment of these genes showed upregulation of genes involved in sugar metabolism, mitogen-
activated protein kinase pathway, fatty acid and amino acid degradation, and downregulation of
genes involved in oxidative phosphorylation, ribosome, fatty acid and amino acid biogenesis. Protein
interaction analysis of these genes showed that glucose-6-phosphate isomerase 1, signal peptidase
complex subunit 3, 6-phosphofructokinase 2, and trifunctional aldehyde reductase were the major
hub genes in the network, linking pathways together. These findings provide new insights into the
adaptive metabolism of S. cerevisiae for ethanol production and a framework for the construction of
engineered strains of S. cerevisiae with excellent ethanol fermentation capacity.

Keywords: Saccharomyces cerevisiae; ethanol fermentation; omics sequencing; expression trend;
protein interaction; hub genes

1. Introduction

Ethanol is a potential environmentally friendly alternative to fossil fuels that can
be used to propel light vehicles with gasoline, thereby improving octane numbers and
reducing environmental pollution [1]. In addition, it is the premier biotechnological global
product in terms of volume and economic value [2,3]. Sucrose is an abundant, cheap,
and readily available substrate for industrial fermentation, and its use in the production
of fuel ethanol has proved successful in Brazil [4,5]. Sugarcane contains 11–18% (wet
W/W) sugars, comprised of 90% sucrose and 10% glucose and fructose [6]. During the
edible sugar-making process, cane molasses is generated as a by-product in vast amounts,
containing 45–60% sucrose and ~5–20% glucose and fructose [5,7]. Sucrose production is
the most important industry in the Guangxi Zhuang Autonomous Region, accounting for
~60% of the total planting area and yield of sugarcane in China.
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Sucrose-based fuel ethanol production is one of the world’s major biotechnological
processes, which utilizes the microorganism Saccharomyces cerevisiae due to its ability to effi-
ciently ferment sugars to ethanol and resist industrial environmental stresses [8,9]. Strains
with optimal ethanol fermentation capacities can improve the efficiency of bioethanol
production and reduce energy consumption and production costs considerably [3]. Thus,
various strategies have been employed with the aim of developing new strains and im-
proving ethanol production, ranging from early hybridization, protoplast fusion, and
mutagenesis to recent genetic engineering, gene editing, and synthetic biology [10–12].

In the fermentation process, ethanol production, carbon dioxide generation, redox
balancing, energy production, and cell growth are all coupled. Although the physiological
and biochemical processes of yeast ethanol fermentation have been well characterized,
there remains much to learn about the relationship between gene expression and cell
characteristics [13]. Omics sequencing is a powerful tool that can be used to explore the
relationship between gene mutations, gene expression differences, and cell trait changes
to better understand the principles underlying physiological homeostasis and potentially
uncover additional molecular phenotypes associated with specific characteristics [14–18].

In this study, two strains of S. cerevisiae were characterized, a wild type (WT) and a
mutant (MT) strain, with an obvious advantage over the WT strain in ethanol fermentation
when grown in a 30% (w/v) sucrose medium. Whole genome sequencing (WGS) and RNA
sequencing (RNA-Seq) were used to analyze genomic differences and gene expression
trends during the fermentation process between the two strains. Venn diagram analysis,
KEGG enrichment analysis, and protein interaction analysis were used to characterize
changes in gene expression in the MT strain during fermentation and identify key hub
genes of metabolic adaptability. This study will help to better understand the metabolic
characteristics of S. cerevisiae with a high capacity for ethanol fermentation and provide
ideas for the construction of engineered S. cerevisiae.

2. Materials and Methods
2.1. Strains and Culture Conditions

S. cerevisiae WT (MATa/MATα) (CGMCC 2.4748) [19] is a wild-type diploid strain iso-
lated from year-old sugar mill waste in Nanning, China, and S. cerevisiae MT (MATa/MATα)
is a mutant of the WT strain. The MT strain was obtained by random mutation using UV
irradiation; the screening process was as follows: the mutated cell solution was coated on a
culture dish (150 mm) with a yeast peptone dextrose (YPD) medium (20 g L−1 tryptone,
10 g L−1 yeast extract, and 20 g L−1 glucose), cultured at 30 ◦C for two days. The grown
cell moss on the culture dish was evenly divided into 16 regions, and each was scraped into
5 mL YPD medium for overnight culture at 30 ◦C, then 100 uL cell solution was absorbed
into 5 mL YPD medium for overnight culture. Cell concentrations were measured, com-
parative amounts of cells were inoculated into 100 mL YPS30 medium (20 g L−1 tryptone,
10 g L−1 yeast extract, and 300 g L−1 sucrose) in 250 mL Erlenmeyer flasks, and ethanol
fermentation was allowed to proceed at 30 ◦C, 180 rpm. Cells with the highest ethanol
yield were coated on a culture dish again, repeated the above process five times, then
isolated single colonies from the stain with the highest ethanol yield. After two rounds of
isolation, we got the purified mutant with the highest ethanol yield. When the fermentation
experiment was performed in this paper, cells were cultivated in a YPD medium at 30 ◦C,
180 rpm. Comparative amounts of freshly cultured WT and MT cells were inoculated into a
100 mL YPS30 medium in 250 mL Erlenmeyer flasks, and ethanol fermentation was allowed
to proceed at 30 ◦C, 180 rpm.
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2.2. Detection of the Fermentation Process

The number of cells was counted using an automated cell counter (IY1200 Counstar,
Ruiyu, Shanghai, China) every 4 h. Ethanol production was quantified using a gas chro-
matograph (6890, Agilent, Palo Alto, CA, USA). In the fermentation broth, reducing sugar
was determined using the dinitrosalicylic acid response. Following HCl hydrolysis, the
total residual sugar content of the broth was quantified using the dinitrosalicylic acid re-
sponse every 8 h. RNA-Seq was used to analyze gene expression at 16 h (T1), 40 h (T2), and
64 h (T3) during fermentation. Three parallel experiments were performed for each sample.

2.3. Whole Genome DNA Extraction, Library Construction, and Sequencing

Total genomic DNA was obtained by completely grinding cells in liquid nitrogen,
decontaminating, adding cetyltrimethylamine bromide to facilitate the removal of polysac-
charides, deproteinizing with phenol and chloroform, precipitating with isopropanol and
absolute ethyl alcohol, washing with 75% alcohol to remove the sediment, and finally
dissolving the pellet in ddH2O. DNA quality was assessed using a Nanodrop Microspec-
trophotometer (Nanodrop 2000, Thermo Fisher Scientific, Waltham, MA, USA) and agarose
gel electrophoresis. At least 3 µg of genomic DNA was used to construct paired-end li-
braries with an insert size of 500 bp using a Paired-end DNA Sample Prep kit (Illumina
Inc., San Diego, CA, USA). These libraries were then sequenced on a NovaSeq6000 system
using a PE 150 strategy by GeneDenovo Biotechnology Co., Ltd. (Guangzhou, China).

2.4. RNA Extraction, Library Construction, and Sequencing

Total RNA was extracted using a Trizol reagent kit (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol. RNA quality was assessed on an Agilent 2100 Bio-
analyzer (Agilent Technologies, Palo Alto, CA, USA) and checked using RNase-free agarose
gel electrophoresis. mRNA was enriched using Oligo (dT) beads. The enriched mRNA was
fragmented into short fragments using a fragmentation buffer and reverse transcribed into
complementary DNA (cDNA) using a NEB_Next Ultra RNA Library Prep Kit for Illumina
(NEB #7530, New England Biolabs, Ipswich, MA, USA). The purified double-stranded
cDNA fragments were end-repaired, followed by the addition of an adenylate (A) base;
then, the fragments were ligated to Illumina sequencing adapters. The ligation reaction
product was purified using AMPure XP Beads (1.0×). The ligated fragments were subjected
to size selection using agarose gel electrophoresis and amplified using polymerase chain
reaction (PCR). The resulting cDNA libraries were sequenced using an Illumina NovaSeq
6000 by GeneDenovo Biotechnology Co., Ltd (Guangzhou, China).

2.5. Sequence Data Analysis

The WGS and RNA-Seq raw reads were deposited in the Sequence Read Archive
database with accession number PRJNA885247.

Raw WGS reads were processed to obtain high-quality clean reads by removing reads
with ≥10% unidentified nucleotides (N), reads with >50% bases having Phred quality
scores ≤ 20, and reads aligned to the barcode adapter. To identify single nucleotide
polymorphisms (SNPs) and insertion–deletion mutations (InDels), the Burrows–Wheeler
Aligner was used to align the clean reads from each sample against the reference genome
(Ensembl_release100 of S. cerevisiae) [20]. Variant calling was performed for all samples
using the GATK Unified Genotyper. SNPs and InDels were filtered using GATK’s Variant
Filtration with proper standards [21]. To determine the physical positions of each SNP, the
software tool ANNOVAR was used to align and annotate SNPs or InDels [22]. Structural
variation [23] was determined using the software BreakDancer (Max1.1.2., Ken Chen, The
Genome Center, St. Louis, MO, USA) [24].

Raw RNA-Seq reads were further filtered using fastp (version 0.18.0) [25]. Reads con-
taining adapters, ≥10% of unknown nucleotides, low-quality reads containing ≥50% low-
quality (Q-value ≤ 20) bases, and reads mapped to rRNA were removed. The remaining
clean reads were further used in assembly and gene abundance calculations. Using En-
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sembl_release100 of the S. cerevisiae genome FASTA file as the reference genome, the index
of the reference genome was built, and paired-end clean reads were mapped to the refer-
ence genome using HISAT2.2.4 [26]. The fragment per kilobase of transcript per million
mapped reads (FPKM) value was calculated to quantify gene expression abundance and
variations using RSEM software (v1.3.1, Bo Li, Departmet of Comuter Sciences, Univer-
sity of Wisconsin-Madison, Madison, WI, USA) [27]. Correlation analysis of two parallel
experiments was performed using R Correlation. Gene differential expression analysis
was performed using DESeq2 [28]. Gene expression pattern analysis was used to cluster
genes of similar expression patterns from multiple samples (at least three in a specific
time point, space, or treatment dose size order). To examine the expression pattern of
differentially expressed genes (DEGs), the expression data of each sample (in the order
of treatment) were normalized to 0, log2(v1/v0), and log2(v2/v0), and then clustered
using Short Time-series Expression Mine software (STEM, Jason Ernst, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA) [29]. The clustered profiles
with p-values ≤ 0.05 were considered significant profiles. KEGG enrichment analysis of
the target DEGs was performed using the KOBAS 3.0 package. The protein interaction
network was analyzed using the interaction relationships in the STRING protein interaction
database (http://string-db.org, accessed on 28 February 2022) [30], and the interaction
network diagram was constructed using Cytoscape [31].

2.6. Quantitative Reverse Transcription PCR (qRT-PCR)

Two comparison groups, MT-T1 vs. MT-T2 and WT-T2 vs. MT-T2 were selected as
objects, and qRT-PCR of 21 genes from the two comparison groups were used to verify the
RNA-Seq accuracy. The amplified primers were shown in Table S1. Biological replicates of
each gene were identical to those used for RNA-Seq. Reverse transcription was performed
using the HiScrip II Q RT SuperMix kit for qPCR (R223, Vazyme, Nanjing, China), and
qPCR was performed using the ChanQ SYBR qPCR Master Mix kit (Q341, Vazyme, Nanjing,
China) on a TianLong 988 system (Tianlong, Xi’an, China). Data were analyzed using the
2−∆∆Ct method, with bifunctional DRAP deaminase/tRNA pseudouridine synthase RIB2
as the reference gene.

3. Results
3.1. Cell Growth and Fermentation

The S. cerevisiae MT strain had obvious advantages in growth and ethanol fermentation
in 30% (w/v) sucrose medium compared to that of the WT strain. During the cell growth
phase, the difference in cell number between the MT and WT strains was pronounced after
20 h, with a maximum mean cell number for the two strains of 3.06 × 108 and 3.23 × 108,
respectively (Figure 1A). The trend in sugar consumption was consistent with that of
ethanol yield; the difference between the two strains was shown after 24 h, and the ethanol
yields were the highest at 64 h (13.72% v/v for the WT strain and 16.13% v/v for the
MT strain (Figure 1B)). The total residual sugar content in the fermentation broth was
stable from 48 h, while at the end of 80 h fermentation, the total residual sugar content
was 41.52 g/L (WT) and 34.03 g/L (MT) (Figure 1C). The reduced sugar content in the
fermentation broth showed an initial increase and subsequently decreased, peaking at
32 h. The sugar reduction of MT was significantly lower than that of WT after 16 h, at
31.0667 g/L (MT) and 41.5 g/L (WT) after 80 h fermentation (Figure 1D). Almost all the
sucrose in the fermentation broth of the WT strain became reducing sugar.

3.2. Genome Sequencing

Strict quality control and data filtering were performed on the original data to obtain
the high-quality clean reads used in the data analysis. Genome coverage, sequencing depth,
SNPs, and InDels in the two samples were analyzed by aligning the sequences with the
reference genome of S. cerevisiae (Ensembl_release100). The statistics on quality of sequenc-
ing data were shown in Tables S2–S5, on information of SNPs and InDels were shown in
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Tables S6–S10. There was no obvious difference in the genome location of SNPs between
the two strains, but SNP coding information in the MT strain contained significant changes
compared to that of the WT; synonymous single-nucleotide variants (SNVs) increased,
while nonsynonymous SNVs decreased (Figure 2A). The location of InDels in the MT
genome changed in both the exons and upstream of the coding region, while the coding
information changed in frameshift and nonframeshift deletions (Figure 2B). SV included
translocation breakends (BND), deletions (DEL), tandem duplications (DUP), insertions
(INS), and inversions (INV), shown in Figure 2C. Compared to that of the WT strain, the pro-
portion of BNDs decreased, and INSs increased in the MT strain. The distribution density of
SNPs on each chromosome was relatively high (Figure 3A), while the distribution density
of InDels was high only on mitochondria (Figure 3B). The GO enrichment of the SNPs and
InDels in MT strain was significantly enriched in cellular process, single-organism process,
metabolic process (Biological Process), cell, cell part, and organelle (Cellular Component),
binding and catalytic activity (Molecular Function) (Figure 4). The KEGG enrichment
result of SNPs was basically consistent with the result of InDels (Figure 5). Significantly
enriched metabolic pathways include carbohydrate metabolism, amino acid metabolism,
metabolism of cofactors and vitamins, and lipid metabolism.
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3.3. DEGs and KEGG Enrichment Analysis between Different Groups

The statistics on quality of sequencing data were shown in Tables S11–S15. Plot
FPKM distribution for all samples were shown in Figure S1. The heat map of the Pearson
correlation coefficient R between sanmples was shown in Figure S2. Genes with a false
discovery rate ≤ 0.05 and an absolute fold change ≥ 2 were considered DEGs. DEGs
between different comparison groups are shown in Figure 6. Compared to the WT strain,
the MT strain had significantly upregulated gene expression at the T1 time point and
significantly downregulated gene expression at the T2 and T3 time points. There were
more upregulated genes in the WT strain and more downregulated genes in the MT strain
at the T2 and T3 time points than at the T1 time point. For both the WT and MT strains,
there was little expression difference between the T2 and T3 time points.

The top 20 metabolism pathways of the enriched DEGs between the WT and MT strains
at three time points are shown in Figure 7. The enriched genes were mainly involved in
sugar, amino acid, and fatty acid metabolism. Between WT-T1 and MT-T1, the vitamin
B6 metabolism was significantly enriched, and starch and sucrose metabolism, Purine
metabolism, and glycolysis/gluconeogenesis were the most enriched pathways. The citrate
cycle and pyruvate metabolism pathways were significantly enriched between WT-T2 and
MT-T2; the citrate cycle, pyruvate metabolism, and glycolysis/gluconeogenesis pathways
collectively enriched the most genes between the two strains. Between WT-T3 and MT-
T3, the significantly enriched pathway was alanine, aspartate, and glutamate metabolism,
together with pyruvate metabolism, citrate cycle, glycolysis/gluconeogenesis, cysteine, and
methionine metabolism enriched the most genes between the two strains. The results were
consistent with the enrichment of genomic variation genes, including SNPs and InDels.
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3.4. Expression Trends of DEGs on the Timeline and Exclusive Genes in the MT Strain

To examine the expression patterns of DEGs, the expression data of each sample (in
the order of treatment) were normalized to 0, log2(v1/v0), log2(v2/v0), and then clustered
using STEM. The parameters of “Maximum unit change in model profiles between time
points” = 1, “Maximum output profiles number” = 20, and “Minimum ratio of fold change
of DEGs” was ≥2.0. The clustered profiles with p-values ≤ 0.05 were considered significant
profiles. There were eight expression trend profiles, and four profiles were significantly
enriched for each strain for the fermentation process: profile 0—downregulation; profile
1—initial downregulation and then no change; profile 6—initial upregulation and then no
change; and profile 7—upregulation (Figure 8).
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Figure 8. Gene expression trends of DEGs between the two strains during fermentation. The black
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strain (A), profiles of the WT strain ordered by p-value significance of the number of genes assigned
versus expected (C), gene expression trends of DEGs in the MT strain (B), profiles of the MT strain
ordered by p-value significance of the number of genes assigned versus expected (D). DEGs: different
expression genes.

Exclusive genes in the MT strain of each significantly enriched profile were determined
using Venn diagram analysis, and KEGG pathway enrichment analysis of the exclusive
genes was conducted. As shown in Figure 9, the exclusive genes in profiles 6 and 7
with upregulated trends are mainly enriched in carbon and sugar metabolism pathways,
whereas the exclusive genes in profiles 0 and 1 with downregulated trends are mainly
enriched in the ribosome and amino acid and fatty acid biosynthesis. Genes involved in
the top 15 metabolic pathways are shown in Table 1.

The interaction network of the genes in Table 1 was analyzed, except for those involved
in ribosomes. The Pearson correlation and significance between pairwise genes were
calculated, and the top 100 pairs of absolute correlation were shown when the p-value
was ≤0.05. As shown in Figure 10, there were nine groups in the interaction network.
The largest group consisted of 45 genes and centered on SPC3 and PGI1, the two central
blocks being connected by the protection of telomeres 1 (POT1) and GMP synthase (GUA1).
The second group consisted of seven genes, with PFK2 as the hub gene. The third group
consisted of six genes, with GRE3 as the hub gene. There were low numbers of genes and
relatively simple relationships in the remaining six groups.
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of Genes and Genomes; DEGs: different expression genes.
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Table 1. Genes involved in the top 15 enriched pathways of the exclusive genes in the MT strain.

Pathway Gene ID Gene Symbol

Profile 0 a

Linoleic acid metabolism YOL011W PLB3
Lipoic acid metabolism YLR239C LIP2
Protein export YMR150C, YLR066W IMP1, SPC3

Cellular senescence YPR119W, YBR085, WYKL168C,
YBR195C CLB2, AAC3, KKQ8, MSI1

Ribosome biogenesis in eukaryotes YLR129W, YLR175W, YDL014W, YJL069C DIP2, CBF5, NOP1, UTP18
RNA polymerase YNL248C, YGL070C RPA49, RPB9
Tryptophan metabolism YLR044C, YGR088W PDC1, CTT1
Purine metabolism YEL042W, YIR029W, YOR128C GDA1, DAL2, ADE2
Ubiquinone and other terpenoid-quinone
biosynthesis YDR539W FDC1

Vitamin B6 metabolism YNL334C SNO2
Phenylalanine, tyrosine, and tryptophan
biosynthesis YDR007W TRP1

Glycine, serine, and threonine
metabolism YML082W, YMR189W YML082W, GCV2

Histidine metabolism YCL030C HIS4
Arginine and proline metabolism YLR142W PUT1
Glycerophospholipid metabolism YOL011W PLB3

Profile 1 b

Ribosome

YGR085C, YDR418W, YIL133C,
YNL069C, YDL082W, YHL001W,
YJL177W, YMR242C, YOR312C,
YNL301C, YBL027W, YBR191W,
YFL034C-A, YOL127W, YBL087C,
YER117W, YGL031C, YLR009W,
YGR034W, YLR344W, YDR471W,
YHR010W, YGL030W, YDL075W,
YLR406C, YBL092W, YER056C-A,
YIL052C, YOR234C, YPL143W, YDL191W,
YDL136W, YMR194W, YPR043W,
YLR185W, YDR500C, YLR325C,
YKR094C, YIL148W, YNL162W,
YHR141C, YML073C, YLR448C,
YPL198W, YFR031C-A, YIL018W,
YGL147C, YLR340W, YDL081C,
YOL039W, YOR293W, YDR025W,
YCR031C, YDR337W, YLR367W,
YOL040C, YDL083C, YMR143W,
YDR447C, YML024W, YML026C,
YDR450W, YNL302C, YOL121C, YJL136C,
YKR057W, YPR132W, YER074W,
YLR333C, YGR027C, YHR021C,
YLR264W, YOR167C, YDL061C,
YOR182C, YNL178W, YHR203C,
YPL090C, YBR181C, YNL096C, YBL072C,
YBR189W, YGR214W, YLR048W

RPL11B, RPL12B, RPL16A, RPL16B,
RPL13A, RPL14B, RPL17B, RPL20A,
RPL20B, RPL18B, RPL19B, RPL21A,
RPL22B, RPL25, RPL23A, RPL23B,
RPL24A, RLP24, RPL26B, RPL26A,
RPL27B, RPL27A, RPL30, RPL31A,
RPL31B, RPL32, RPL34A, RPL34B,
RPL33B, RPL33A, RPL35A, RPL35B,
RPL36A, RPL43A, RPL37A, RPL37B,
RPL38, RPL40B, RPL40A, RPL42A,
RPL42B, RPL6A, RPL6B, RPL7B, RPL2A,
RPL2B, RPL9A, RPP0, RPP1A, RPP2A,
RPS10A, RPS11A, RPS14A, MRPS28,
RPS22B, RPS15, RPS16B, RPS16A,
RPS17B, RPS17A, RPS18B, RPS18A,
RPS19B, RPS19A, RPS21B, RPS21A,
RPS23B, RPS24A, RPS25B, RPS25A,
RPS27B, RPS28B, RPS28A, RPS29B,
RPS30B, RPS3, RPS4B, RPS6A, RPS6B,
RPS7B, RPS8A, RPS9B, RPS0A, RPS0B

Nucleocytoplasmic transport

YER168C, YNL221C, YNL244C,
YMR260C, YJR007W, YOR260W,
YER025W, YMR146C, TDR429C,
YMR309C, YOR361C, YBR079C, YJL138C,
YOL139C, YGR162W, YPR041W,
YGR083C, YLR208W, YKL205W,
YGL092W, YKL068W, YFR002W,
YMR235C

CCA1, POP1, SUI1, TIF11,
SUI2, GCD1, GCD11, TIF34,
TIF35, NIP1, PRT1, RPG1, TIF2, CDC33,
TIF4631, TIF5, GCD2, SEC13, LOS1,
NUP145,
NUP100, NIC96, RNA1
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Table 1. Cont.

Pathway Gene ID Gene Symbol

RNA polymerase
YOR341W, YJR063W, YPR010C, YIL021W,
YPR187W, YOR224C, YNL113W,
YNR003C, YDL150W, YPR110C

RPA190, RPA12, RPA135,
RPB3, RPO26, RPB8, RPC19, RPC34,
RPC53, RPC40

Ribosome biogenesis in eukaryotes

YNL221C, YIL035C, YHR089C,
YDL208W, YLR059C, YNL132W,
YNL163C, YGR090W, YCL031C,
YDR398W, YDR324C, YMR093W,
YLR222C, YCR057C, YLR197W,
YDR339C, YML093W, YLR186W,
YLR022C, YLR397C

POP1, CKA1, GAR1, NHP2,
REX2, KRE33, RIA1, UTP22,
RRP7, UTP5, UTP4, UTP15,
UTP13, PWP2, NOP56, FCF1, UTP14,
EMG1, SDO1, AFG2

Arginine biosynthesis YOR375C, YDR111C, YPR035W,
YOL058W, YER069W, YKL106W

ARG5,6, ALT2, GDH1, GLN1, ARG1,
AAT1

Fatty acid metabolism YIL009W, YMR246W, YAR035W,
YER061C, YLR372W, YJL196C, YJL097W

FAA3, FAA4, YAT1, CEM1, YLR372W,
ELO1, PHS1

Steroid biosynthesis YLR056W, YLR020C, YML008C,
YLL012W, YGR060W ERG3, YEH2, ERG6, YEH1, ERG25

Fatty acid elongation YLR372W, YJL196C, YJL097W YLR372W, ELO1, PHS1

Purine metabolism

YJR105W, YJR069C, YBL068W, YMR120C,
YER070W, YMR300C, YJL070C,
YML022W, YMR217W, YER005W,
AR015W, YGL234W, YHL011C, YCR026C,
YNL141W

ADO1, HAM1, PRS4, ADE17, RNR1,
ADE4, YMR120C, APT1, GUA1, YND1,
ADE1, ADE5,7, PRS3, NPP1, AAH1

Fatty acid biosynthesis YIL009W, YMR246W, YER061C FAA3, FAA4, CEM1
Biosynthesis of unsaturated fatty acids YLR372W, YJL196C, YJL097W YLR372W, ELO1, PHS1

Oxidative phosphorylation

YOR270C, YBR039W, YDL004W,
YGL008C, YKL141W, YGR020C,
YLR447C, YDL185W, YBL099W,
YDR529C

VPH1, ATP3, ATP16, PMA1, SDH3,
VMA7, VMA1, ATP1, QCR7

Pentose phosphate pathway YBL068W, YMR205C, YCR073W-A,
YGR240C, YGL185C, YBR196C, YHL011C

PRS4, PFK2, SOL2, PFK1, YGL185C,
PGI1, PRS3

Valine, leucine, and isoleucine
biosynthesis YNL104C, YOR108W, YLR355C LEU4, LEU9, ILV5

Glycine, serine, and threonine
metabolism

YDR232W, YDR158W, YOL056W,
YCR053W, YOR184W, YGL185C,
YGR155W, YAL044C

HEM1, HOM2, GPM3, THR4, SER1,
YGL185C, CYS4, GCV3

Profile 6 c

Pentose and glucuronate interconversions YGR194C, YKL035W, YJR096W,
YAL061W, YHL012W, YHR104W

XKS1, UGP1, YJR096W, BDH2, YHL012W,
GRE3

Starch and sucrose metabolism
YDL243C, YCR107W, YKL035W,
YEL011W, YDR001C, YFR053C,
YHL012W, YLR258W

AAD4, AAD3, UGP1, GLC3, NTH1,
HXK1, YHL012W, GSY2

Glutathione metabolism YER163C, YGR180C, YLR174W, YIR038C,
YKL026C GCG1, RNR4, IDP2, GTT1, GPX1

Glycerolipid metabolism YDR018C, YKL094W, YPL061W,
YJR096W, YHR104W YDR018C, YJU3, ALD6, YJR096W, GRE3

Galactose metabolism YKL035W, YJR096W, YFR053C,
YHL012W, YHR104W UGP1, YJR096W, HXK1, YHL012W, GRE3

Amino sugar and nucleotide sugar
metabolism

YKL035W, YMR084W, YFR053C,
YHL012W UGP1, YMR084W, HXK1, YHL012W

Fructose and mannose metabolism YJR096W, YFR053C, YAL061W,
YHR104W YJR096W, HXK1, BDH2, GRE3

Fatty acid degradation YPL061W, YDL168W, YIL160C ALD6, SFA1, POT1

Glycolysis/Gluconeogenesis YDL243C, YCR107W, YPL061W,
YDL168W, YFR053C AAD4, AAD3, ALD6, SFA1, HXK1

Pentose phosphate pathway YGR248W, YBR117C, YGR043C SOL4, TKL2, NQM1
Valine, leucine and isoleucine
degradation YPL061W, YIL160C ALD6, POT1
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Table 1. Cont.

Pathway Gene ID Gene Symbol

MAPK signaling pathway YDL006W, YNL098C, YBL016W,
YLL024C PTC1, RAS2, FUS3, SSA2

Citrate cycle (TCA cycle) YLR164W, YLR174W, YJL045W SHH4, IDP2, YJL045W
Histidine metabolism YPL061W, YNL092W ALD6, YNL092W
Oxidative phosphorylation YLR164W, Q0130, YJL045W SHH4, OLI1, YJL045W

Profile 7 d

Pentose and glucuronate interconversions YOR120W, YNR073C GCY1, MAN2
Biotin metabolism YNR058W BIO3
N-Glycan biosynthesis YBR110W, YBR070C ALG1, ALG14
Glycerolipid metabolism YOR120W, YOR245C GCY1, DGA1
Galactose metabolism YOR120W, YNR071C GCY1, YNR071C
Citrate cycle (TCA cycle) YCR005C, YNL009W CIT2, IDP3
Ribosome biogenesis in eukaryotes YHR170W, YNL075W, YLR106C NMD3, IMP4, MDN1
Peroxisome YNL009W, YJR104C IDP3, SOD1
Endocytosis YHL002W, YOR211C, YER125W HSE1, MGM1, RSP5
Histidine metabolism YMR209C YMR209C
Cellular senescence YCR008W, YJR066W SAT4, TOR1
Cell cycle YJL187C, YCR008W SWE1, SAT4
Pyrimidine metabolism YDR020C DAS2
Amino sugar and nucleotide sugar
metabolism YBR023C CHS3

Fructose and mannose metabolism YOR120W GCY1
a Significant expression trend of the MT strain, profile 0-downregulation. b Significant expression trend of the MT
strain, profile 1-initial downregulation, and then no change. c Significant expression trend of the MT strain, profile
6-initial upregulation, and then no change. d Significant expression trend of the MT strain, profile 7-upregulation.

As a hub gene in the first group, SPC3 is involved in protein export. The connected
genes complement factor B (CFB5) and small subunit processome component (UTP18) are
involved in ribosome biogenesis in eukaryotes; FAA3 is involved in fatty acid metabolism;
lipase (LIP2) is involved in lipoic acid metabolism; LEU9 is involved in valine, leucine, and
isoleucine biosynthesis; phosphoribosylaminoimidazole carboxylase (ADE2) is involved
in purine metabolism; and VMA7 is involved in oxidative phosphorylation. These con-
nections demonstrate the relationship among protein export, ribosome biogenesis, and
oxidative phosphorylation, as well as fatty acid and amino acid metabolism. SPC3 encodes
a signal-anchored protein subunit that enters the endoplasmic reticulum (ER) as a signal
peptidase [32]. The ER plays an important role in maintaining the balance and stability of
cellular proteins; misfolded proteins accumulate in the ER when cells are under different
kinds of stress, known as ER stress [33]. The role that SPC3 and other interacting genes
play in ER stress is worth investigating.

PGI1 is involved in the pentose phosphate pathway, whereas the genes bifunctional
purine biosynthetic protein (ADE5,7), bifunctional glutathione transferase (GTT1),
5-aminolevulinate synthase (HEM1), O-phosphol-L-serine:2-oxoglutarate transaminase
(SER1), SFA1, ELO1, CEM1, and sterol 24-C-methyltransferase (ERG6) are involved in
purine metabolism; glutathione metabolism; glycine, leucine, and isoleucine biosynthesis;
and fatty acid metabolism. Genes involved in fatty acid biosynthesis (ELO1 and CEM1)
were downregulated, whereas SFA1 involved in fatty acid degradation was upregulated,
which is beneficial to the accumulation of acetyl-CoA. SFA1 is also a bifunctional alcohol
dehydrogenase, and its synergic upregulation with ALD6 and POT1 increases the catalytic
degradation of fatty acids to alcohol. The effect of SFA1 on ethanol production in yeast
cells has been studied, but the mechanisms regulating the different effects under different
conditions remain unclear [34]. This module mainly showed the relationship between the
pentose phosphate pathway and fatty acid and amino acid metabolism. The Hsp70 family
chaperone (SSA2) and PTC1, involved in the MAPK pathway, were located at the edge
of this module. Glutathione transferase (Gtt1) of S. cerevisiae is crucial to the response to



Fermentation 2023, 9, 483 15 of 24

hydrogen peroxide stress. Increasing glutathione content might enhance yeast cell tolerance
to lignocellulose inhibitors and increase the production of ethanol [35,36]. GTT1 expression
was negatively correlated with interlinked genes in the network of this module; these
interactions help to better understand GTT1.
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Figure 10. Protein–protein interaction network of the exclusive genes in the profile 0, 1, 6, and 7 of
the MT strain. The node circles represent genes, labeling with gene ID or gene symbol; the node size
is graded according to the Cytoscape connectivity, with greater connectivity leading to larger nodes.
The node color is gradually changed according to log2FC; red represents log2FC > 0; the darker the
red, the larger the upregulation ratio; blue represents log2FC < 0; the bluer the color, the larger the
downregulation ratio. Positive correlations are shown by solid gray lines, and negative correlations
are shown by dashed gray lines. The thickness of the line gradually changes according to the absolute
value of the correlation coefficient; the larger value, the thicker line.

The second group comprised the hub gene PFK2, with glutamate–ammonia ligase
(GLN1), trifunctional histidinol dehydrogenase (HIS4), threonine synthase (THR4), ILV5,
endopeptidase catalytic subunit (IMP1), and ribonucleotide–diphosphate reductase sub-
unit (RNR1). This group demonstrated the relationship between the pentose phosphate
pathway (PFK2), amino acid metabolism (GLN1, HIS4, THR4, ILV5, RNR1), and protein
export (IMP1).

The third group comprised GRE3, gamma–glutamylcyclotransferase (GCG1), putative
acyltransferase (YDR018C), 6-phosphogluconolactonase (SOL4), NTH1, and acylglycerol
lipase (YJU3), and demonstrated the connection between pentose and hexose metabolism.
GRE3 was the hub gene and was directly linked to four of these genes. An engineered
S. cerevisiae strain overexpressing GRE3, xylitol dehydrogenase (XYL2), and xylulokinase
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(XYL3) ferments xylose resulting in high ethanol yields [37]. Thus, GRE3 has a coordinated
role in ethanol fermentation in yeast using different sugars.

PGI1, SPC3, PFK2, and GRE3 were the major hub genes in the network. In the future,
these metabolic pathways may be optimized by overexpressing or deleting these hub genes
to obtain S. cerevisiae strains with a higher capacity for ethanol fermentation.

3.5. qRT-PCR

qRT-PCR of 21 genes from two comparison groups was carried out to verify the
accuracy of the RNA-Seq data and the expression level of important genes. The log2 n
value of each gene is shown in Figure 11. All gene expression determined using qPCR
was consistent with that obtained from RNA-Seq, thereby indicating the credibility of
the RNA-Seq data. In the MT strain, the expression of sucrose invertase gene SUC2
was downregulated; furthermore, the content of total sugar and reducing sugar in MT
fermentation broth was lower than that of the WT strain after 16 h. The difference in sucrose
utilization between the two strains highlights the need for further study.
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4. Discussion
4.1. Sucrose Consumption of the WT and MT Strains

S. cerevisiae consumes sucrose in two ways. (1) The hydrolyzation of sucrose into
glucose and fructose by extracellular sucrose invertase encoded by the SUC gene family.
In this process, monosaccharides enter cells by facilitated diffusion to participate in the
carbon metabolism pathway; (2) Sucrose enters cells via the proton-coupled transporter
and is hydrolyzed in the cytosol by maltose metabolizing enzyme and intracellular sucrose
invertase [5,38]. The sucrose invertase gene SUC2, maltose permease genes (MALx1),
maltase genes (MALx2), and some regulatory genes (e.g., MALx3) are the key genes in
sucrose consumption of S. cerevisiae [38]. Invertases of S. cerevisiae coded by SUC2 can be
transcribed into two mRNAs that differ in their 5′ ends (1.8 Kb and 1.9 Kb). The longer of the
two invertases with a signal peptide can be secreted outside the cell, and its synthesis level is
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regulated by glucose repression. The shorter invertase lacking a signal peptide encodes the
intracellular invertase [39,40]. In the absence of extracellular invertase activity of S. cerevisia,
sucrose was internalized by proton symporters using ATP, which led to improving the
anaerobic fermentation and ethanol yield from sugar [5]. In addition, the replacement of all
endogenous hexose transporters with hexose–proton symport and extracellular invertase
(SUC2) can increase ethanol yield and anaerobic growth of S. cerevisiae [41].

In this study, both RNA sequencing and qPCR showed that the MT strain had lower
expression of SUC2, PMA1 (H (+)-exporting P2-type ATPase), MAL32 genes, and higher
expression of MAL31, IMA2 (oligo-1,6-glucosidase) genes than that of the WT strain during
fermentation. Wesley Leoricy Marques et al. constructed several mutants to investigate
sucrose metabolism in S. cerevisiae. Mutants IMU051 (mal∆ mph∆ suc2∆), IMU054 (mal∆
mph∆ suc2∆ MAL12), and IMK700 (mal∆ mph∆ suc2∆ MAL11 ima∆ cas9) could not grow
on mediums with sucrose as the sole carbon source; however, the growth of mutants
IMU055 (mal∆ mph∆ suc2∆ MAL11 MAL12) and IMU048 (mal∆ mph∆ suc2∆ MAL11) was
not limited by these types of medium [38]. These results show the importance of maltose
permease (MALx1) and oligo-1,6-glucosidase (IMAx) for sucrose consumption in S. cerevisiae.
However, the transportation of sucrose by MAL31 and hydrolyzation by IMA2 in the MT
strain requires verification.

We analyzed the protein interaction network of DEGs (WT-T2 vs. MT-T2) and extracted
the network of genes related to sucrose consumption in Table 2. Pearson correlations
between pairwise genes of DEGs were calculated. Considering the genes in Table 2 as core
genes, the top 10 correlation pairs in the absolute value of each core gene were shown
when the p-value was ≤ 0.05. As shown in Figure 12, most core genes were connected
by complex nodes. MAL33, MPH2, and IMA2 showed significant upregulation. PMP2,
PGM1, HXT11, HRK1, MAL31, GRE3, and HXK2 showed marginal upregulation. The
remaining core genes were downregulated. Among the core genes, RGT2, AST2, HXT2,
and HXT5 are closely related to the SUC2 gene. All of them are related to the plasma
membrane and glucose transporter. As a glucose-sensing receptor, the glucose-sensing
signal generated by RGT2 can lead to the inhabitation of the RGT1 transcriptional repressor
and, thus, the derepression of HXT genes that encode glucose transporters [42,43]. RGT2
was downregulated in response to glucose starvation [42]. Does the down expression of
SUC2, RGT2, and HXTx indicate that the sucrose is primarily hydrolyzed intracellularly
in the MT strain? However, plasma membrane H+-ATPase PMA1 and PMA2, which are
related to the transmembrane transport of sucrose, are also downregulated in the MT strain.
How the MT strain efficiently uses sucrose to produce ethanol is our next research objective.
Our network diagram results revealed the potential pathway of sucrose absorption and
provided a basis for subsequent study of the sucrose mode of absorption.

Table 2. Genes of DEGs between WT-T2 vs. MT-T2 are possibly related to sucrose consumption.

Gene Name Description FDR Log2-Fold Change a

SUC2 Invertase; sucrose
hydrolyzing enzyme 1.08 × 10−20 −2.28

MAL11 High-affinity maltose transporter
(alpha-glucoside transporter) 0.205 −0.91

MAL31
Maltose permease; high-affinity

maltose transporter
(alpha-glucoside transporter)

6.65 × 10−5 0.72

MAL12 Maltase (alpha-D-glucosidase) 0.141 −4.03
MAL32 Maltase (alpha-D-glucosidase) 0.466 −1.29
MAL33 MAL-activator protein 5.67 × 10−28 2.87
MAL13 MAL-activator protein 6.15 × 10−4 0.55
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Table 2. Cont.

Gene Name Description FDR Log2-Fold Change a

PMA1 Plasma membrane P2-type
H+-ATPase 1.98 × 10−4 −1.26

PMA2 Plasma membrane H+-ATPase 0.925 −0.53

PMP2
Proteolipid associated with

plasma membrane H(+)-ATPase
(Pma1p)

0.379 1.39

SOP4 ER-membrane protein 0.935 −0.46

AST1

Lipid raft-associated protein;
interacts with the plasma

membrane ATPase Pma1p and
has a role in its targeting of the

plasma membrane by
influencing its incorporation into

lipid rafts

2.32 × 10−27 −5.37

AST2

Lipid raft-associated protein;
overexpression restores Pma1p
localization to lipid rafts which

are required for targeting Pma1p
to the plasma membrane

1.54 × 10−5 −2.36

HRK1

Protein kinase; implicated in
activation of the plasma

membrane H(+)-ATPase Pma1p
in response to

glucose metabolism

1.4 × 10−8 1.00

IMA1
Major isomaltase

(alpha-1,6-glucosidase/alpha-
methylglucosidase)

0.186 −1.25

IMA2
Isomaltase

(alpha-1,6-glucosidase/alpha-
methylglucosidase)

1.28 × 10−34 2.58

IMA3

Alpha-glucosidase; weak but
broad substrate specificity for

alpha-1,4- and
alpha-1,6-glucosides

0.697 −0.27

IMA4

Alpha-glucosidase; weak but
broad substrate specificity for

alpha-1,4- and
alpha-1,6-glucosides

0.697 −0.27

IMA5

Alpha-glucosidase; specificity for
isomaltose, maltose, and

palatinose, but not
alpha-methylglucoside

0.813 −0.21

MPH2 Alpha-glucoside permease 1 3.32
MPH3 Alpha-glucoside permease 0.397 0.087

PFK2 Beta subunit of heterooctameric
phosphofructokinase 6.89 × 10−22 −2.41

GRE3

Aldose reductase; involved in
methylglyoxal, d-xylose,
arabinose, and galactose

metabolism

1.45 × 10−9 0.62

PGM1

Phosphoglucomutase, minor
isoform; catalyzes the conversion

from glucose-1-phosphate to
glucose-6-phosphate

3.2 × 10−8 1.16
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Table 2. Cont.

Gene Name Description FDR Log2-Fold Change a

GAL2 Galactose permease 0.017 −2.12

RGT2
Plasma membrane high glucose

sensor that regulates glucose
transport

5.51 × 10−11 −2.54

HXT1
Low-affinity glucose transporter

of the major facilitator
superfamily

1.08 × 10−5 −1.53

HXT2
High-affinity glucose transporter

of the major facilitator
superfamily

2.19 × 10−7 −2.84

HXT3
Low-affinity glucose transporter

of the major facilitator
superfamily

0.018 −1.08

HXT4
High-affinity glucose transporter;
member of the major facilitator

superfamily
2.79 × 10−4 −1.57

HXT5 Hexose transporter with
moderate affinity for glucose 3.54 × 10−15 −2.31

HXT6
High-affinity glucose transporter;
member of the major facilitator

superfamily
1.99 × 10−26 −4.56

HXT7
High-affinity glucose transporter;
member of the major facilitator

superfamily
0.414 −0.83

HXT11 Hexose transporter 2.96 × 10−11 1.29
HXK1 Hexokinase isoenzyme 1 0.228 −0.77
HXK2 Hexokinase isoenzyme 2 1.30 × 10−2 0.85

a log 2-fold change of differential expression; a positive number means up expression, and a minus means
down expression.

4.2. Carbon Metabolism in the MT Strain

The metabolic pathway enrichment results of exclusive genes in the MT strain were
mainly reflected in amino acid, fatty acid, and sugar metabolism. The carbon skeleton
of amino acids is broken down to form acetyl-CoA, α-ketoglutaric acid, succinyl-CoA,
fumaric acid, and oxaloacetic acid, all of which enter the citric acid cycle. The amino acid
synthesis also uses pyruvate, α-ketoglutaric acid, and oxaloacetic acid, which are interme-
diates in glycolysis, the citric acid cycle, and the pentose phosphate pathway, respectively.
These intermediates link sugar metabolism to amino acid metabolism [44,45]. As a carbon
skeleton, acetyl-CoA is the catabolic product of fatty acids and is the only source of car-
bon atoms in the fatty acid molecule. As shown in Figure 13, the expression of exclusive
genes in the MT strain involved in amino acid, fatty acid, and sugar metabolism resulted
in carbon metabolism flow to pyruvate and acetyl-CoA. Downregulation of ketol-acid
reductoisomerase (ILV5), 2-isopropylmalate synthase (LEU4), 2-isopropylmalate synthase
(LEU9), and dihydrolipoyllysine-residue acetyltransferase (LAT1) genes can reduce the
synthesis of pyruvate to valine, leucine, isoleucine, and acetyl-CoA, respectively. Upreg-
ulation of xylulokinase (XKS1), 3-hydroxybutyrate dehydrogenase 2 (BDH2), aldo-keto
reductase superfamily protein (YJR096W), and GRE3 genes contribute to the conversion of
ribose-5-phosphate to D-xylose, and subsequently to pyruvate. Pyruvate accumulation is
beneficial to increase ethanol production. Upregulation of POT1 and downregulation of
fatty acid synthase (CEM1), long-chain fatty acid-CoA ligases (FAA3 and FAA4), fatty acid
elongase (ELO1), carnitine O-acetyltransferase (YAT1), fatty acid elongase (YLR372W), and
enoyl-CoA hydratase (PHS1) genes enhance the hydrolysis of fatty acids to acetyl-CoA and
decrease fatty acid synthesis from acetyl-CoA. Upregulation of aldehyde dehydrogenase
(ALD6) and bifunctional alcohol dehydrogenase (SFA1) genes promote the conversion of
acetyl-CoA to ethanol. Upregulation of aryl-alcohol dehydrogenases (AAD3 and AAD4),
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alpha-trehalase (NTH1), hexokinase 1 (HXK1), YJR096W, glycerol 2-dehydrogenase (GCY1),
and ALD6 genes direct the flow of carbon into the glycolytic pathway, then into pyru-
vate and ethanol. The expression of alanine transaminase (ALT2), aspartate transaminase
(AAT1), and ALD6 genes promote the breakdown of amino acid carbon skeletons to form
α-ketoglutaric acid and succinyl-CoA. Ethanol could be a major source of acetyl-CoA and
NADPH indirectly during fermentation by S. cerevisiae, and ALD6 plays an important role
in this process [46]. Understanding the different metabolic processes is relevant in regard
to engineered S. cerevisiae deployed for ethanol production.
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Figure 12. Protein–protein interaction network of sucrose consumes related genes. Core genes are
shown in a diamond shape, and others in a circle, labeled with gene ID or gene symbol. The color
is gradually changed according to log2FC; red represents log2FC > 0; the darker the red, the larger
the upregulation ratio; blue represents log2FC < 0; the bluer the color, the larger the downregulation
ratio. Positive correlations are shown by solid gray lines, and negative correlations are shown by
dashed gray lines; the thickness of the line gradually changes according to the absolute value of the
correlation coefficient; the larger value, the thicker line.
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Figure 13. Exclusive genes in the MT strain are involved in carbon metabolism. Yellow box: gly-
colysis; blue box: fatty acid metabolism; green box: amino acid metabolism; purple box: tricar-
boxylic acid cycle; red box: alcohol biosynthesis. Red represents upregulated gene; green repre-
sents downregulated gene. The 3D structures of compounds were downloaded from PubChem
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 28 September 2022).

5. Conclusions

We obtained a mutant S. cerevisiae strain with improved capacity for ethanol fermen-
tation and analyzed its genomic structure and gene expression changes. The SNPs had a
high distribution density on all chromosomes except for the ends of chromosome I and II,
while the InDels had the highest distribution density on the mitochondria genome. GO
and KEGG enrichment for associated genes of SNPs and InDels were performed, and the
significantly enriched metabolic pathway included carbohydrate metabolism, amino acid
metabolism, metabolism of cofactors and vitamins, and lipid metabolism. There were
significant differences in gene expression between the two strains during fermentation. The
results of KEGG enrichment of DEGs between two strains were consistent with the result

https://pubchem.ncbi.nlm.nih.gov/
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of KEGG enrichment for associated genes of SNPs and InDels. Gene expression trends of
the two strains were recorded on a timeline during fermentation. Venn diagram analysis
revealed exclusive genes in the MT strain. KEGG enrichment analysis of these genes
showed that genes involved in sugar metabolism, the MAPK pathway, and fatty acid and
amino acid degradation were mainly upregulated. In contrast, genes involved in oxidative
phosphorylation and ribosome, fatty acid, and amino acid biogenesis were mainly down-
regulated. Protein interaction analysis of these genes showed that PGI1, SPC3, PFK2, and
GRE3 were the major hub genes in the network, linking sugar, amino acid, and fatty acid
metabolism; the MAPK pathway; oxidative phosphorylation; ribosome biogenesis; protein
export; and cellular senescence. This work provides a reference for the future construction
of engineered strains of S. cerevisiae with excellent ethanol fermentation capacity.
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