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Abstract: Oleic acid is increasingly required in many industries, causing the indiscriminate extension
of land for the cultivation of certain agricultural products to extract their oil. The current contribution
aimed to cultivate Candida wangnamkhiaoensis (CW) for the production of lipids and determine the
profile of fatty acids in these lipids. The lipid yield was compared in the yeast when using glucose or
glycerol as the substrate, in both cases being over 24%. The main fatty acids in the oil derived from
CW were oleic, palmitic, stearic, and linoleic acid. The fatty acid composition of the oil from CW was
very similar to that of avocado oil and resembled that of olive oil and palm oil. The advantages of
cultivating CW include its relatively high percentage of oleic acid and the balance of other fatty acids,
its capacity to generate lipids in a short time (48–72 h), the controlled environment of production
(versus the variability of the cultivation of agricultural products), and the relatively limited surface
area required. CW shows potential as an alternative and economical source of oleic acid for the
food, drug, cosmetics, lubricant, and biofuel industries, and does not require the alteration of large
extensions of land.

Keywords: Candida wangnamkhiaoensis; oleaginous yeast; lipid production; oleic acid; fatty acid
profile; vegetable oil

1. Introduction

Lipids are either hydrophobic or amphipathic biomolecules that are characterized by
being soluble in nonpolar solvents. They form parts of the cellular structures of organisms
and participate in vital functions for maintaining cell activity [1].

Lipids contain fatty acids, which are classified as saturated (SFAs), monounsaturated
(MUFAs), and polyunsaturated (PUFAs). Palmitic acid (C16:0), oleic acid (C18:1), and
linoleic acid (C18:2) are the predominant SFA, MUFA, and PUFA, respectively, in vegetable
oils [2]. MUFAs are fatty acids that are classified as nonessential in the diets of humans
because they are synthesized by the organism [3]. However, their inclusion in the diet
favors human health and may diminish the social cost of certain diseases [4].

Oleic acid is a MUFA that is known to be the principal component of several veg-
etable oils that have nutritional properties, especially avocado oil (42–51%) [5] and olive oil
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(70–80%). Research on oleic acid has found antitumor effects [6], benefits to the cardiovas-
cular system [7], that it participates in inducing increased sensitivity to insulin during the
treatment of diabetes [8], and that it is involved in the regulation of the immune system [3].

The Mediterranean diet is considered to be healthy due to its content, mainly consisting
of unprocessed cereals, legumes, fruits, vegetables, and olive oil [9]. Although olive oil is
considered an essential part of this diet, the life cycle assessment of its production reveals
that the cultivation of olives, the extraction of their oil, and the resulting waste lead to a
significant adverse environmental impact [10,11]. Damage to ecosystems and a substantial
water and carbon footprint have also been found in relation to the production of other
vegetable oils that are important from a nutritional or industrial point of view, including
palm [12], soybean, rapeseed, sunflower, coconut [13], and avocado oils [14].

In the search for alternatives to vegetable oils, microorganisms represent a promising
source of lipids for use in the biofuel, pharmaceutical, and lubricant industries. Oleaginous
microorganisms are capable of storing lipids as a source of carbon and/or energy, and
such storage can constitute more than 20% of their cellular weight. Microbial lipids are
denominated as single-cell oils (SCOs) [15].

One of the advantages of obtaining oils from microbial origins is that the life cycles
of microorganisms are much shorter than those of plants. An additional advantage is
the possibility of generating the oils in vitro, thus being without the influence of various
factors involved in the elaboration of vegetable oils, including geography, seasonal harvests,
and weather conditions [16]. Because the cultivation of microorganisms can be carried
out with agricultural and industrial residues as substrates, it represents an economical
alternative [15] that does not compete with the world demand for carbohydrates derived
from food [17]. Furthermore, oils extracted from microorganisms could help to reduce
the growing deforestation caused by the indiscriminate cultivation of palms and soybeans
to obtain vegetable oils, which results in substantial harm to the ecosystems of tropical
areas [15].

The yeast analyzed presently is Candida wangnamkhiaoensis (CW), which was initially
identified as Wickerhamia sp. [18]. CW, which has scarcely been studied, belongs to the
clade of Hyphopichia and is recognized for its capacity to assimilate glycerol [19]. In spite
of a recent report, its metabolic and physiological capacities, as well as its potential in
biotechnological processes, are unknown. Our group has investigated the capacity of CW
to degrade starch and produce α-amylase, both systematically in batches [20] and continu-
ously [21,22], and has described some of the biochemical and molecular properties of this
enzyme [20]. During such research, it was observed that CW is capable of accumulating
lipids, a property that has not, to our knowledge, been previously documented in the
literature. Further evaluation of the potential of CW for generating lipids and fatty acids
should certainly be of interest.

The aim of the current contribution was to examine the production of lipids by CW
and determine the profile of fatty acids in these lipids. The substrates of the fermentation
of CW were glucose and glycerol. The former is a conventional carbon source, and the
latter is commonly found in the residues left by the production of biofuel [23], alcoholic
beverages, and soaps [24].

Given that glycerol is a residue of some industrial processes [24], its use as a substrate
would be a great benefit for the environment. Moreover, glycerol is considered to have a
highly negative environmental impact because of its chemical oxygen demand (COD) of
up to 1600 g O2 L−1 [25].

The incubation of CW in culture medium with glucose or glycerol as the substrate
generated an oil with a relatively large proportion of oleic acid. Regarding the composition
of fatty acids, CW oil is very similar to avocado oil and resembles olive and palm oils.
Because this microorganism has to date proven to be innocuous, it is a potential candidate
for the development of an emerging technology, with a promising future in the production
of single-cell oils as a raw material for the food, pharmaceutical, cosmetics, lubricant, and
biofuel industries.
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2. Materials and Methods
2.1. Microorganism

CW was isolated by the Industrial Microbiology Lab of the Escuela Nacional de
Ciencias Biológicas (ENCB) at the Instituto Politécnico Nacional (Mexico City, Mexico) and
provided to the authors. The strain was conserved in YPG medium with the following
formulation: 10 g L−1 yeast extract, 20 g L−1 peptone from casein, 20 g L−1 glucose,
and 20 g L−1 bacteriological agar, purchased from BD Bioxon (Mexico State, Mexico).
The culture medium of CW for the production of lipids included the following salts:
0.1 g L−1 KCl, 1.0 g L−1 KH2PO4, 0.3 g L−1 MgSO4·7H2O, 0.05 g L−1 CaCl2, 0.001 g L−1

FeCl3·6H2O, and 1.0 g L−1 (NH4)2SO4 (JT Baker, Monterrey, Mexico). Glucose and glycerol
at a concentration of about 10.0 g L−1 (JT Baker, Monterrey, Mexico) were employed as a
source of carbon and energy.

2.2. Preparation of the Inoculum

After putting an inoculation loop of CW into a beaker containing the culture medium
along with either glucose or glycerol, incubation was carried out at 28 ◦C and under
constant agitation at 110 rpm for 72 h. The resulting cellular suspension was centrifuged at
3500 rpm for 20 min to separate the biomass, which was washed three times with type II
sterile water to eliminate the culture medium. The biomass pellet was resuspended in a
little sterile water, and the concentration of biomass per mL of suspension was determined.
A portion of each of the inoculates obtained with glucose or glycerol was used for optical
imaging with confocal laser scanning microscopy (CLSM). The rest of the inoculate was
subjected to a kinetic study of cell growth, substrate consumption, and lipid production.

2.3. Kinetics of Cell Growth, Substrate Consumption, and Lipid Production

The culture medium with the respective carbon source (glucose or glycerol) was placed
in Erlenmeyer beakers. Subsequently, and based on the concentration of the biomass of the
inoculum, a calculation was made of the quantity of CW to be added to the beakers to reach
an initial biomass of 0.1 g L−1. The yeast was then incubated under the aforementioned
conditions for up to 120 h. Samples were taken every 24 h to monitor the concentration of
residual substrate, biomass, and lipids. The fatty acid profile of the lipids was examined at
the different sampling times.

2.4. Detection of Lipids by Confocal Laser Scanning Microscopy (CLSM)

A solution was prepared for optical imaging of the intracellular lipids of CW. It
consisted of oil red O (1-([4-(xylylazo)xylyl]azo)-2-naphthol) in isopropyl alcohol at 98%
(Sigma Aldrich, Toluca, Mexico State, Mexico). A sample of yeast growth (in glucose or
glycerol) was smeared across a microscope slide. Oil red O was then added, and the slides
were left to stand for 5 min. When dyed, the lipids of the cells generate fluorescence that can
be detected using CLSM. The slides were inspected with a Zeiss LSM 710 NLO Multiphoton
CLSM (Carl Zeiss Meditec AG, Jena, Germany) with a capacity in the range of 417–729 nm,
utilizing Zeiss ZEN software and a Zeiss EC Plan-Neofluar 10×/0.3 objective lens.

2.5. Quantification of Biomass, Glucose, Glycerol, and Lipids

The yeast suspension was filtered through microfiberglass filters (Cytiva Whatman,
St. Louis, MO, USA). The resulting biomass was washed twice with type II water, oven-
dried at 60 ◦C for 24 h, and then quantified. The amount of residual glucose and glycerol
in the filtrate was determined. While glucose was evaluated using the method of glucose
oxidase and peroxidase [26], glycerol was assessed using the colorimetric method described
by Bondioli and Della Bella [27]. Lipids were quantified in the biomass via gravimetry,
with a solution of methanol–chloroform (2:1 v/v) as solvent [28].
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2.6. Determination of the Profile of Fatty Acids and the Quantity of Each One

Once the oil was extracted [28], the fatty acid profile was established by the O’Fallon
method [29], and then modified to esterify the fatty acids to methyl esters. This procedure
was performed in the Biogeochemical Lab of the National Lab of Health in the Faculty of
Graduate Studies Iztacala of the Universidad Nacional Autónoma de México, Mexico. The
personnel operated an Agilent 6850 Series II Red System gas chromatography apparatus
coupled with an Agilent Series 5975c mass spectrometer equipped with a flame ionization
detector and an Agilent 19091S-433E capillary column of 30 m × 0.25 mm × 0.25 µm
(Agilent Technologies, Inc., Santa Clara, CA, USA). The initial temperature (150 ◦C) was
maintained for 2 min, followed by increments of 5 ◦C min−1 until it reached 200 ◦C, and
then of 3 ◦C min−1 until it reached 260 ◦C. The injector and detector temperatures were
fixed at 220 and 290 ◦C, respectively. Heptadecanoic acid served as the internal standard
and helium served as the carrier gas at a flow of 1 mL min−1.

2.7. Kinetic Parameters

With the data on the quantity of biomass, residual substrate, lipids, and fatty acids
produced over time during the experiment, the kinetic parameters were calculated (Table 1).

Table 1. Kinetic parameters.

Parameter Formula Nomenclature

Substrate consumption efficiency, Ef (%) E f = 100 S0−St
S0

St: Residual concentration of the
substrate at time t (h) (grams of
substrate L−1)
S0: Substrate concentration at the initial
time t = 0 h (grams of substrate L−1)
Pt: Lipid concentration at time t (h)
(grams of lipids L−1)
P0: Lipid concentration at the initial time
t = 0 h (grams of lipids L−1)
Xt: Biomass concentration at time t (h)
(grams of biomass L−1)
X0: Biomass concentration at the initial
time t = 0 h (grams of biomass L−1)
FAt: Fatty acid (FA) content at time t (h)
(milligrams of FAs L−1)
FA0: Fatty acid (FA) content at the initial
time t = 0 h (milligrams of FAs L−1)

Lipid yield based on biomass, YPX (%) YPX = 100 Pt−P0
Xt−X0

Lipid yield based on substrate, YPS (g g−1) YPS = Pt−P0
S0−St

Fatty acid yield based on biomass, YFAX (mg g−1) YFAX = FAt−FA0
Xt−X0

Volumetric biomass productivity, Rx (mg L−1 h−1) RX = 1000 Xt−X0
t−t0

Volumetric lipid productivity, RP (mg L−1 h−1) RP = 1000 Pt−P0
t−t0

Specific lipid productivity,
Rpx (mg g−1 h−1) RPX = 10 YPX

t−t0

2.8. Statistical Analysis

All determinations were made at least in duplicate for posterior statistical analysis
with GraphPad Prism version 9.4.1 (GraphPad Software, San Diego, CA, USA). Significant
differences between groups at each time point were evaluated by using two-way ANOVA
with Tukey’s multiple comparisons test, considering significance at p < 0.05.

3. Results and Discussion
3.1. Detection of Lipids by Confocal Laser Scanning Microscopy (CLSM)

The corresponding micrographs of CW grown with either glucose or glycerol are
illustrated in Figures 1 and 2, respectively. The pseudomycelium that is characteristic of
this species (described by Limtong [19]) can be observed with glucose (Figure 1a) but not
with glycerol (Figure 2a) as the substrate.
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Figure 1. For Candida wangnamkhiaoensis cultivated in glucose, an optical micrograph (900×) (a), a 
confocal laser scanning microscope image (showing the fluorescence of the lipids) (b), and the over-
lap of the two images (c). 

 
Figure 2. For Candida wangnamkhiaoensis cultivated in glycerol, an optical micrograph (900×) (a), a con-
focal laser scanning microscope image (showing the fluorescence of the lipids) (b), and the overlap of 
the two images (c). 

There are yeasts that form pseudohyphae when cultivated with some substrates [30] 
and stress factors, the laĴer of which include a scarcity of the source of carbon or nitrogen, 
the presence of certain alcohols, osmotic shock, oxidative stress, and environmental ex-
tremes (e.g., in relation to pH and/or temperature) [31]. Although it is not known why CW 
presently exhibit pseudomycelium growth when cultivated in glucose and unicellular 
growth in glycerol, these results are in agreement with those reported for Yarrowia lipolyt-
ica, a yeast with biotechnological potential. The laĴer yeast also shows a predominantly 
mycelium form in a medium of glucose plus (NH4)2SO4, and a yeast form in a medium of 
glycerol plus (NH4)2SO4 [32]. 

By using oil red O staining and CLSM, intracellular lipids of CW were observed in 
pseudohyphae when cultivated with glucose (Figure 1b) and in ovoids when cultivated 
with glycerol (Figure 2b). The overlap of the images (Figures 1c and 2c) reveals a great 
quantity of lipids within the cellular structure of CW.  

3.2. Kinetics of Cell Growth, Substrate Consumption, and Lipid Production by CW 
The kinetics of cell growth, substrate consumption, and lipid production by CW are 

illustrated in Figure 3 for each of the two substrates, glucose (Figure 3a–c) and glycerol (Fig-
ure 3d–f). 
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Figure 1. For Candida wangnamkhiaoensis cultivated in glucose, an optical micrograph (900×) (a),
a confocal laser scanning microscope image (showing the fluorescence of the lipids) (b), and the
overlap of the two images (c).
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Figure 2. For Candida wangnamkhiaoensis cultivated in glycerol, an optical micrograph (900×) (a),
a confocal laser scanning microscope image (showing the fluorescence of the lipids) (b), and the
overlap of the two images (c).

There are yeasts that form pseudohyphae when cultivated with some substrates [30]
and stress factors, the latter of which include a scarcity of the source of carbon or nitro-
gen, the presence of certain alcohols, osmotic shock, oxidative stress, and environmental
extremes (e.g., in relation to pH and/or temperature) [31]. Although it is not known why
CW presently exhibit pseudomycelium growth when cultivated in glucose and unicellular
growth in glycerol, these results are in agreement with those reported for Yarrowia lipolyt-
ica, a yeast with biotechnological potential. The latter yeast also shows a predominantly
mycelium form in a medium of glucose plus (NH4)2SO4, and a yeast form in a medium of
glycerol plus (NH4)2SO4 [32].

By using oil red O staining and CLSM, intracellular lipids of CW were observed in
pseudohyphae when cultivated with glucose (Figure 1b) and in ovoids when cultivated
with glycerol (Figure 2b). The overlap of the images (Figures 1c and 2c) reveals a great
quantity of lipids within the cellular structure of CW.

3.2. Kinetics of Cell Growth, Substrate Consumption, and Lipid Production by CW

The kinetics of cell growth, substrate consumption, and lipid production by CW are
illustrated in Figure 3 for each of the two substrates, glucose (Figure 3a–c) and glycerol
(Figure 3d–f).
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Figure 3. The concentration of substrate, biomass, and lipids over time during the incubation of
Candida wangnamkhiaoensis with glucose (a–c) or glycerol (d–f) as the source of carbon.

Although the experiments began with similar initial concentrations of the substrate
(10 g glucose L−1 and 11 g glycerol L−1) and were carried out for 72 h in each case, the
time required for the total consumption of the substrate was distinct. Glucose was totally
consumed by CW in 24 h (Figure 3a) (Ef = 100%), but glycerol had not yet been totally
consumed at the end of 72 h. It was necessary to prolong the time of incubation to 120 h
(Figure 3d) for the total consumption of glycerol to be attained (Ef = 96.35%). The glycerol
molecule is better assimilated if amino acids, yeast extract, and peptone are added to the
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culture medium to favor the growth of some yeasts [23,33]. However, none of these factors
were added presently, which is probably the reason for the longer cultivation time required
when using glycerol.

CW showed exponential growth during the first 24 h of cultivation with glucose
(Figure 3b) and a slower growth rate afterwards when the substrate was nearly exhausted
in the culture medium. Thus, CW was capable of growing and accumulating lipids under
conditions of glucose scarcity, which may be due to its capability of intracellular accumula-
tion of a carbohydrate reserve that can be used later [22]. That is, the yeast was previously
prepared as a preinoculate grown in YPG, during which time it could accumulate a reserve
of carbohydrates [20]. This is also a likely explanation for the lack of cell lysis after 24 h of
growth in the glucose medium. The maximum concentration of biomass of CW cultivated
in glucose was found at 72 h (3.35 g L−1).

On the other hand, the growth of CW during the first 24 h in glycerol exhibited an
adaptation period, with a posterior increase in the growth rate up to 96 h, followed by a
decreased production of biomass. According to the analysis, using one-way ANOVA with
Tukey’s multiple comparisons test (α = 0.5), there was no significant difference between the
concentrations of biomass in the samples of the yeast at 96 and 120 h in the culture medium
with glycerol. Hence, the culture reached its stationary phase at 96 h, with its maximum
concentration of biomass being approximately 3.6 g L−1 (Figure 3e). This is nearly the same
maximum quantity as that detected at 72 h when glucose was the substrate. No cellular
lysis was found for CW cultivated in the glycerol substrate, which, as aforementioned, was
also absent while cultivating the yeast with glucose.

Regarding lipids, their production increased during the entire time of the experi-
ment. In culture medium with glucose (Figure 3c), the maximum concentration of lipids
was observed at 72 h (0.871 ± 0.003 g L−1). At this same time point, the concentration
of lipids generated by CW in culture medium with glycerol (Figure 3f) was 33% lower
(0.583 ± 0.05 g L−1). Nevertheless, the maximum amount of lipids in CW cultivated with
glycerol as the substrate (0.85 ± 0.12 g L−1) was similar to that with glucose, although it
was obtained between 96 and 120 h rather than at 72 h.

3.3. Kinetic Parameters of Cellular Growth, Substrate Consumption, and Lipid Production

The kinetic parameters were calculated for CW cultivated with glucose or glycerol as
the substrate (Tables 2 and 3, respectively).

Table 2. Kinetic parameters of CW cultivated with glucose as the substrate.

Time
(h)

Ef
(%)

X
(g L−1)

YPX
(%)

Lipids
(g L−1)

YPS
(g g−1)

RX
(mg L−1 h−1)

RP
(mg L−1 h−1)

RPX
(mg g−1 h−1)

24 100 2.25 ± 0.05 a 16.56 a 0.37 ± 0.04 a 0.03 ± 0.004 a 93.75 ± 2.09 a 15.52 ± 1.67 a 6.90 ± 0.74 a

48 100 2.68 ± 0.05 b 18.26 a 0.48 ± 0.02 a 0.05 ± 0.002 a 55.73 ± 0.99 b 10.01 ± 0.42 b 3.81 ± 0.16 b

72 100 3.35 ± 0.07 c 25.61 b 0.87 ± 0.02 b 0.09 ± 0.001 b 46.53 ± 0.89 c 12.09 ± 0.03 ab 3.56 ± 0.01 b

a,b,c For each parameter, there was no significant difference between the quantities marked with the same letter.

Table 3. Kinetic parameters of CW cultivated with glycerol as the substrate.

Time
(h)

Ef
(%)

X
(g L−1)

YPX
(%)

Lipids
(g L−1)

YPS
(g g−1)

RX
(mg L−1 h−1)

RP
(mg L−1 h−1)

RPX
(mg g−1 h−1)

24 11.79 0.58 ± 0.08 a 15.35 a 0.10 ± 0.01 a 0.08 ± 0.02 a 23.96 ± 3.31 a 4.12 ± 0.21 a 6.39 ± 0.45 a

48 34.41 1.53 ± 0.11 b 21.06 b 0.35 ± 0.02 b 0.09 ± 0.007 a 31.77 ± 2.38 b 7.22 ± 0.49 b 4.38 ± 0.23 b

72 56.97 2.51 ± 0.06 c 23.21 b 0.58 ± 0.02 c 0.09 ± 0.004 a 34.89 ± 0.81 b 8.09 ± 0.31 b 3.22 ± 0.13 c

96 74.00 3.33 ± 0.06 d 24.64 b 0.82 ± 0.04 d 0.10 ± 0.005 a 34.64 ± 0.67 b 8.86 ± 0.49 b 2.67 ± 0.18 cd

120 96.35 3.63 ± 0.08 d 24.06 b 0.88 ± 0.05 d 0.10 ± 0.007 a 30.52 ± 0.69 ab 7.36 ± 0.44 b 2.00 ± 0.14 d

a,b,c,d For each parameter, there was no significant difference between the quantities marked with the same letter.

With glucose as the substrate, the maximum values of YPX and YPS were reached
at 72 h of incubation (25.61% and 0.09 g g−1, respectively) (Table 2). At this same time
point, but with glycerol as the substrate, the values of these parameters were very similar
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(YPX = 23.21% and YPS = 0.09 g g−1). With glycerol as the substrate, CW began the station-
ary phase of growth between 96 and 120 h. Maximum values of YPX (24.64%) and YPS
(0.1 g g−1) were observed at 96 h (Table 3), but there was no significant difference between
the values of two consecutive 24 h measurements as of 48 h for YPX and as of 24 h for YPS.

Based on the value of YPX > 20%, CW can be considered an oleaginous microor-
ganism [15]. Regarding lipid content as a percentage of biomass, the ~24% for CW is
comparable to the 22% reported for Rhodotorula sp. LFMB 22 [34], inferior to the 43% found
for Yarrowia lipolytica [35], superior to the 15.3% described for C. oleophila ATCC 20177, and
superior to the 6.6% documented for C. curvata NRRL-Y 1511. All these studies utilized
glycerol as the substrate [34].

The lipid content of oleaginous yeasts might be enhanced by modifying the composi-
tion of the corresponding culture medium. Several studies have sought to boost the amount
of lipids produced per gram of biomass by modifying various factors. The factor proven
to be particularly effective for this purpose is an increased carbon–nitrogen (C/N) ratio.
For instance, Angerbauer et al. [36] improved the YPX of Lipomyces starkeyi DSM 70295
from 40% to 68% by increasing the C/N ratio in the culture medium from 60 to 150. This
implies a more limited nitrogen supply, which causes an oleaginous microorganism to
produce more lipids. Theoretically, the production of 1 mol of triglyceride with glucose or
glycerol as the substrate should afford a maximum yields of YPS of 0.33 g g−1 and 0.3 g g−1,
respectively [34]. In practice, the yield is expected to be less than the theoretical value.

Low C/N ratios were used in the current investigation, being 18.86 g g−1 (22 mol mol−1)
for glucose and 20.2 g g−1 (23.6 mol mol−1) for glycerol. Increasing the C/N ratio in the
culture medium of CW could possibly boost the yields of YPX and YPS, which were ap-
proximately 24% and 0.1 g g−1, respectively, for both substrates. On the other hand, Yang
et al. [37] demonstrated that the yield of lipids (YPS) produced by Rhodosporidium toruloides
Y4 rose from 0.16 g g−1 to 0.21 g g−1 after boosting the concentration of glycerol in the
culture medium from 20 to 150 g L−1.

When comparing CW cultivated with glucose or glycerol as the substrate, the yields
of YPX and YPS did not show any significant differences (p > 0.05) at 72 h of incubation.
Considering the kinetic profile of the yeast, the cultivation time does indeed affect growth
and the quantity of lipids obtained, as can be appreciated by the values of productivity
(Tables 2 and 3). With glucose rather than glycerol as the substrate, CW exhibited greater
productivity of biomass (RX) and lipids (RP) at 24 h of incubation (RX = 93.75 mg L−1 h−1

versus 23.96 mg L−1 h−1 and RP = 15.52 mg L−1 h−1 versus 4.12 mg L−1 h−1, respectively).
At the same time point, the specific productivity of biomass (RPX) was not significantly
different between these two substrates, with values close to 6 mg g−1 h−1. The value of
RPX decreased over time for CW cultivated in either substrate. For CW incubated with
glucose, the productivity values of RX and RP declined over time. For CW incubated with
glycerol, in contrast, the maximum values of RX and RP were reached between 72 and
96 h (RX = 34 mg L−1 h−1, RP = 8 mg L−1 h−1), although the difference between each
consecutive 24 h measurement was not significant as of 48 h. At all measurement times,
the productivity indexes of RX, RP, and RPX were lower for CW cultivated with glycerol
versus glucose as the substrate. A similar result was reported for the growth of Meyerozyma
guilliermondii BI281 in glucose or glycerol [38].

3.4. Fatty Acid Profile

The fatty acid profile of an oleaginous microorganism varies in accordance with
diverse factors, such as the variety of the microorganism, the carbon source utilized, and
the time of incubation. The determination of this parameter is important because the fatty
acid content is an indicator of the potential use of the oil obtained [39,40].

The principal fatty acids detected in the oil derived from CW after cultivation in
either glucose or glycerol as the substrate were oleic (18:1), palmitic (16:0), stearic (18:0),
linoleic (18:2), and palmitoleic acids (16:1). These fatty acids have also been found in the
lipid profiles of other oleaginous yeasts, including Rhodosporidium toruloides Y4 [37] and
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Yarrowia lipolytica [41] cultivated with glycerol as the substrate, Rhodotorula kratochvilovae
SY89 grown on molasses [42], Yarrowia lipolytica CBS 6303 incubated with glucose [43], and
Cryptococcus laurentii 11 with whey and molasses as carbon sources [44].

Based on the concentrations of fatty acids obtained, a calculation was made of the
yields of the different fatty acids in relation to biomass (YFAX) (Figure 4), finding higher
values with glucose (Figure 4a) versus glycerol (Figure 4b) as the substrate. At 48 h of
incubation, for example, the production of oleic acid by CW was 76.35% greater with
glucose (YFAX = 52.94 mg g−1) than glycerol (YFAX = 30.02 mg g−1).

Fermentation 2023, 9, x FOR PEER REVIEW 9 of 20 
 

 

The principal faĴy acids detected in the oil derived from CW after cultivation in ei-
ther glucose or glycerol as the substrate were oleic (18:1), palmitic (16:0), stearic (18:0), 
linoleic (18:2), and palmitoleic acids (16:1). These faĴy acids have also been found in the 
lipid profiles of other oleaginous yeasts, including Rhodosporidium toruloides Y4 [37] and 
Yarrowia lipolytica [41] cultivated with glycerol as the substrate, Rhodotorula kratochvilovae 
SY89 grown on molasses [42], Yarrowia lipolytica CBS 6303 incubated with glucose [43], 
and Cryptococcus laurentii 11 with whey and molasses as carbon sources [44]. 

Based on the concentrations of faĴy acids obtained, a calculation was made of the 
yields of the different faĴy acids in relation to biomass (YFAX) (Figure 4), finding higher 
values with glucose (Figure 4a) versus glycerol (Figure 4b) as the substrate. At 48 h of 
incubation, for example, the production of oleic acid by CW was 76.35% greater with glu-
cose (YFAX = 52.94 mg g−1) than glycerol (YFAX = 30.02 mg g−1). 

 
Figure 4. Yield of faĴy acids per gram of biomass of Candida wangnamkhiaoensis (YFAX), generated 
with glucose (a) or glycerol (b) as the substrate. 

24 48 72
0

10

20

30

40

50

60

Y FA
X

 (m
g 

g–1
) 

Time (h)

Palm itoleic acid

Palm itic acid

Linoleic acid

O leic acid

Stearic acid

24 48 72 96 120
0

10

20

30

40

50

60

Y FA
X

 (m
g 

g–1
) 

Time (h)

Palm itoleic acid

Palm itic acid

Linoleic acid

O leic acid

Stearic acid

(a)

(b)

Figure 4. Yield of fatty acids per gram of biomass of Candida wangnamkhiaoensis (YFAX), generated
with glucose (a) or glycerol (b) as the substrate.

At almost all times assayed with each substrate, oleic acid displayed the highest yield
of any fatty acid, followed by palmitic acid. Similar results have been reported for the lipid
profile of other yeasts cultivated in glucose or glycerol (Table 4).
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Table 4. Composition of the main fatty acids (expressed as a percentage of total lipids) produced by different oleaginous yeasts with glucose or glycerol as the
carbon source.

Yeast Carbon Source
C/N Ratio

(mol mol−1)
Initial pH Temp

(◦C)
YPX
(%)

Incubation
Time (h)

Fatty Acid Composition (% w/w)

Myristic
(14:0)

Palmitic
(16:0)

Palmitoleic
(16:1)

Stearic
(18:0)

Oleic
(18:1)

Linoleic
(18:2)

Linolenic
(18:3) Ref.

Candida inconspicua IGII YPGlc NR 5.6 28 32 96 ND 16.61 2.18 12.28 48.5 18.28 2.15 [45]
Candida wangnamkhiaoensis Glucose 23.7 6.0 30 25 72 ND 30 6 14 43 7 ND This work
Cryptococcus aerius UIMC65 Glucose 40 5.5 28 77 72 0.2 1.7 21.21 7.67 61.39 6.17 NR [40]
Debaryomyces hansenii 1 YPGlc NR 5.6 28 46 96 ND 15.94 3.8 11.5 46.2 15.21 2.53 [5]
Lipomyces starkeyi AS 2.1560 Glucose 1540 * 6.0 30 59.3 120 0.2 35.6 3.8 6.0 53.1 0.7 0.4 [46]
Yarrowia lipolytica JMY 794 Glucose 200 6.2 28 9 100 ND 19.3 11.3 10.2 41.1 18.1 ND [47]
Candida oleophila ATCC 20177 Pure glycerol 66 6 28 15.3 150 NR 12.9 2.5 6.6 65.6 11.0 NR [34]
Candida wangnamkhiaoensis Pure glycerol 23.7 6.0 30 24 48 ND 29 7 13 39 13 ND This work
Meyerozyma guilliermondii BI281A Pure glycerol 407 NR 28 34.97 120 NR 25.75 ND 34.17 48.76 NR 4.2 [38]
Pichia kudriavzevii MTCC 5493 Crude glycerol NR 5.5 28 18.6 110 NR 29.4 NR 8.9 41.9 9.2 NR [48]
Rhodosporidium toruloides Y4 Pure glycerol NR 5.5 30 34.8 120 1.4 27.8 0.6 21.8 43.8 2.9 1.2 [37]
Rhodotorula sp. LFMB22 Pure glycerol 66 6 28 22 187 NR 21.7 1.1 7.4 55.9 12.4 NR [34]

NR, not reported; ND, not detected; YPGlc, yeast–peptone medium supplemented with glucose. * Value reported in a culture medium of 70 g glucose L−1 and 0.1 g (NH4)2SO4 L−1.
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The production of fatty acids allows oleaginous microorganisms to confront envi-
ronmental factors capable of causing stress. Whereas long-chain fatty acids generally
afford the membrane with rigidity and stability, short-chain fatty acids usually give greater
fluidity [49]. Saturated fatty acids can have an important role in the polarity of the mem-
brane [50]. They also favor membrane resistance to solvents and extreme temperatures due
to their relatively high level of van der Waals interactions. Meanwhile, unsaturated fatty
acids increase the fluidity of the membrane [51]. Oleic acid produces yeast that is more
resistant to cold [52]. Palmitoleic and oleic acids, synthesized from palmitic and stearic
acids, confer yeasts with tolerance to ethanol and high temperatures [53–55].

The fatty acids identified in CW may be instrumental in diverse industries for the
production of food, biofuel, cosmetics, drugs, polymers, lubricants, and dispersants [56].
Moreover, in the area of food, proposals have been made for the creation of oleogels [57] as
a substitute for fats such as cocoa butter [58], and for the use of certain combinations of
fatty acids to provide an additional source of energy to cattle [59].

3.5. Comparison of the Composition of the Fatty Acids between CW and Some Vegetable Oils

Because the main fatty acids derived from yeasts are oleic, palmitic, and stearic acids,
many authors have emphasized the similarity of this profile with that of vegetable oils,
especially those utilized for the production of biodiesel and oleochemicals [40,45,60–62].
Radar charts were constructed presently to visualize and compare the composition of fatty
acids between the oil currently obtained from CW and some vegetable oils that are rich
in oleic acid (Figure 5), including avocado oil (from Persea americana Mill) [63] (Figure 5a),
olive oil (Figure 5b), and palm oil (Figure 5e,f). Peanut oil is a common raw material in the
food industry (Figure 5c), whereas oil from soybeans (Figure 5d), palm fruit (Figure 5e),
and palm kernels (Figure 5f) have many applications in industry [64]. For the comparison
of lipid profiles, the data on vegetable oils were found in previous reports [60,61], and the
data on the oil derived from CW were taken from the present study, being the percentage
of fatty acids in the yeast cultured with glucose or glycerol as the substrate at incubation
times of 72 and 48 h, respectively. At these times, the concentration of oleic acid and the
yield of YPX (>20%) reached their maximums. At 48 h, as aforementioned, there were no
significant differences between CW cultivated with glucose or glycerol in relation to yields
of fatty acids (YPX and YPS) or productivity (Rx and RP).

The composition of fatty acids of CW (especially when cultivated in glycerol) is very
similar to that of avocado fruit (Figure 5a) and resembles that of olives (Figure 5b) and palm
fruit (Figure 5e). Avocado, olive, and palm fruit oil contain high percentages of MUFAs,
most notably of oleic acid. Therefore, they share many properties capable of diminishing
the rate of progression of some degenerative and/or chronic diseases [65]. On the other
hand, peanuts (Figure 5c) and soybeans, being legumes (Figure 5d), have an abundance of
linoleic acid, in contrast to the greater amount of palmitic and stearic acids in CW.

From the oleaginous palm Elaeis guineensis, oil is extracted from the seed (palm kernel)
and the mesocarp of the fruit (palm fruit). Oil from the palm fruit, known as crude palm oil
or red palm oil, has properties that lend themselves to more numerous applications [66].
Its content of palmitic acid is greater than that obtained from CW (Figure 5e). The lipid
profile of the oil in CW is more similar to that of palm fruit oil than palm kernel oil due to
the greater presence of lauric and myristic acids in the latter (Figure 5f).
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Figure 5. Regarding the composition of fatty acids (% w/w), comparisons were made between CW
cultivated with glucose (CW-Glu) for 72 h or glycerol (CW-Gly) for 48 h and different vegetable
oils extracted from avocado fruit (a), olives (b), peanuts (c), soybeans (d), palm fruit (e), and palm
kernels (f).

3.6. Plausible Uses of the Oil in CW Based on Its Similarity to Some Vegetable Oils

According to the previous analysis of composition, the vegetable oils most similar to
the oil derived from CW are firstly avocado oil and secondly olive oil and palm fruit oil.
Hence, the possible applications of the oil contained in CW will be discussed within the
context of the uses of these vegetable oils.

Only 3% of the production of avocados around the world is designated for the prepa-
ration of oil, which is considered a high-cost gourmet product [67]. This oil would have
good potential as a raw material for widespread use in various industries because of its
balance of oleic, palmitic, and stearic acids [65]. The only drawback is its limited production.
Owing to their health benefits, both avocado and olive oils are mainly consumed in salads,



Fermentation 2023, 9, 443 13 of 18

dressings, and other foods. However, they are also utilized in the elaboration of cosmetics,
pharmaceutical products, and skin care products [65,68]. In many of these applications, the
oil obtained from CW could probably serve as an alternative. Whereas 97% of avocados
harvested are destined for sale as fresh fruit [66], over 90% of olives and palm fruit are
processed for the extraction of their oil [69].

The worldwide production of palm oil during 2020 was estimated to be 70 million
tons [70], of which 90% was destined for the preparation of margarine, spreads, confec-
tionery fats, ice cream, emulsifiers, and ghee. Given the versatility provided by its balanced
content of saturated (e.g., palmitic acid) and unsaturated fatty acids (e.g., oleic acid), it is a
common raw material in the fabrication of cosmetics, tooth paste, and biofuel [66,71].

Considering the similar composition between the oil of CW and palm fruit oil, the
former could potentially serve as a substitute, thus mitigating the negative effects caused
by the massive cultivation of palms in tropical forests. The resulting deforestation and
the improper disposal of waste material threaten biodiversity and create environmental
damage [72,73].

Taking into account the similarity of the lipid profile of the oil from CW, avocado oil,
olive oil, and palm oil, an analysis was made of the characteristics of the crops responsible
for yielding the vegetable oils (Table 5), including the yield and productive age of the
corresponding trees, and the overall worldwide production of each fruit.

Table 5. Characteristics of avocado, olive, and palm oil crops.

Crop
World Crop
Production

(Million Metric
tons year−1)

Crop Yield
(tons ha−1

year−1)
Pulp

Content (%)

Oil Contained
in the Pulp

(%)

World Oil
Production

(Million
Metric tons

year−1)

Oil Yield
(tons ha−1

year−1)

Productive Time
of Trees (Years)

To Begin
Yield

Maximum
Productive

Age

Avocado
(Persea americana Mill.) 8.06 [74] 9.6 [67] 60 [5] 7–37 [75] 0.371 [65] NDA 3–4 [76] 30–50 [77]

Olive
(Olea europaea L.) 21.33 [78] 0.5–12 [68] 65–85 [79] 30–40 [80] 3.1 [81] 9.0 [82] 5–6 [68] >100 [68]

Oil palm
(Elaeis guineensis Jacq.) 418.4 [83] 14.56 [83] 35–75 [84] 45–70

[66,71,84] 73.8 [85] 1.92–15.49
[70,85,86] 3–6 [87] 25 [87]

NDA, no data available.

Of the three crops examined herein, the one with the most abundant worldwide
production is palm oil, with olive oil in second place and avocado oil in last place. Palm
fruit has a great quantity of pulp that contains a large amount of oil. However, the
yield of oil is variable from year to year and is contingent on many factors. The trees
take 3–6 years to mature (to be able to give fruit) and have a productive life of 25 years
(Table 5). The yield per hectare depends on the age of the trees and the diseases affecting
them, as well as the maturity of the fruit, the harvest season, the characteristics of the soil
and climate, the hydrological conditions, and the methods of oil extraction, among other
factors [65,68,70,75,86,87].

Due to the variability of the yields of oil from the crops shown in Table 5, it is difficult
to formulate a comparison with the oil obtained from CW. To address this problem, average
values were used to construct the graph in Figure 6. In the case of avocados, the calculation
was made with the data in Table 5 and the fact that 3% of production is destined to the
extraction of oil. To determine the yield per hectare of CW, the diameter of the horizontal
surface of the cultivation beaker was taken as the surface area, and the production time
considered was 72 h with glucose and 48 h with glycerol as the substrate.
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Given the importance of oleic acid in diverse industries, its yield was graphed
(Figure 6) for the different crops and the present yeast cultures. The proportion of oleic acid
in each type of oil was taken into account, constituting 51% of the total weight of avocado
oil [63], 71% of olive oil [64], and 38% of palm oil [64]. The percentage of oleic acid in the
composition of the oil derived from CW cultivated in glucose or glycerol was based on this
study (43% and 39%, respectively). As can be appreciated (Figure 6), the potential yields
per hectare are far superior for oil and oleic acid obtained from CW versus avocados, olives,
and palm fruit.

According to the current calculations, CW cultivated in glucose yields an 8-fold greater
amount of oil than that afforded by palm fruit or olives, and a 4.4-fold greater quantity of
oil than that furnished by CW cultivated in glycerol. Although glycerol leads to a lower
yield of lipids, it is a byproduct of some industries, thus conferring an economic benefit
to its use. With either substrate, CW generates an oil with a relatively high proportion
of oleic acid in only 48–72 h, and the yields are constant, being provided in a controlled
environment (unlike the variability of the yields of avocados, olives, and palm fruit).

Considering the similarity of the lipid profile of oil derived from CW to that of certain
vegetable oils, the lipids obtained from this microorganism could possibly be utilized in
many industries as an economical alternative. The elaboration of oil from CW would
contribute to the avoidance of shortages of vegetable oils and key fatty acids (e.g., oleic
acid). It would also eliminate the need for the indiscriminate extension of land dedicated to
the cultivation of products converted into vegetable oil, which would therefore reduce the
displacement of endemic flora and the resulting alteration of ecosystems around the world.

4. Conclusions

When cultivating CW with glucose or glycerol as the substrate under the conditions of
the present study, the microorganism was able to grow quickly and generate a lipid content
above 21% of its biomass, thus becoming an oleaginous yeast. Because the corresponding
lipids are rich in oleic acid, the cultivation of CW may serve as an alternative source of this
fatty acid for the food, pharmaceutical, cosmetics, lubricant, and biofuel industries. To our
knowledge, the capacity of CW to produce fatty acids has not been previously reported. The
composition of fatty acids in the oils obtained from CW is very similar to that of avocado
oil (e.g., stearic, palmitic, and oleic acids). Moreover, the oil of CW resembles that extracted
from olives and palm fruit. These three vegetable oils are important in the production of
food, drugs, cosmetics, and oleochemicals, and, in some cases, biofuel. The annual yield
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of lipids (particularly of oleic acid) derived from CW per hectare could be up to 8.2-fold
greater than the yields provided by the cultivation of avocado, olive, or palm trees. Because
the oil from CW can be produced at a low cost, it represents a plausible alternative source
for the lipids required in a great variety of industries, and, at the same time, could mitigate
the environmental damage caused by constantly expanding cultivations. Future research is
needed to improve the yield of lipids in CW by modifying the conditions of cultivation. For
example, the C/N ratio in the culture medium could be increased and alternative reaction
systems (distinct from those utilized presently) could be explored.
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