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Abstract: Fermentation technology has a long history and low-temperature fermentation has now
become the focus of research. This paper reviews the mechanism and application of low-temperature
fermentation and the optimization of relevant strains. Low-temperature fermentation leads to a
differential expression of growth in metabolism genes (PSD1, OPI3, ERG3, LCB3 and NTH1). Low-
temperature fermentation can be applied to foods and has various advantages, such as increasing
changes in volatile flavor compounds and other corresponding metabolic substances of the strain,
and inhibited growth of spurious bacteria. The focus of low-temperature fermentation in the long
run lies in strain optimization, which is to protect and optimize the strains through a variety of
methods. Low-temperature fermentation can greatly improve product quality. At present, the
most effective methods to promote low-temperature fermentation are gene knockout and probiotic
microencapsulation.

Keywords: low-temperature fermentation; fermentation mechanism; strain optimization; immobilized
cells; probiotic microcapsule

1. Introduction

Fermented foods date back to 13,000 BC [1,2], and have at least 5000 years of history
in China [3,4]. As a preservation method, fermentation has developed in tandem with
the global economy [5]. It has gradually evolved from natural fermentation to single-
cell fermentation with known strains, and then to mixed-cell fermentation. Now, it has
become more and more standardized and industrialized with a greater emphasis on taste
quality. Compared with traditional techniques, modern fermentation technologies have
experienced profound changes, both in products and processes (Figure 1). Fermentation
is a process in which large organic molecules are broken down into simpler molecules
through the action of microorganisms [6]. For example, protein, carbohydrate and fat in
the substrate are broken into amino acids, organic acids, peptides, alcohols, esters and
other substances under the action of microorganisms. Through this action, new substances
are generated to improve the flavor and taste of the original product and increase its
antioxidant and anti-inflammatory functions [1,7]. There are many kinds of fermented
foods, which can be divided into plant-based fermented foods and animal-based fermented
foods according to the raw materials used. Plant-based fermented foods include grains,
fruits, vegetables and tea. Animal-based fermented foods mainly include milk, meat and
eggs (Table 1). According to the product type, fermented foods can also be divided into
wine, milk, vinegar and flour products [8].
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Table 1. Classification of fermented food and some fermented products.

Classification Fermented
Product

Fermentation
Condition Strain Place of

Origin Reference

Fermented food of animal origin

Egg Egg yolk 42 ◦C Streptococcus thermophilus, Lactobacillus
delbrueckii ssp. Bulgaricus CHN [9]

Livestock and
Poultry Jerky 35 ◦C Lactobacillus sakei, Lactobacillus plantarum CHN [10]

Sausage 20 ◦C Lactiplantibacillus plantarum AR [11]

Ham 30 ◦C, 16 ◦C, 12 ◦C Lactobacillus plantarum, Staphylococcus
xylosus CHN [12]

Seafood Shrimp sauce natural fermentation Flavobacterium, Tetragenococcus CHN [13]

Fish 20 ± 5 ◦C Fusobacterium, Psychrilyobacter,
Psychromonas CHN [14]

Dairy Cheese 43 ◦C
Streptococcus salivarius subsp.

Thermophilus, Lactobacillus delbrueckii
subsp. bulgaricus

BRA [15]

Koumiss 22–26 ◦C Lactobacillus CHN [16]

Yogurt 30 ◦C Streptococcus thermophilus, Lactobacillus
delbrueckii subsp. bulgaricus IN [17]

Kefir 25 ◦C Lactobacillus, Lentilactobacillus, Leuconostoc AUS [18]

Fermented food of plant origin

Fruit Beverage 37 ◦C L. paracasei THA [19]

Vinegar 25 ◦C Acetobacter Lacticaseibacillus
Leuconostoc sp TUR [20,21]

Juice 37 ◦C Lactiplantibacillus plantarum BRA [22]
Wine 15 ◦C S. cerevisiae AR [23]

Vegetable Chili paste 30 ◦C Lactiplantibacillus, Lactobacillus, Weissella,
Issatchenkia, Trichoderma, Pichia CHN [24]

Pickles 25 ◦C L. fermentum, L. plantarum CHN [25]
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Table 1. Cont.

Classification Fermented
Product

Fermentation
Condition Strain Place of

Origin Reference

Grain Natto 40 ◦C Bacillus subtilis JAP [26]
Bean paste 20 ◦C Aspergillus oryzae CHN [27]

Bean curd natural fermentation

Bacillus, Enterobacter, Lactobacillus,
Sphingobacterium, Stenotrophomonas,

Tetragenococcus, Trabulsiella, Weissella
Alternaria, Sterigmatomyces, Actinomucor,

Fusarium, Debaryomyces, Candida

CHN [28]

Soy sauce 37 ◦C A. oryzae, Z. rouxii, L. fermentum, K.
kristinae CHN [29]

Rice cake 32 ◦C Lactobacillus plantarum, Saccharomyces
cerevisiae, Candida humilis CHN [30]

Plant-based
meat analogue

20 ◦C, 25 ◦C,
30 ◦C, 35 ◦C

Rhodotorula mucilaginosa, Monascus
purpureus CHN [31]

Bread room temperature yeast, Lactiplantibacillus plantarum ES [32]
Steamed bread 35 ◦C Saccharomyces cerevisiae, Baijiu Qu CHN [33]
cereal vinegar - Lactobacillus, Acetobacter CHN [34]

Rice wine 25 ◦C→32 ◦C→20 ◦C Pediococcus, Bacillus, Monascus,
Saccharomyces, Rhizopus CHN [35]

Beer - Saccharomyces cerevisiae, Saccharomyces
pastorianus BRA [36]

Chinese baijiu 30 ◦C Lactobacillus, Aspergillus CHN [37]

Other Tea 30 ◦C Komagataeibacter oboediens CHN [38]

The basis of fermentation is microorganisms, and temperature is an important factor
affecting the activity of microorganisms. Therefore, optimal temperature is required to
ensure and accelerate the fermentation process when conditions permit. Low-temperature
fermentation means that the fermentation process runs smoothly with reduced temperature.
No fermentation, fermentation, low-temperature fermentation—these three methods have
their own advantages and disadvantages (Table 2). Low-temperature fermentation can
improve the appearance, shape and shelf life of products, and prevent diseases such as
hypertension, diabetes, hyperlipidemia and obesity [39], which are similar to the role
of ordinary fermentation. In addition, low-temperature fermentation has some unique
advantages. Practical use shows that low-temperature fermentation can stay under stable
and reliable control. At low temperatures, the growth and reproduction of microorganisms
slow down, and the fermentation process becomes slower, smoother and more complete.
In terms of changes in metabolic components, it forms small molecules that are not easily
broken down and optimizes metabolic products, resulting in complete conversion of sugars
and changes in the content and proportion of acids, alcohols and volatile flavor compounds
that provide aroma. In some fruit wines, the wine body will be clearer, the taste will be better,
and the unique flavor of the raw materials will be preserved [40]. In terms of nutritional
function, it fully extracts various functional factors and nutrients from raw materials
to produce prebiotics [41,42]. The release of these bioactive substances improves anti-
inflammatory, antioxidant and other activities. In terms of strains, it improves the number
of live bacteria and also leads to some antibacterial activity [43,44]. For example, human
pathogenic bacteria such as Bacillus cereus grow more violently in normal temperature
fermentation than in low-temperature fermentation, and the pollution of products is more
prominent [45]. The addition of low-temperature tolerant lactic acid bacteria to silage
ensures the smooth fermentation process at low temperature, and the combined effect
of acid and low temperature inhibits the fermentation of undesirable Clostridium [46].
Low-temperature two-stage fermentation (20–10 ◦C) for bream effectively inhibits the
growth of Pseudomonas and Coliforms [47]. The low temperature fermentation of Longyan
wine at 10 ◦C effectively inhibits wine spoilage and improves the quality of the wine [40].
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However, there are also some disadvantages. For example, microbial decarboxylation of
amino acids will generate biogenic amines, which are harmful to the human body and
prevalent in fermented fruits and vegetables [48]. Tyramine tends to stay in meat [49], and
cereal products such as alcohol contain urethane, which is to some extent carcinogenic [50].
However, the synthesis of biogenic amines such as cadaverine and putrescine is inhibited
in low-temperature fermentation [47], indicating that low-temperature fermentation can
improve product quality and safety through the inhibition of undesirable strains of bacteria
and reduction of undesirable toxins. Many years ago, China used this long-time low
temperature fermentation technology to ferment pickles and soybeans and store them in a
sealed and cool place for a long time [51]. In recent decades, research on low-temperature
fermentation become extensive and intensive. It was initially applied to pickles and fruit
wine, and then to fermented foods such as dairy and flour products. It can be seen that
low-temperature fermentation is now leading a new trend of fermented products.

Table 2. Advantages and disadvantages of different fermentation methods.

No Fermentation Fermentation Low-Temperature Fermentation

Advantages

1. Short production cycle;
flexible timing

2. Better retention of the
original flavor and the texture

of the ingredients.

1. Moderate length of time between
non-fermentation and

low-temperature fermentation.
2. Good effect of reducing sugar.

3. Better mouthfeel and taste than
unfermented products.

4. Effectively extend the shelf life.

1. Effectively reduce microbial
contamination in the environment and

inhibit the growth of stray bacteria.
2. Slow down the reaction process,

resulting in more complete metabolism
and an increase in the variety and

content of flavor substances.
3. Effectively extend the shelf life.

Disadvantages 1. Poor taste and flavor.

1. Relatively long production cycle and
complex production process.

2. Fast and uncontrollable
fermentation process.

3. Susceptible to miscellaneous bacteria.

1. Longer production cycle and
complex production process.

2. Fermentation failure may occur.

2. Mechanism of Low-Temperature Fermentation

The mechanism action of low temperature fermentation is shown in Figure 2. From
a macro perspective, low temperature reduces the activity of microorganisms, decreases
the fermentation and metabolic rate, delays the completion of fermentation and slows
down the enzymatic reaction, thus affecting the synthesis of its metabolites. It increases
the fermentation time and makes the metabolic reactions complete. Low temperature will
change the structure of the original flora and the metabolic pathway by affecting the activity
of fermentation strains. Different strains have different regulatory mechanisms on the yield
of compounds [52]. All of these changes have an impact on the final flavor.

From a microscopic perspective, the core causes are differential gene expression and
structural changes [53]. The metabolic fluxes are basically the same but the concentra-
tion of growth-limiting nutrients, such as glucose and ammonia, vary greatly [54]. The
differential expression of genes leads to the emergence of multiple changes in protein
transcription translation folding, amino acid biosynthesis, lipid metabolism, membrane flu-
idity, mitochondrial function, mRNA secondary structure stability and metabolic enzyme
activity. This leads to changes in aldehyde metabolism, lipid metabolism, polysaccharide
metabolism, energy metabolism, alcohol metabolism and many other pathways [54,55].
Research has shown that yeast is far more adaptable to low temperatures than lactic acid bac-
teria and acetic acid bacteria. Therefore, the most popular application of low-temperature
fermentation is fermented wine. In the case of Saccharomyces cerevisiae, in the initial stage of
fermentation, the transcriptional process expresses the cold stress response. Cold shock
specifically induces a set of proteins that are involved in transcription, translation and other
essential functions that help maintain the structure of nucleic acids [56,57]. Up-regulated
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genes related to the cell cycle, growth control and maintenance of exponential growth
phase are transcribed earlier than in normal fermentation [58].

Fermentation 2023, 9, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 2. The mechanism of low-temperature fermentation. 

From a microscopic perspective, the core causes are differential gene expression and 

structural changes [53]. The metabolic fluxes are basically the same but the concentration 

of growth-limiting nutrients, such as glucose and ammonia, vary greatly [54]. The differ-

ential expression of genes leads to the emergence of multiple changes in protein transcrip-

tion translation folding, amino acid biosynthesis, lipid metabolism, membrane fluidity, 

mitochondrial function, mRNA secondary structure stability and metabolic enzyme activ-

ity. This leads to changes in aldehyde metabolism, lipid metabolism, polysaccharide me-

tabolism, energy metabolism, alcohol metabolism and many other pathways [54,55]. Re-

search has shown that yeast is far more adaptable to low temperatures than lactic acid 

bacteria and acetic acid bacteria. Therefore, the most popular application of low-temper-

ature fermentation is fermented wine. In the case of Saccharomyces cerevisiae, in the initial 

stage of fermentation, the transcriptional process expresses the cold stress response. Cold 

shock specifically induces a set of proteins that are involved in transcription, translation 

and other essential functions that help maintain the structure of nucleic acids [56,57]. Up-

regulated genes related to the cell cycle, growth control and maintenance of exponential 

growth phase are transcribed earlier than in normal fermentation [58]. 

Differences caused by the expression of genes that regulate lipid metabolism alter the 

composition of lipids. Overexpression of lipid genes (PSD1, LCB3, DPL1 and OLE1) im-

proves fermentation activity during low temperature fermentation, and overexpression of 

the OLE1 gene related to unsaturated fatty acids produces a specific aroma profile in wine 

[59]. The fermentation temperature will affect lipid unsaturation and composition, and 

the low fermentation temperature will increase the content of medium chain fatty acids 

[60]. Genes such as FAA3, FAA1 and SUR4 are associated with cytoplasmic fatty acid syn-

thesis and encode enzymes required for mitochondrial short-chain fatty acid synthesizing. 

Changes in these genes result in reduced phospholipid content and membrane fluidity: 

the content of short- and medium-chain fatty acids increased; the content of long-chain 

fatty acids decreased; and the content of esters increased. At the same time, an increase in 

resistance to ethanol was found in low-temperature fermented wines [61]. 
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Differences caused by the expression of genes that regulate lipid metabolism alter
the composition of lipids. Overexpression of lipid genes (PSD1, LCB3, DPL1 and OLE1)
improves fermentation activity during low temperature fermentation, and overexpression
of the OLE1 gene related to unsaturated fatty acids produces a specific aroma profile in
wine [59]. The fermentation temperature will affect lipid unsaturation and composition,
and the low fermentation temperature will increase the content of medium chain fatty
acids [60]. Genes such as FAA3, FAA1 and SUR4 are associated with cytoplasmic fatty acid
synthesis and encode enzymes required for mitochondrial short-chain fatty acid synthesiz-
ing. Changes in these genes result in reduced phospholipid content and membrane fluidity:
the content of short- and medium-chain fatty acids increased; the content of long-chain
fatty acids decreased; and the content of esters increased. At the same time, an increase in
resistance to ethanol was found in low-temperature fermented wines [61].

The transcription and translation of proteins and the biosynthesis of amino acids are
the key factors affecting flavor. Amino acids are prerequisites for flavor and are closely
associated with the change of flavor. At low temperatures, nine proteins involved in stress
response, gluconeogenesis and nitrogen metabolism were significantly altered, and the
overexpression of ILV5 gene increased the low-temperature fermentation activity in a
short period of time [62]. There are eight unique molecular functional proteins fermented
at 13 ◦C in Saccharomyces bayanus var uvarum. Proteins up-regulated at 13 ◦C were as-
sociated with temperature stress and the production of aromatic compounds involved
in amino acid metabolism, as well as the production of heterocyclic alcohols and their
derivatives [63]. Proteomic differences were analyzed in three low-temperature tolerant
yeasts, Saccharomyces cerevisiae, Saccharomyces uvarum and Saccharomyces kudriavzevii, which
have increased available ribosomes at low temperatures and overexpression of SNU66
and PAP2, genes related to ribosome biosynthesis [64]. With the decrease in fermentation
temperature, the ability and efficiency of protein translation, amino acid metabolism and
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biomass production increase [58]. The genome-wide analysis of Saccharomyces cerevisiae
under low temperatures reveals a compensation mechanism under low temperature stress,
which increases the ability and efficiency of translation, as well as the number of proteins
involved in translation, and up-regulates the genes involved in translation. Among them,
proteins with cold-sensitive genes involved in amino acid biosynthesis are significantly
enriched, especially aromatic amino acids. Translation efficiency is a key limiting step in
low-temperature fermentation, which is consistent with the conclusion of both.

Tryptophan is the limiting amino acid of Saccharomyces cerevisiae at low temperatures.
During the low-temperature fermentation of wine, deletion of TRP1, a gene that controls
tryptophan metabolism, decreases the rate of amino acid metabolism, but does not af-
fect the rate of fermentation. On the contrary, the deletion of TRP2 increases both the
amount of nitrogen consumed and the fermentation activity, while decreasing the con-
sumption of ammonium [65]. Low temperatures reduce nitrogen consumption, partly
because of the low expression of genes controlling ammonium and amino acid perme-
ases, and partly because of reduced membrane fluidity, which affects osmotically active
osmotic activity, all of which affect nitrogen catabolism, amino acid transport and ni-
trogen uptake [66]. Although the quality of low temperature fermented wine will be
improved, additional nitrogen sources need to be added to reach a state similar to dynamic
equilibrium to better meet the needs of fermentation. Saccharomyces cerevisiae and some
non-Saccharomyces cerevisiae, especially Torulaspora delbrueckii, have similar nitrogen source
consumption paths in fermented wine [67].

Another equally critical pathway is the sulfur assimilation pathway. MUP1 is asso-
ciated with the uptake of methionine and cysteine, and URM1 is associated with sulfur
assimilation, both of which significantly affect low-temperature fermentation [68]. Both the
sulfur assimilation pathway and glutathione biosynthesis genes are upregulated to better
activate the synthesis of key metabolites, such as glutathione, which has a certain protective
effect on the fermentation process [69]. In the later stage, low-temperature fermentation
can be protected and optimized by supplementing glutathione, which is confirmed by the
production of glutathione from low-temperature rice [70]. The same author analyzed the
three metabolic pathways of Saccharomyces cerevisiae and found that the subunit encoded
by the GAA1 gene could add the GPI required for inosine synthesis to newly synthesized
mannose proteins, and that inosine limitation altered the efficiency of low-temperature
fermentation [71].

3. Application of Low-Temperature Fermentation in Food
3.1. Grain Products

Xu et al., found that in the process of making bread using mixed leavening agents
(Meyerozyma. guillermondii, Pichia. kudriavzevii, and Lactobacillus. sanfranciscensis), more
key volatile compounds and aromatic compounds, such as alcohols, aldehydes and esters,
were formed under the fermentation temperature of 10 ◦C than 30 ◦C, which improves
the sensory quality of bread. At the same time, the low temperature facilitates the produc-
tion of extracellular polysaccharides by lactic acid bacteria and optimizes their textural
properties [72]. It provides a technical basis for the comparison of low-temperature and
normal-temperature fermentation in wheat flour products. The accumulation of benzalde-
hyde and nonanal in bread fermented at 20 ◦C increases, and the extension of fermentation
time increases the accumulation of alcohol and ester. Acetaldehyde also accumulates with
fermentation under low temperature conditions [73]. All these can provide excellent taste
and flavor to the product. The oats silage is stored with low-temperature resistant lactic
acid bacteria, such as Lactobacillus plantarum, Lactobacillus brucelli and Streptococcus pentosus,
which not only improves the contents of water-soluble carbohydrates, crude protein, fiber
and other components of inoculated silage, but also inhibits the growth of undesirable
Clostridium and better retains the nutrition of the silage [46]. Compared with commer-
cial beer yeast, Saccharomyces eubayanus low-temperature fermented wort produces more
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volatile compounds such as alcohols, esters and phenols, and creates some fruity and floral
fragrance that commercial yeast does not have [52].

3.2. Dairy Products

A cooling step was added to the fermentation process and the fermentation con-
tinued at 40 ◦C after the temperature was reduced by 4 ◦C from 40 ◦C for a period of
time. The fat-free yoghurt product improved whey retention ability and dehydration
resistance [74]. The yoghurt fermented at 22 ◦C, after the mixing of Lactobacillus acidophilus,
Lactobacillus bifidus, Streptococcus thermophilus and Lactobacillus delbrueckii. Although the
overall anti-inflammatory effect of the low-temperature yoghurt against colitis was the
same as that of the general fermentation temperature, the antioxidant activity was much
higher than that of the normal temperature [75].

3.3. Meat Products

It was very challenging to ensure the safety of fermented foods with good flavor
under low salt content and non-acidic conditions. Tian et al. found that two-stage fer-
mentation (20–10 ◦C) could reduce the accumulation of biogenic amines and slightly
promote the formation of flavor, which could be an alternative to the production of high-
quality low-salt fermented bream [47]. When inoculated with Lactobacillus plantarum and
Staphylococcus Fahrenheit at 30 ◦C, the content of free amino acids increased significantly
and the content of titratable acid, organic acid, protein and fat decreased [76].

3.4. Fruit and Vegetable Products

The fermentation temperature modified the sensory profile of the wines. A fresh
fermented persimmon beverage was obtained by adding Saccharomyces cerevisiae to the
persimmon pulp and fermenting at 25 ◦C for 10 days [77]. Massera et al. studied the
effect of fermentation temperature and yeast strain on the aroma profile of Merlot wines
elaborated at a pilot scale. They proved that low-temperature fermentation produced wines
with higher ester and lower terpene content than at 25 ◦C [23]. When wine is fermented at
low temperatures, the improved taste and flavor of the products is because that the fruit
aroma increases, and the aroma of each part is better balanced [78]. Shi et al. found that,
compared with the two temperatures of 15 ◦C and 20 ◦C, the content of esters that express
mint and fruit flavor increased after the fermentation of Longyan wine at 10 ◦C, and the
aroma intensity and overall balance improved [40]. The amount of aromatic compounds
increased as a result of changes in some unique microorganisms under low-temperature
conditions. The low-temperature-tolerant strain Saccharomyces uvarum was isolated from
low-temperature natural fermentation cider to ferment cider, and made ethanol and sulfite
tolerant [79]. Weissella koreensis is the dominant microorganism of fermented kimchi at
0 ◦C for 2–3 months. The strain has a low degree of carbohydrate assimilation and a
strong ability to produce ornithine. It grows well under mild and cold conditions [80]. The
volatile components and the pungent odor of kimchi fermented at low temperature are
different [81].

In addition to low-temperature fermented food, low-temperature fermentation can
also be used to produce fat, ethanol and other substances. The yield of α-linoleic acid
produced by Oleaginous yeast Yarrowia lipolytica by low-temperature cultivation was im-
proved up to 3.2 times of standard growth conditions [82]. Compared with fossil fuels,
biofuel ethanol prepared by sugarcane has a better effect on environmental protection. Fer-
menting sugarcane with vacuum-speed steaming and low-temperature yeast fermentation
can increase the ethanol yield and decrease the remaining amount of lees [83,84].

4. Low-Temperature Fermentation Strain Optimization Method

To achieve sustainable development of low-temperature fermentation, the selection
and optimization of strains is essential. At present, the main methods available for reference
and implementation are screening, domestication, cell immobilization, microencapsulation
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and the addition of some strain protectants (Figure 3). There are also other advanced
methods, such as genetic optimization.
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4.1. Screen

For the screening of unknown strains, the desired strains can be obtained by isolat-
ing, purifying and identifying strains from existing natural fermentation samples, and
inoculating the obtained strains back into the samples. The application of the strains
to low-temperature fermentation can standardize the fermentation process and prevent
fermentation failure caused by low temperature. Screening from fermented products can
obtain strains that are more suitable for the characteristics of the raw materials. Lactic acid
bacteria (LAB) isolated from blueberries are used in fermented blueberry juice. The strains
are more suitable for fermented blueberry juice [85]. Gunduz isolated the lactic acid bacte-
ria from the collected sourdough samples and obtained two kinds of lactic acid bacteria,
Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum, which were inoculated
into the dough and fermented at 28 ◦C. The fermented sourdough showed a significant
increase in the acidification rate and the profile of volatile organic compounds (VOC) [86].
Lancetti and Yeşi et al. used different Limosilactobacillus fermentum, isolated from quinoa
and buckwheat, to ferment rice, buckwheat and quinoa flour mixed dough at 30 ◦C. The
flour properties changed significantly and the antioxidant activity improved [87,88]. He
isolated Lactobacillus plantarum, Candida dwarfism and Saccharomyces cerevisiae from the rice
syrup of fermented rice cake [30]. The quality of the rice cake fermented at 32 ◦C for 8 h
was, to some extent, better than that of commercially available products. Under the premise
that the microbiological indexes were standard-compliant and the physicochemical indexes
did not differ much, the volatile components were richer, more concentrated and sensorily
better. The quantity and total amount of volatile flavor substances increased [30]. Bachtarzi
screened extracellular polysaccharides producing LAB from dairy products for skim milk
fermentation, which can be used as stabilizers and thickeners and are safer and more
nutritious than additives [89]. Li screened the dominant strains Lactobacillus fermentum and
Candida santamariae from the natural fermentation broth produced by rice flour, adjusted
the proportion, and then applied the rice flour fermented back to rice flour to improve the
hardness, chewiness and taste, color, fragrance and taste of rice flour. That is to screen
foods that have been fermented at low temperature and optimize the strain ratios to obtain
low-temperature fermentation products [90].

Lactic acid bacteria with strong proteolytic ability can improve flavor and taste after
fermentation because they can degrade large molecules of proteins into small molecules
of peptides and form flavor substances. Fermented mung bean milk showed higher ACE
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inhibitory activity and proteolytic percentage at the end of fermentation, so Lacticaseibacillus
casei and Lactococcus lactis were selected to ferment mung bean powder [91]. Delgado and
Hwang fermented soybean milk with Lactobacillus plantarum and Lactobacillus brevis. The
total average flavor decreased, and enzyme inhibitory activity and antioxidant capacity
reached the peak [92,93]. Ramos passed a pair of γ-aminobutyric acid production to screen
the pre-existing lactobacilli. L. paracasei and L. plantarum exhibited high concentrations in the
fermentation of amniotic milk γ-aminobutyric acid [94]. After fermenting ginseng sprouts
with Lactobacillus plantarum at 30 ◦C for three days, it was found that the antioxidant capacity
increased, indicating that it is more suitable for functional medicine than unprocessed
ginseng sprouts [95]. This provides inspiration for the application of low-temperature
fermentation. One feasible way is to select available strains that are suitable for low-
temperature. This was achieved by lowering the incubation temperature, trying different
strains of bacteria and exploring the growth features of the strains, and selecting strains
according to the raw materials and needs of fermented products. It is also possible to
select directly from strains that have been applied to other low-temperature fermentation
products and apply them directly to the target products.

4.2. Domestication

Domestication can be divided into two types. One is natural domestication. In fact,
extreme environments can enable natural domestication. Strains that are more adaptable to
the environment can be obtained by screening strains from the environment. For example,
high-temperature resistant yeast strains are screened in sugarcane fields in Thailand [96].
Then, fermentable strains can be screened in a low-temperature environment and applied
to low-temperature fermentation. The other is artificial domestication, which is one of the
commonly used methods in the laboratory. This method is to connect the fermentation
strains to the corresponding liquid culture medium and place them in the temperature
gradient for cultivation in turn. It can gradually adapt to the low temperature environment
and finally obtain the desired strains at the required temperature after low-temperature
domestication as a seed source for subsequent fermentation.

4.3. Immobilized Cells

At present, immobilized cells have been applied in many fields, such as food, environ-
ment and energy. The key technology of immobilized cells lies in the ability to immobilize
strains on different materials in order to add or enhance one or more characteristics. Gluten
granules and other structurally stable materials bear the brunt. As one of the immobilized
materials, Saccharomyces cerevisiae strains are immobilized on gluten granules and then
fermented in wort at low temperature. The beer obtained not only has an alcohol content
within the range, but also boasts excellent clarity, aroma and taste [97]. A new biocatalyst
was prepared by immobilizing it on whole wheat grains, which can not only complete
high quality fermentation in an extremely low temperature environment of 5 ◦C to obtain
clear wine, but also maintain stability for a long time. Thirty cycles of fermentation can
also be completed. After the culture has expanded, fermentation at 20 ◦C and 2 ◦C does
not affect its fermentation ability. Compared with free cells, the wine fermented by immo-
bilized cells increases the formation of esters. Aromatic characteristics improved, while
the percentage of total esters increased and the percentage of higher alcohols decreased at
lower fermentation temperatures [98]. Immobilizing this strain on dried fig not only brings
about a better fermentation effect, but also retains the special aroma and taste of the figure.
With the decrease of fermentation temperature, the concentration of ethyl acetate increases
and the concentration of pentanol decreases. The beer produced by cells immobilized
on gluten particles or other food-grade carriers, such as lignocellulose materials, is more
concentrated [99]. Therefore, in low-temperature fermentation, we can fix the desired strain
on gluten particles, cellulose and other fixed materials for experiments, which can add
advantages while fermenting.
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Another category of materials that is widely studied at present is cellulose. Peanut
shells and coconut shells belong to agricultural waste with a high proportion. Their main
components are lignin, cellulose and hemicellulose. Tubular cellulose is used as a fixture for
Saccharomyces cerevisiae and Lactobacillus casei. After fixation by thermal drying, it is used in
beer and dairy fermentation. The content of fruity esters in fermented milk increased, the
dimethyl sulfite and o-dione decreased, and the ratio of ester to alcohol increased in beer.
The products fermented at 18 ◦C had higher concentrations of acid substances and total
volatile flavor substances, and a lower effect on alcohols and esters [100]. Immobilizing the
low temperature and alcohol resistant Saccharomyces cerevisiae strain in porous cellulose to
ferment maltose at an extremely low temperature of 5–10 ◦C can greatly accelerate the rate
of maltose fermentation. The presence of porous cellulose increases the uptake of maltose
by immobilized cells, which is due to the hydrogen bond attraction on the surface of porous
cellulose and the continuous pumping of maltose to cells [101]. When the temperature is
continuously reduced from 30 ◦C to 10 ◦C, the alcohol content obtained after fermentation
will continue to increase. This sheds new light on domestic fermented wine; that is, after
adding water to dry materials and putting them into the refrigerator for low-temperature
fermentation, manual fermented cherry wine can be obtained. The ingredients are clean
and safe. At the same time, immobilized yeast can not only solve the problems of slow
fermentation and low fermentation efficiency, but also reduce microbial pollution. The
fatty acid ethyl ester and higher alcohol acetate formed will also produce flower and fruit
fragrances [102]. The delignified cellulose biocatalyst freeze-dried on delignified cellulose is
suitable for low-temperature winemaking (5–15 ◦C) and produces wines with 12% alcohol
content [103].

4.4. Add a Certain Strain Protection Agent
4.4.1. Probiotic Microcapsules

Microencapsulation is currently the most effective and promising method for strain
protection. Encapsulated substrates provide effective protection for microorganisms from
environmental extremes and other external factors. In the case of dietary supplements,
for example, probiotics must withstand adverse environmental conditions and reach the
target site in sufficient numbers, mainly due to the regulation of the human intestinal
microbiota. Embedding strains with bioactive substances not only improves tolerance to
the environment, but also adds effects that were not previously present, such as antiox-
idant activity [104]. Wang et al. embedded Bifidobacterium adolescentic in 10.00% (w/w)
chickpea protein isolate and 0.20% (w/v) genipin, 0.20% (w/v) alginate κ- Carrageenan
crosslinked wall materials. It can slowly release bacteria in microcapsules under the extreme
environment of pH 2.0 and temperature of 25 ◦C, which ensures a smooth fermentation
process under extreme conditions [105]. Adding the alginate of Robinia pseudoacacia bean to
entrap Lactobacillus rhamnosus microcapsules can better delay large-scale release [106].
Pandey and Mishra developed an encapsulated powder of γ-aminobutyric acid and
Lactobacillus plantarum using spray drying in a biocompatible matrix composed of inulin,
dextran, and maltodextrin [107]. After 120 days of storage at 4 ◦C, there was no difference
in bacterial viability as compared with the fresh microcapsules. In addition, some plant
extracts [108,109], gums [110,111] and dietary fibers [112] are used in the production of
microencapsulated wall materials to provide different effects. This provides inspirations
for the application of low-temperature fermentation. It can embed low-temperature fer-
mentation bacteria in suitable wall materials to prevent the strain from being immediately
and completely exposed to the low-temperature environment, reduce adverse effects on
microorganisms, delay the release of the desired strain, and ensure viability and duration
of action of the strain during low-temperature fermentation. Fermentation bacteria can be
prepared into microcapsules before use, which can greatly improve the adaptability of bac-
teria to low temperature and the vitality of fermentation. Theoretically, any wall material
suitable for low temperatures can be used for all low-temperature fermentation strains.
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4.4.2. Strain Protectant

The three protective mechanisms of strain protectants prevent the formation of in-
tracellular and extracellular ice, the water displacement hypothesis formed by hydrogen
bonding, and the formation of the glassy matrix [113]. At present, studies have shown that
some sucrose, maltose, trehalose, maltodextrin, skim milk powder and other disaccharides,
alcohols, proteins and antioxidants can be added as strain protectants at low temperatures
to maintain the survival rate of strains and the stability of cells. The addition of trehalose as
a cryoprotectant improved the survival rate of probiotics in freeze-dried calcium alginate
coated microcapsules from 3% to 41.26% [114]. The addition of lactose alcohol had a posi-
tive effect on the survival of encapsulated bacteria. It also has a certain effect when at cold
storage and freezing temperature, indicating that lactose alcohol can also be an effective
protective agent [115]. The new protective medium containing sucrose (10%), trehalose
(10%), skim milk (10%) and antioxidants also has a certain protective effect on bacteria
under different storage conditions [113]. In the process of low-temperature fermentation,
some sugar substances and proteins can be added as strain protectors to smoothen the
fermentation process.

4.5. Genetic Means

The hybridization of strains is to select the performance characteristics required in
the parents for hybridization. The obtained hybrid strains can achieve the comprehensive
characteristics of the two parent strains. Although the operation of strain hybridization is
relatively simple, the production cycle is lengthy. Hybrids were constructed using three
strains of Saccharomyces. eubayanus, Saccharomyces. uvarum and Saccharomyces. Cerevisiae,
selected to be resistant to low nitrogen and low temperature. It was found that a better
fermentation rate was achieved under low temperature or low nitrogen conditions. The
hybrid strains also produced a large amount of acetate and a higher content of alcohols,
which increased the intensity and complexity of the wine aroma. The hybrid strain con-
sumes the nitrogen source faster, making it more competitive under nitrogen deficiency
conditions [116]. The hybrid yeast of several new yeasts, Saccharomyces. cerevisiae and
Saccharomyces. kudriavzevii, isolated from wine, performed well at low temperatures and
increased the yield of alcohols [117]. Secondly, it can also be improved by means of gene
editing, such as gene knockout. Saccharomyces. cerevisiae with strong sugar fermentation,
strong acid tolerance and rapid gas production. Increased respiration can be achieved by
knocking out the rgt2 and snf3 genes encoding glucose sensors in isolated strains, and
also by eliminating transcription factors that encode nitrogen metabolites repression and
increased aspartate consumption [118]. This gives us two new methods that can be ap-
plied in low-temperature fermentation. One is to cross the strain that can be fermented
at low temperature with another strain that has the properties required to build a new
hybrid, which can have the characteristics of both parents and be used in low-temperature
fermentation. The second is to use gene editing and other means to eliminate genes that
are stressed by low temperature and thus affect the fermentation process of the strain to
achieve a smooth low temperature fermentation.

5. Expectation

This paper reviews the mechanism of low-temperature fermentation, its application
and the optimization of low-temperature fermentation strains. The main difference of low-
temperature fermentation lies in the fact that it leads to differential expression and changes
in genes that affect the growth and reproduction of fermenting strains and their metabolism.
Low-temperature fermentation can be applied to food with various advantages, such
as increased changes in volatile flavor compounds and other corresponding metabolic
substances of the strain, and inhibition of the growth of spurious bacteria. The key to
the sustainable development of low-temperature fermentation lies in the optimization of
strains, which is to protect and optimize the strains through various methods so as to
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greatly improve product quality. At present, the most effective methods for promoting
low-temperature fermentation are gene knockout and probiotic microencapsulation.

In summary, the product quality achieved through low-temperature fermentation
is higher than that of normal-temperature fermentation. Low-temperature fermentation
can improve the flavor and taste of fermented food and effectively avoid contamination.
However, this depends on the adaptability of the strains. We know that few strains work at
low temperatures, and they not necessarily produce desired efficacy. In the future, with
improved knowledge on strain optimization, we can select low-temperature fermentation
strains to achieve optimal food quality.
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