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Abstract: In agriculture, weed management is a significant concern because their uncontrolled
proliferation decreases soil quality for food crops. Allelopathy is a natural phenomenon in which the
activity of allelochemical compounds inhibits the germination and growth of invasive plants as a
defense mechanism. Among allelochemicals are polyphenols, which may affect genetic material or
crucial enzyme activities for proper physiological function. Agroindustrial residues are a vast source
of polyphenolic compounds with allelochemical activity. The bagasse of Agave Lechuguilla, known as
guishe, is an abundant residue in México. The guishe has been characterized before by its polyphenolic
content. Based on that, a fungal bioconversion process was developed to increase the availability
of the allelochemicals in the guishe juice. First, guishe juice was obtained by mechanical pressed
and characterized by spectrophotometric analysis. Results showed (g/L): 5.62 flavonoids, 0.64 of
hydrolyzable polyphenols, 12.67 of reducing sugars, and 23.3 total sugars. The compounds detected
by HPLC-ESI-MS were pterostilbene, hydroxycaffeic, caffeoyltartaric, and 4-O-glucoside coumaric
acids, considered allelopathic. After the fungal bioprocess, (+)-gallocatechin and 3,7-Dimethyl
quercetin were detected as additional compounds of interest. The flavonoid and hydrolyzable
polyphenol content were modified to the highest accumulation of 1.57 and 14.9 g/L at 72 h, meaning
a 2.45- and 2.22-fold increase. A bioprocess guishe juice (BGJ) was obtained at the compound
accumulation peak of 72 h and evaluated in an allelopathic assay on model seeds (tomato and corn).
Results show that BGJ inhibits up to 96.67% of corn seeds and up to 76.6% of tomato seeds compared
to positive control.

Keywords: bioprocess; allelopathy; bioherbicide; bioconversion; Agave; residues

1. Introduction

Weed management is an area in agriculture that holds great importance because the
uncontrolled proliferation of weeds can lower soil quality for crops, reducing nutrients,
nitrogen, and water and hindering crop growth [1]. The losses caused by weeds in agri-
culture surpass any other agronomic pests. They reduce plant development and grain
production and can mean a 20 to 40% loss in crop yield [2,3]. In this regard, agriculture
needs herbicidal agents to alleviate or inhibit weed growth because it causes affection
in crops and significant economic losses [4]. The herbicidal agents of synthetic origins,
such as glyphosate, have been classified as potentially carcinogenic along with metabolic
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and endocrine effects, tumorigenic, teratogenic effects, and hepatorenal damage [5]. The
approaches of mechanic removal and cultural management have proved ineffective, and
the synthetic options are effective but are considered prejudicial for the environment and
human health [6].

Interestingly, allelopathy is a natural phenomenon in which chemicals are released
from one plant to the environment to affect neighboring plants and cause hindering
effects in germination, growth, and development [7]. The compounds are responsible
for allelopathy are known as allelochemicals, in which phenolic compounds are consid-
ered [8]. Molecules such as phenolic acids, and flavonoids including flavones, flavanones,
isoflavones, and flavonols are reported as weed inhibitors and are also considered envi-
ronmentally friendly [7,8]. Natural sources of phenolic compounds can be different plants,
flowers, fruits, and vegetables [9]. Although, the use of agroindustrial byproducts or
vegetable residues is a more convenient alternative for extracting phenolic compounds
with allelochemical activity due to their abundance and their attractiveness in economically
feasible and green production strategies [8]

Agave lechuguilla is a succulent plant found in the semi-desertic area of Mexico and is
widely distributed in the country’s total area [10]. Rural farmers use it to extract fibers as a
productive activity. During the obtention of A. lechuguilla fibers, an abundant residue called
guishe is generated [11]. Several bioactive molecules can be found in this residue, such as
saponins, phenolic acids, and flavonoids [12–14]. Among these molecules, some with the
ability to inhibit weed growth can be found [15]. The allelopathy these compounds show
opens the possibility for guishe-based bioherbicides development. Although, their use as
a raw material for bioactive compound extraction represents challenges to overcoming
the low bioavailability of the molecules [16]. Therefore, biotechnological processes can
be adapted to increase the allelochemicals’ concentration and bioavailability in the guishe.
In this regard, some microorganisms can act as agents to release bioactive compounds
linked to larger molecules, such as polysaccharides or organic sources containing those
molecules, which can be allelochemicals [17]. Considering this, fungal fermentation is a
biotechnological approach by which it is possible to potentiate the allelopathy, promoting
allelochemical accumulation.

Fungi help achieve the bioaccumulation of bioactive compounds. Fungal strains have
been used to treat plant material with phenolic compounds to increase their effects, such as
antioxidant activity. Consequently, they may produce enzymes to degrade plant compo-
nents as a carbon and nitrogen source [18]. Strains such as Fusarium chlamydosporum have
been used for their ability to accumulate bioactive phenolics in recent reports [19]. Fer-
mented materials with fungal strains have improved their antioxidant capacity after being
released by fermentation. In this case, it was mentioned that the bioavailable compounds
might inhibit enzymes such as amylase, which is crucial in seed starch degradation [20].
Accordingly, this work aimed to valorize the guishe juice by its fungal bioconversion to
accumulate allelochemicals using an endophytic strain. In addition, to determine the
bioconverted extract capacity to prevent model seed growth, its allelopathic ability was
evaluated on Zea mays and Solanum lycopersicum seeds.

2. Materials and Methods
2.1. Plant Extract Conditioning

Agave lechuguilla residue (guishe) was obtained from the Fraustro Coahuila community
(25◦52′11′′ N, 101◦19′50′′ W). The guishe juice was obtained from the whole lechuguilla
residue after carving for fiber obtention by hydraulic pressing. The obtained guishe juice
was stored in a freezer at −20 ◦C until further use for characterization and evaluations.

2.2. Fungal Strain Growth and Fermentation Conditions

The fungal strain of Fusarium chlamydosporum, isolated from Agave lechuguilla residues,
was grown in potato dextrose agar (PDA) from glycerol-cryopreserved spores stored at
−20 ◦C. The agar plates were incubated at 30 ◦C for 5 days. A spore count was made in a
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Neubauer chamber to determine the number of spores harvested with 0.1% Tween 80. The
inoculum established was 1 × 106 spores/mL of guishe juice. For the fermentation condi-
tions, in 250 mL Erlenmeyer flasks, 50 mL of undiluted guishe juice was the culture media
and stirred at 150 rpm. The guishe juice was previously centrifuged at 6000 rpm/10 min
to remove solid particles. The fermentation was carried out for 168 h, with samples taken
every 24 h. The samples of BGJ were centrifuged and stored in a −20 ◦C freezer until
analysis.

2.3. Analytical Methods
2.3.1. Spectrophotometric Analysis

For flavonoid content, the samples were analyzed by the technique reported by Silva-
Beltrán et al. [21]. For hydrolyzable phenolics (HP), the method carried out was reported
by Wong Paz et al. [22]. Total sugars were determined by the phenol-sulfuric method [23],
and reducing sugars by the dinitrosalicylic acid method [24]. Results from experiments
were made in triplicate, and calibration curves were prepared to quantify the equivalents
of quercetin, gallic acid, and glucose, respectively.

2.3.2. Phenolic Content by HPLC-ESI-MS

The bioactive molecules were detected by sample injection in high-performance liquid
chromatography (Varian ProStar), as reported by Estrada-Gil et al. [25]. The samples were
filtered through a 0.45 µm nylon membrane with a 1:10 dilution. The equipment uses a
ternary pump (ProStar 2301), an autosampler (ProStar 410), a photodiode array detector
(ProStar 330) (320 nm), and a Denali C18 column (3.1 µm; 150 mm × 4.6 mm) at 30 ◦C in a
column oven. The mobile phases used were 0.2% formic acid as solvent A and acetonitrile
as solvent B. The solvents were used by gradients as follows: initial 3% B; 5–15 min, 16%
B linear; and 15–45 min, 50% B linear. After the analysis, the column was washed and
reconditioned. The chromatographer was coupled with a mass spectrometer with ion trap
(Varian 500 M/S), electrospray ionization (ESI), negative mode [M-H]-, 90 V of capillary
voltage, and 100–2000 m/z of mass range. Full scan mode acquired in the m/z range of
50–2000 was the analysis made on the samples, and the data collected were processed by
the MS Workstation Software (version 6.9).

2.4. Germination and Vegetative Growth Effects

Model seeds were used to evaluate the effect of the bioprocess guishe juice (BGJ) under
laboratory conditions. The seeds were maize (Zea mays) and tomato (Solanum lycopersicum)
as models. Seeds were disinfected with 1% NaOCl for 15 min, washed with distilled
water, and dried. The seeds were placed in Petri dishes with humidified paper filter discs.
As controls, the seeds were imbibed with water (negative control) and glyphosate-based
product (positive control). Later the seeds were imbibed in the bioprocess guishe juice (BGJ)
for 15 min, where the extract was evaluated in four conditions: undiluted, 2%, 1%, and
0.5%. The germination index and vegetative growth were assessed for 3 days by observing
the emerging roots’ development and characteristics in a climatic chamber at 80% moisture,
25 ◦C (±2.5 ◦C) in complete darkness.

2.5. Data Analyses

All experiments were carried out in triplicate, and results were analyzed in Microsoft
Excel for means, standard deviations, and graphics. Analysis of variance and comparison
of means by Tukey’s test (at 0.05) using Minitab® 20.3 (64-bit) statistical software was used
for the seed germination experiment results.

3. Results
3.1. Guishe Juice Characterization

Table 1 shows the flavonoid, hydrolyzable phenolics, reducing and total sugar content
detected by spectrophotometric methods. The sugar content was 23.3 g/L by the sulfuric-



Fermentation 2023, 9, 421 4 of 14

phenol method and 12.67 g/L by the DNS method as glucose equivalents. For the phenolics
and flavonoid content, 0.64 and 5.62 g/L, were detected as quercetin and gallic acid
equivalents, respectively.

Table 1. Spectrophotometric characterization of guishe juice before the fungal fermentation process.

Compounds of Interest g/L

Total sugars 23.3 ± 0.90
Reducing sugars 12.67 ± 0.170

Hydrolyzable polyphenols 0.64 ± 0.014
Flavonoids 5.62 ± 0.024

High-performance liquid chromatography detected several bioactive compounds, as
seen in Table 2. Compounds such as pterostilbene, hydroxycaffeic acid, caffeoyltartaric
acid, and 4-O-glucoside coumaric acid were detected. The separation was made with a
gradient method and a C-18 column (specified in the methodology section) with an affinity
for polyphenols and their derivates.

Table 2. Compounds detected in guishe juice characterization by HPLC-ESI-MS.

Mass (m/z) Compound Family 1 RT (min)

254.9 Pterostilbene Stilbenes 14.96
194.9 Hydroxycaffeic acid Hydroxycinnamic acids 21.183

325 4-O-glucoside
p-coumaric acid Hydroxycinnamic acids 54.594

311.1 Caffeoyltartaric acid Hydroxycinnamic acids 55.685
1 Retention time.

3.2. Bioprocessing of Guishe Juice

Sugar content acts as a growth inducer along the fungal bioprocessing, and its content
is affected through time, as seen in Figure 1. The bioprocess started with a sugar level of
23.03 g/L, with a decrease in content levels to 8.18 g/L at 48 h. Afterward, a tendency to
accumulate sugars was observed at 96 h with 13.5 g/L, and the lowest sugar level was
detected at 5.3 g/L. Approximately 12 g/L of sugars was maintained until 168 h during
the final three monitoring times. In Figure 2, the reducing sugar content is shown. At
the beginning of the bioprocess, the content of monomeric sugars was 12.6 g/L, and as
time progressed, sugar accumulation was observed until 120 h. Between 24 and 72 h, an
approximate amount of 23 g/L was maintained. Afterward, an irregular behavior in sugar
content was registered at 120 h until 168 h.

3.3. Flavonoids and Hydrolyzable Phenolics

In Figure 3, the THP content is shown. At the beginning of the bioprocess, the THP
quantity detected was 0.64 g/L; as time advanced, 1.57 g/L of THP was accumulated at
72 h, and 1.29 g/L of THP at 168 h was detected. For flavonoid content, the presence of
the compound evolved from 5.62 g/L to an accumulation of 14.9 g/L at 72 h to a final
concentration of also 14.9 at 168 h, as seen in Figure 4. In both cases, polyphenols show an
accumulation pattern which indicates an active polyphenol accumulation.
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Figure 1. Total sugars content along the fungal bioprocess of guishe juice.
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Figure 2. Reducing sugars content along the Fusarium chlamydosporum bioprocess guishe juice (BGJ).

In Table 3, the compounds detected in the bioprocess guishe juice (BGJ) are shown by
HPLC-ESI-MS. The difference with the characterized guishe juice is that other compounds
were detected at 24 h and afterward, such as (+)-gallocatechin and 3,7-dimethyl quercetin
bioactive compounds. The only glycoside found was 4-o-glucoside p-coumaric acid, and
its presence was maintained for 72 h. (+)-Gallocatechin was a compound that appeared
at 24 h and prevailed until 96 h, and this molecule may have been part of a complex
that was degraded by enzymes secreted by the fungal strain. Hydroxycaffeic acid and
pterostilbene were detected during the whole bioprocess. The chemical structures of the
detected compounds by HPLC-ESI-MS are shown in Figure 5.
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Table 3. Compounds detected by HPLC-ESI-MS along the BGJ with Fusarium chlamydosporum.

Mass (m/z) Compound Family 1 RT (min)

24 h
304.7 (+)-Gallocatechin Catechins 3.466
254.9 Pterostilbene Stilbenes 14.77
195 Hydroxycaffeic acid Hydroxycinnamic acids 20.542
917 3,7-Dimethyl quercetin Methoxyflavones 55.706
325 4-O-glucoside p-coumaric acid Hydroxycinnamic acids

48 h
304.7 (+)-Gallocatechin Catechins 3.336
254.9 Pterostilbene Stilbenes 14.859
194.9 Hydroxycaffeic acid Hydroxycinnamic acids 21.513
325 4-O-glucoside p-coumaric acid Hydroxycinnamic acids 55.948

72 h
304.7 (+)-Gallocatechin Catechins 3.39
254.9 Pterostilbene Stilbenes 14.249
194.9 Hydroxycaffeic acid Hydroxycinnamic acids 20.825
325 4-O-glucoside p-coumaric acid Hydroxycinnamic acids 55.73

96 h
304.7 (+)-Gallocatechin Catechins 3.504
254.9 Pterostilbene Stilbenes 14.515
195 Hydroxycaffeic acid Hydroxycinnamic acids 21.071

1 Retention time.

3.4. Allelopathic Activity

In the assays carried out on Zea mays seeds (Table 4), it was observed that with the
addition of 100% bioprocess guishe juice (BGJ), germination was inhibited at 100% at
the first 24 h of incubation followed by 48 and 72 h with 96.67%, respectively, compared
with the control. At a lower concentration of 0.5% of bioprocess extract, the germination
inhibition was 60% at 24 h of incubation, and later, results showed 3.33% and 0% at 48
and 72 h, respectively. A similar effect was observed at 1 and 2%, the concentration of the
BGJ, compared with the control. For this analysis, water and glyphosate were controls;
water control treatment displayed normal root formation after 72 h. The positive control
had a 70% germination, but the roots were affected considerably compared to the negative
control. As seen in Figure 6, the seeds developed roots that also have differences. In the
water control (Figure 6a), the roots are thicker than in the glyphosate control (Figure 6b)
and 0.5 % BGJ treatments (Figure 6c), and in 100% BGJ, no root formation was observed
(Figure 6d). By statistical analysis, it can be corroborated that 100% BGJ is significantly
different compared to the other treatments. At 72 h, the effect is even more notorious,
considering that inhibition was already manifesting at 24 and 48 h.

Table 4. Allelopathic activity on Zea mays model seeds treated with BGJ fermented during 72 h,
glyphosate as the positive control, and water as the negative control.

Treatment 24 h 48 h 72 h

Control treatment

Water 70 abc 0 a 0 b
Glyphosate 70 ± 5.77 ab 0 a 0 b

Bioprocesses guishe juice

0.50% 60 ± 17.32 bc 3.33 ± 5.77 a 0.00 b
1.00% 36.67 ± 20.82 c 3.33 ± 5.77 a 0.00 b
2.00% 36.67 ± 15.28 c 3.33 ± 5.77 a 0.00 b
100% 100 a 96.67 ± 5.77 a 96.67 ± 5.77 a

Means difference is significant at the 0.05 level. Means that do not share a letter are significantly different.
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For Solanum lycopersicum seeds (Table 5), at the first 24 h of all BGJ treatments, seeds
did not germinate. After that, at 48 h of incubation, 86% of the seeds were inhibited at
the 100% concentration of BGJ, and 76% of the seeds were inhibited at 72 h. The activity
decreased at lower concentrations of BGJ, where at 0.5% of BGJ at 48 h, 33.33% of seeds
were inhibited, and 26.67% at 72 h. For 1% BGJ at 48 and 72 h, the inhibition resulted
in 32 and 26.67%, and at 2% concentration of BGJ, the inhibition at 48 and 72 h was 30
and 16.67%. The glyphosate inhibited 63.33, 36.67, and 33.33% of the seeds from 24 to
72 h, and water inhibited 30, 53.33, and 53.33 in the same periods, where in this case, it
may be possible that the seeds in the water treatment had low viability as all seeds were
expected to germinate in its totality. In Figure 7, tomato seeds also exhibited typical water
treatment growth in the negative control (water), decreased root volume in the positive
control treatment (glyphosate), and a near-total inhibition of root formation in 100% BGJ.
The effect of 100% BGJ was significantly different for tomato seeds compared to controls
and diluted BGJ. The allelopathic effect was detected for 48 h of growth, which became
more evident at 72 h. Water and glyphosate were used as control treatments.
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Table 5. Allelopathic activity on Solanum lycopersicum model seeds treated with BGJ fermented during
72 h, glyphosate as the positive control, and water as the negative control.

Treatment 24 h 48 h 72 h

Control treatment

Water 30 a 46.67 ± 5.77 abc 46.67 ± 5.77 ab
Glyphosate 63.33 a 63.33 ± 5.77 ab 66.67 ± 5.77 ab

Bioprocess guishe juice

0.50% 100 a 33.33 ± 15.28 bc 26.67 ± 20.82 b
1.00% 100 a 32.00 ± 11.55 bc 26.67 ± 15.28 b
2.00% 100 a 30.00 ± 20.00 c 16.67 ± 15.28 b
100% 100 a 86.67 ± 11.55 a 76.67 ± 11.55 a

Means difference is significant at the 0.05 level. Means that do not share a letter are significantly different.
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4. Discussion
4.1. Guishe Juice Characterization

The sugar content can be attributed to fructans and their derivates, considering that
Agave species can accumulate these sugars as energy sources and microbial growth induc-
ers [11,12]. By liquid chromatography coupled with mass spectroscopy, several bioactive
compounds were detected, as seen in Table 2. The separation was made in a method and
a column with an affinity for polyphenols and their derivates and compounds, such as
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pterostilbene, hydroxycaffeic acid, caffeoyl-tartaric acid, and 4-O-glucoside coumaric acid.
These compounds are among flavonoids and stilbenes, which are reported to manifest
bioactivities, and in the case of this work, one of such bioactivities is allelopathy [5,26].
Caffeic acid has been reported as a down regulator of the genes for the biosynthesis of
phytoalexin and gibberellins, which are compounds that contribute to seed germination
and stem development [27]. The effect of p-coumaric acid is mentioned as a stress factor in
plant development due to its effect as a photosynthesis inhibitor [28]. Stilbenes, including
pterostilbene, are molecules studied to assess their allelopathic activity against the genus
Fallopia, considered one of the worst invasive species in the world [29]. Gallocatechin and
quercetin can affect seed germination and nitrification processes [4]. Many compounds,
reported as allelopathic, can express bioactivity even in derivates such as glycosides [8].

4.2. Bioprocessing of Guishe

In Figure 2, the reducing or monomeric sugars accumulation can be explained by the
hydrolysis of probable fructooligosaccharides and inulins and their later uptake by the
fungal strain [30]. This behavior in sugar content could be attributed to the heterogeneity
of the substrate, guishe juice, in this case. Some reports mention that guishe contains
monomeric sugars such as glucose, fructose, fructooligosaccharides, and inulins. Some
fungi can produce enzymes to degrade fructooligosaccharides. This degradation can
contribute to the sugar accumulations observed in Figure 3 [31]. Sugar content and other
molecules (glycosides) contained within the extract may induce Fusarium chlamydosporum
to secrete hydrolytic enzymes, which may contribute to accumulating bioactive compounds
and increase their bioavailability. As sugars were consumed, other compounds, such
as polyphenols, were accumulated, as seen in Figures 3 and 4. This effect can promote
increased bioavailability of the compounds towards the desired allelopathic activity. By
decreasing sugar content, the possibilities of other bioactivities inherent in plants are lower,
such as defense mechanisms associated with plant immunity and different molecular
patterns suggesting that carbohydrates of diverse molecular weights or polymerization
degrees may activate plant signaling cascades [32].

4.3. Flavonoids and Hydrolyzable Phenolics

Bioactive phenolic compounds can be found in plant tissues with glycosylation in their
structures, which allows water solubility compared with the aglycone form of insoluble
phenolics [33]. The accumulation patterns among phenolic compounds may follow the
enzymes’ activity to hydrolyze certain compounds and the uptake of sugar content by the
fungal strain. It can be inferred that the compounds in the media are being degraded by
the active bioprocess and by a wide range of enzymes a fungus can produce. It contributes
to the bioavailability of molecules [34].

Fungal strains have been used in fermentation systems where polyphenols were the
molecules of interest. Hassane et al. [19] attributed the biodegradation ability of Fusarium
chlamydosporum on humidified rice to the release of flavonoids such as apigenin, chrysin,
naringenin, isovitexin, and quercetin. Medina-Morales et al. [35] reported a mixed culture
of Aspergillus niger and Trichoderma reesei to study the release of polyphenolic compounds
bound to fibers in citric residues where enzymatic activities such as β-glucosidase, cellulase,
and xylanase stood out. There are studies where fungal strains can proliferate and degrade
polyphenolic compounds. López Trujillo et al. [34] and Xue et al. [36] reported that As-
pergillus niger could accumulate flavonoids such as luteolin and apigenin glycosides. Some
reports mention that glycosidic enzymes such as b-glucosidases can degrade the bond
in a phenolic compound and a sugar to release an aglycone and a monosaccharide [37].
Another type of catalytic activity is oxygenases, which can act directly at the C-C bonds
in flavonoids and may contribute to the release of phenolic compounds [38], allowing the
accumulation seen in Figures 3 and 4. According to Morreeuw et al. [14], these compounds
can be found in guishe considering that we worked with a mechanically obtained extract
and the mentioned report used whole guishe, which are water-soluble compounds. As
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previously mentioned, all these compounds and their derivates have been reported to have
bioactivity, including allelopathy. These aspects are relevant because plants can express
a defense mechanism that hinders invasive plant growth in their proximity. Because of
these reasons, natural phenolic compounds are beneficial to crops for weed management,
as these can be found in aqueous extracts containing these molecules [8].

4.4. Allelopathic Activity

Several mechanisms affect the germination and growth of plants through allelopathy,
such as cellular effects on division and permeability, oxidative stress, photosynthesis, respi-
ration, transpiration, gene expression, protein biosynthesis, phytohormones, and enzyme
activities [8,39]. The results show that in Zea mays seeds, the roots and stems, according to
Figure 6, may have been affected by the compounds present in the BGJ. Nadeem et al. [40]
mentioned that phenolic compounds found in Alternanthera philoxeroides had a negative
development effect on the roots and stems of Zea mays seeds and attributed this to ferulic
acid, chlorogenic acid, gallic acid, p-coumaric acid, syringic acid, and quercetin. The results
of tomato seeds (Figure 7) show that they were slightly more resistant to the BGJ, which
could be attributed to natural resistance. It is reported that tomato roots are in contact with
allelochemicals in the soil, which could give resistance [41]. The differences in the root
formation in the treated and untreated seeds may affect structure development and protein
synthesis that decrease the width and length of the roots, resulting in a weaker seedling
and less likelihood to continue its growth. One of the reasons that phenolic compounds can
be found in glycoside form, apart from improving their transit in and out of plant tissues,
is to avoid autotoxicity [2], so in our results, phenolic glycosides were found and adjusted
to the observed allelopathic activity to its initial expectations. As previously stated, the
evaluation of BGJ at the highest concentration presented total or near total inhibition of
the model seeds. The presence of phenolic compounds may have a role in this regard
due to their effect on cell permeability, photosynthesis, and nucleic acid synthesis, which
alters gene expression and metabolism, such as phytohormones and regulators in plant
systems. Phenolic compounds are among the first line of defense for plants considered
allelopathic, or the compounds themselves are allelopathic agents, regardless of their origin.
One example is that caffeic acids inhibit phosphorylation and its energetic processes in
seedlings. Cinnamic acids can tamper ATPase production, lowering nitrogen uptake and
affecting growth [39,42].

Since glycosides may have reduced allelopathic activity, the partial biodegradation
by F. chlamydosporum could contribute to an increased germination inhibition due to the
glycosidases required to release the phenolic compounds. There are reports that glycosides
can be degraded to release aglycones [34,43], which may be phenolic compounds (phenolic
acids and flavonoids), which penetrate the seed and inhibit enzymes activities responsible
for germination, among other mechanisms [5,42].

5. Conclusions

This is the first study demonstrating that the bioconversion of guishe juice with Agave
lechuguilla endophytic Fusarium chlamydosporum fermentation is an attractive biotechnologi-
cal strategy. The fungal bioconversion of guishe juice (BGJ) promotes the accumulation of
phenolic and flavonoid compounds, known for their allelopathic activities. Bioconversion
is useful for accumulated compounds like phenolic acids and flavonoids such as gallo-
catechin and glycosylated derivatives. The accumulation of these compounds allows the
development of guishe-based herbicides. This work showed the allelopathic effect of BGJ
on model seeds.
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