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Abstract: Chronic kidney disease (CKD) disproportionately affects populations in developing coun-
tries. In sub-Saharan Africa, CKD prevalence is high (12–23%) and is associated with cardiovascular
manifestations. Uremic toxins, especially p-cresol and p-cresyl sulfate, are associated with the disease.
Reducing uremic toxins in the body slows disease progression and improves patient outcomes.
Probiotic Bifidobacterium breve HRVD521-US, B. animalis HRVD524-US, B. longum SD-BB536-JP, and
B. longum SD-CECT7347-SP internalize p-cresol and improve longevity in vivo. In 2002, Tanzanian
communities were taught to produce probiotic yogurt (Fiti®) supplemented with Lacticaseibacillus
rhamnosus GR-1. This has expanded to over 100 community producers across the country. To produce
yogurt that could reduce the burden of CKD by sequestering uremic toxins, we decided to test
the addition of p-cresol-clearing bifidobacterial strains. By repeating the Fiti® production process
performed in Tanzanian communities and adding a bifidobacterial strain, we found that they were
successfully incorporated into the yogurt without any detrimental effect on sensory properties or
viable counts. Three of the four strains significantly reduced p-cresol when added to a simulated
colonic environment. In conclusion, this study has shown that Fiti® sachets provided to Tanza-
nian communities to produce yogurt can be supplemented with strains that can potentially confer
additional health benefits.

Keywords: probiotics; yogurt; chronic kidney disease; uremic toxins; p-cresol

1. Introduction

Chronic kidney disease (CKD) is a serious global health problem that affects more than
~10% of adults worldwide [1]. In African populations, the disease incidence is higher due
to an increased prevalence of risk factors, including hypertension, genetic polymorphisms,
and the sickle cell trait [2–7]. Due to these risk factors, the likelihood of developing CKD
is almost doubled in sub-Saharan Africa, where upwards of 20% of the population is
burdened by the condition [8–11].

The disease is characterized by the gradual loss of kidney function that impairs primary
solute clearance and facilitates the accumulation of harmful compounds [12,13]. In the
later stages of CKD, renal activity is completely inadequate in combatting the constant
production of waste products, allowing them to persist in the body and thereby enhance
the disease severity [14,15]. Certain renal replacement therapies, such as hemodialysis,
exist to limit the accumulation of these harmful compounds [16], but their clinical efficacy
often relies on early referral to a nephrologist at the onset of the disease [17]. However,
due to a lack of resources and the high cost of these treatments, the majority of patients
in sub-Saharan Africa are referred late, if at all [16,18–20]. This highlights the need for a
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prophylactic strategy to address the CKD crisis in an economically sensitive fashion, with a
particular focus on populations living in sub-Saharan Africa.

The build-up of gut microbiota-derived uremic toxins accelerates CKD progression [21–26].
p-Cresyl sulfate is an especially important toxin sourced from the bacterial metabolism
of tyrosine and phenylalanine. Microbial fermentation of these amino acids in the gut
yields the toxin precursor, p-cresol, which is absorbed from the intestinal environment to
be sulfated in the liver, after which p-cresyl sulfate enters the circulation and binds albu-
min [27–33]. The accumulation of p-cresol and p-cresyl sulfate is known to induce oxidative
stress and renal inflammation, decrease kidney cell viability, and enhance NADPH oxidase
activity [34], each of which are manifestations commonly observed with the disease.

The gut microbiota of CKD patients is primed for p-cresol biosynthesis through the
enrichment of toxin-producing bacteria, such as Enterobacteriaceae and Clostridiaceae [35,36].
The guts of these patients are also depleted of Lactobacillus and Bifidobacterium, two gen-
era that are commonly used in probiotic formulations [35,37–39]. Therefore, the potential
exists to administer strains from these genera to remedy microbial dysbiosis and uremic
toxin accumulation. In studies testing this theory, the supplementation of probiotic bifi-
dobacteria was consistently successful in slowing CKD progression and decreasing serum
p-cresol [34,40–45]. The authors concluded that the findings correlated with a normalized
intestinal microbiota [40,41]. Other explanations are feasible, such as the bifidobacteria
directly sequestering p-cresol from the surrounding environment, as we have shown [27].
The data suggest that some strains of bifidobacteria are more effective than others at re-
ducing gut microbiota-derived p-cresol, which points to the importance of proper strain
selection in commercial probiotics.

In 2002, local women in Tanzania were taught to produce probiotic yogurt (Fiti®)
supplemented with Lacticaseibacillus rhamnosus GR-1 [46–52]; this social enterprise has
resulted in over 260,000 consumers having weekly access to Fiti® and Yoba-for-life, which
utilizes a generic strain of L. rhamnosus GG. Considering ~20% of people in sub-Saharan
Africa will develop CKD and probiotic yogurt has shown clinical efficacy against the
disease [8–11,40], there is a unique opportunity to modify a fermented food for additional
health benefits. Fiti® was chosen as the product of choice because of its availability to
populations in sub-Saharan Africa, where it has been clinically proven to have probiotic
properties. The present study was designed to test whether p-cresol-clearing bifidobacterial
strains could be added to Fiti® yogurt without negatively affecting viable counts, taste,
or texture. We hypothesized that the addition of p-cresol-clearing bifidobacteria would
not impact the sensory properties of Fiti® and that the strains would maintain their toxin-
clearing ability following yogurt production. A combination of in vitro techniques and
sensory tests were used to assess the feasibility of this approach.

2. Materials and Methods
2.1. Chemicals

p-cresol was obtained from Thermo Fisher Scientific Canada (Mississauga, ON, Canada,
#C040025G) and stored under appropriate conditions as defined by the manufacturer. Rel-
evant concentrations of toxin were made in acetonitrile (ACN; Thermo Fisher Scientific
Canada, Mississauga, ON, Canada #A996-4) on the day of experimental use.

2.2. Bacterial Culture Conditions

All bifidobacteria strains were received in monoculture from Seed Health (Los Ange-
les, CA, USA) and were verified by Gram strain. Bifidobacterium breve HRVD521-US, Bifi-
dobacterium animalis HRVD524-US, Bifidobacterium longum SD-BB536-JP, and Bifidobacterium
longum SD-CECT7347-SP were streak-plated from the frozen stock onto Bifidobacteria
Specific Agar (BSA) [53] and incubated anaerobically (BD BBL™ GasPak™, BD Biosciences,
Franklin Lakes, NJ, USA, #260678) at 37 ◦C under stationary conditions for 24 h.
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2.3. Freeze Drying Bacteria

Single colonies were selected and inoculated in 50 mL of De Man, Rogosa, and Sharpe
(MRS) broth with 0.5 g/L L-cysteine at 37 ◦C under anaerobic and stationary conditions for
overnight growth. To produce experimental cultures for freeze-drying, the 50 mL overnight
cultures were used to inoculate 750 mL of fresh MRS (with 0.5 g/L L-cysteine) that were
then incubated anaerobically at 37 ◦C under stationary conditions for 24 h. A small amount
of each bifidobacterial culture was removed and serially diluted. One hundred microliters
of each dilution were then plated onto BSA plates in technical duplicate and incubated
anaerobically at 37 ◦C under stationary conditions for 24 h. After 24 h, the number of visible
colonies was counted to determine the colony-forming units (CFU) of the cultures before
they were lyophilized. The 750 mL cultures of individual bifidobacteria were centrifuged
at 6140× g at ambient temperature for 15 min to remove the supernatant and collect cells,
which were then washed thrice with sterile 1 × phosphate-buffered saline (PBS). After
the final centrifugation, the cells were suspended in 10 mL/L of cryoprotectant mixture
consisting of 10% (w/v) skim milk and 10% (w/v) sucrose. The resuspended cells were
allowed to rest for 30 min at room temperature prior to flash freezing at −80 ◦C. The frozen
cells were then freeze-dried (Pharmaceutical Freeze Dryer, Harvest Right, North Salt Lake,
UT, USA) with an initial freeze temperature of −31 ◦C and then at 12 ◦C until completely dry
(~24–36 h). Lyophilized cultures were powdered, and recovery was determined via CFU.

To determine the CFU of the lyophilized bifidobacteria, 0.1 g of the powder was
resuspended in 1 mL of sterile 1 × PBS. The resuspended cells were serially diluted, and
100 µL of each dilution was plated onto BSA plates in technical duplicate and incubated
anaerobically at 37 ◦C under stationary conditions for 24 h. After 24 h, the number of
visible colonies was counted for CFU calculations.

2.4. Production of Probiotic Yogurt Containing p-Cresol Reducing Bifidobacteria

The probiotic yogurt was produced using a slightly modified procedure from that
previously described by Van Tienen et al. [50]. Briefly, whole milk (3.25% fat, Neilson,
London, ON, Canada) was pasteurized at >80 ◦C for 30 min prior to being cooled to
37 ◦C. Once cooled, a single package of Fiti® starter culture (containing 1 g of freeze-
dried probiotic L. rhamnosus GR-1 and Streptococcus thermophilus C106) was added. For the
yogurt with bifidobacteria, an additional 1 g of either freeze-dried B. breve HRVD521-US,
B. animalis HRVD524-US, B. longum SD-BB536-JP, or B. longum SD-CECT7347-SP was added.
The samples were then incubated at 37 ◦C for 12 h. After the incubation, the yogurt was
transferred to 4 ◦C overnight.

2.5. CFU Quantification of Yogurt Bacteria

To determine the CFU of the bacteria present in the yogurt, 1 g of fermented milk
was homogenized into 10 mL of sterile 1×PBS. The homogenate was serially diluted, and
100 µL of each dilution was plated onto appropriate agar plates in technical duplicate. For
L. rhamnosus GR-1, the homogenate was plated onto MRS agar and incubated at 37 ◦C
for 24 h in 5% CO2. For the bifidobacteria, BSA was used and incubated anaerobically at
37 ◦C under stationary conditions for 24 h. To quantify S. thermophilus C106, S. thermophilus
isolation agar (STIA) was used [54,55] for plating, and the samples were incubated aero-
bically at 37 ◦C for 24 h. To ensure accurate results, pure cultures of all relevant bacteria
were plated on MRS, BSA, and STIA and incubated under the abovementioned conditions.
The pure cultures could only grow in the desired conditions, for example, bifidobacteria
could only grow on BSA under anaerobic conditions and not on MRS in 5% CO2 or STIA in
an aerobic environment.

2.6. Sensory Evaluation

All yogurt samples were sensory evaluated for scent, taste, color, and texture by
12 panelists from the staff. The panelists had no prior experience in yogurt evaluation as to
mimic an average consumer of the product. A hedonic scale from 1 to 10 was used. Scale 1
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refers to extreme dislike, and scale 10 refers to extreme liking. Overall acceptability was
calculated from the total score of the judged attributes. The yogurt samples were evaluated
for pH as a proxy for acidity 24 h after production.

2.7. p-Cresol Clearance in a Simulated Colonic Environment

The ability of the yogurt supplemented with different probiotic bifidobacteria to reduce
p-cresol in a simulated colon environment was assessed. Briefly, 1 g of milk fermented
by the Fiti® culture and a bifidobacterial strain was homogenized into 10 mL of sterile
1 × PBS. The homogenate was subcultured (1:50) into a colonic medium to assess toxin
clearance in an environment more like the human gut than traditional bacteriological media.
The colonic medium was prepared as previously described [56,57]. Briefly, the culture
medium was prepared in ddH2O and consisted of (litre−1): 5 g starch, 5 g peptone water,
5 g tryptone, 4.5 g yeast extract, 4.5 g NaCl, 4.5 g KCl, 4 g mucin (porcine gastric type III),
3 g casein, 2 g pectin (citrus), 2 g xylan (oatspelt), 2 g arabinogalactan (larch wood), 1.5 g
NaHCO3, 1.25 g MgSO4·7H2O, 1 g guar gum, 1 g inulin, 0.8 g cysteine, 0.5 g KH2PO4,
0.5 g K2HPO4, 0.4 g bile salts No. 3, 0.15 g CaCl2·6H2O, 0.005 g FeSO4·7H2O, 0.05 g hemin,
10 µL Vitamin K and 1 mL Tween 80. The pH of the medium was adjusted to 5.5 with 0.5 M
NaOH and HCl solutions, as appropriate. Each tube was spiked with 0.2 mg/mL p-cresol.
The concentration of p-cresol mimicked its physiological extremes found in the human
intestinal tract [27,58]. The inoculums were incubated anaerobically for 24 h at 37 ◦C under
stationary conditions.

2.8. Sample Preparation and HPLC Analysis

Samples from the simulated colonic environment were prepared for HPLC analysis
using a previously described method [27]. Succinctly, each sample was centrifuged at
4500× g for 10 min at ambient temperature. The supernatant was collected and diluted
1:4 with HPLC grade water (Thermo Fisher Scientific Canada, Mississauga, ON, Canada,
#W5-4). The diluted supernatant was mixed 1:2 with acetonitrile (Thermo Fisher Scientific
Canada, Mississauga, ON, Canada, #A996-4) and allowed to rest for 10 min at 4 ◦C to
precipitate proteins. The samples were then centrifuged at 13,000× g for 10 min at 4 ◦C, and
the resulting supernatant was filtered (0.22µm) into light-protected HPLC vials. Samples
were stored at 4 ◦C for no more than 48 h prior to analysis. Standards were made fresh in
pure acetonitrile and filtered (0.22µm) into light-protected HPLC vials.

Every sample and standard were analyzed with an Agilent 1100 HPLC (Agilent Tech-
nologies Inc., Santa Clara, CA, USA) instrument equipped with a degasser (G1379A),
quaternary pump (G1311A), autosampler (G1313A), and diode array detector (G1315B).
All analyses were performed on an Agilent Poroshell 120 EC-C18 (4.6 by 150 mm inside di-
ameter [i.d.]; 4 µm particle size) column at ambient temperature. The column was equipped
with InfinityLab Poroshell 120 EC-C18, 4.6 mm, 4 µm, HPLC guard. All acetonitrile and
water used were HPLC grade. The mobile phase consisted of an isocratic mixture of ace-
tonitrile and 50 mM/L ammonium formate buffer (pH = 3.3) (40:60 [vol/vol]) at a flow rate
of 1 mL/min. The sample injection volume was 10µL, and detection was performed at
222 nm. Run times were 7 min, with p-cresol eluting at ~4.2 min. Data were analyzed using
ChemStation B.04.03. The peak area of samples was compared with the peak area of the
external calibration curve (0.001 mg/mL to 0.5 mg/mL) to quantify p-cresol.

2.9. Statistical Analysis

All statistical comparisons were performed using GraphPad Prism 9.5.0 software.
Data values were tested for normality using the Shapiro–Wilks test or the D’Agostino
and Pearson normality test. Nonparametric data were statistically compared with an
unpaired, one-way Kruskal–Wallis test, complemented with Dunn’s multiple-comparison
test. Normally distributed data were compared with an unpaired, one-way analysis of
variance (ANOVA), complemented with Dunnett’s multiple comparison test.
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3. Results & Discussion
3.1. Viability of Lyophilized Probiotic Bifidobacteria

The percent viability of the freeze-dried bifidobacteria was determined by comparing
CFU before and after lyophilization. The viability of the freeze-dried bifidobacteria was
excellent, with each probiotic strain having a mean percent viability > 50% (Figure 1).
The mean viability for each strain was as follows: B. breve HRVD521-US (65.36%), B. animalis
HRVD524-US (57.74%), B. longum SD-BB536-JP (61.49%), and B. longum SD-CECT7347-SP
(61.04%). This highlights the fact that toxin-clearing bifidobacteria can be freeze-dried
efficiently with minimal loss of viable bacterial cells. Considering the Fiti® starter culture
sachets consist of lyophilized bacteria; these findings suggest that these bifidobacterial
strains can be delivered in the same manner and may be incorporated into the original
product or added at the time of yogurt production.
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Figure 1. Percent viability of lyophilized bifidobacteria. The CFU of the cultures before freeze-drying
was compared to the CFU of the lyophilized bacterial powder (n = 4).

3.2. Survival of Probiotic Bacteria in Yogurt Samples

To investigate the effect of probiotic bifidobacteria supplementation on the viability
of the Fiti® strains, samples were assessed for total bacterial counts following production.
The L. rhamnosus GR-1 and S. thermophilus C106 were recovered in sufficient quantities
(CFU > 1 × 108) from every sample (Figure 2A). No bifidobacteria were found in the Fiti®

controls, but their numbers reached more than 1 × 108 when added to the Fiti® (Figure 2A;
one-way ANOVA; F = 18,633; p < 0.0001).

There was a slight, but statistically significant increase in L. rhamnosus GR-1 after
adding the bifidobacteria (Figure 2A; one-way ANOVA; F = 13.53, p < 0.0001); yogurt
samples supplemented with B. animalis HRVD524-US (p = 0.0016), B. longum SD-BB536-JP
(p = 0.0004), or B. longum SD-CECT7347-SP (p < 0.0001) (Figure 2A; Dunnett’s multiple
comparison; α = 0.05) had more L. rhamnosus GR-1. A similar result was obtained for S. ther-
mophilus C106 in yogurt samples supplemented with B. breve HRVD521-US (Figure 2A;
one-way analysis of variance [ANOVA]; F = 4.169, p < 0.0182), which had significantly
more S. thermophilus C106 (p = 0.0048) than Fiti® controls (Figure 2A; Dunnett’s multiple
comparison; α = 0.05). This suggested a slight stimulatory effect on the GR-1 and C106
strains with the addition of bifidobacteria. The reasons were not investigated here but
are likely due to the lactobacilli and streptococci using metabolites from bifidobacterial
growth. This corroborates a recent study where the oral supplementation of these strains
increased the abundance of lactobacilli in the gut of Drosophila melanogaster, an in vivo
model of p-cresol toxicity [27]. Bifidobacteria are known to enhance the growth of ben-
eficial microbes through cross-feeding activities [59] by establishing networks that rely
on the degradation of nutrients such as oligosaccharides, arabinogalactan, mucin, and
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more [60–69]. This increases the abundance of short-chain fatty acid-producing bacteria,
including lactobacilli [68]. Furthermore, the production of compounds such as lactic and
acetic acid by bifidobacteria lowers the pH of the surrounding environment, as shown
in Figure 2B, making it more conducive to the growth of lactobacilli [68,69]. Delivering
short-chain fatty acid-producing bacteria to the human gastrointestinal tract also improves
the availability of calcium and magnesium and inhibits pathogenic bacteria, including
uremic toxin producers [62–65]. Thus, the oral administration of two short-chain fatty
acid-producing bacteria, Lactobacillus and Bifidobacterium, could be significant for CKD
patients [35,45]. Acetate produced by these two genera acts as an essential co-substrate for
butyrate production by other microbes. Butyrate is the main energy source for colonocytes
and has been shown to improve outcomes in colorectal cancer and chronic diseases [68].
Furthermore, a loss of butyrogenic bacteria is associated with CKD and enhanced toxin
translocation from the intestinal environment [35]. It is therefore reasonable to postulate
that the supplementation of acetate-producing probiotics could improve CKD outcomes by
bolstering butyrate production, although this notion must be tested clinically for validation.
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of L. rhamnosus GR-1, S. thermophilus C106, and Bifidobacterium spp. per yogurt sample plated on
appropriate agar (n = 4). CFU data are displayed as the geometric mean of log10(CFU + 1) ± SD.
(B) pH of yogurt samples 24 h after production (n = 4). (C) Sensory properties of the yogurt samples
(n = 12). In the box plot diagrams (B,C), boxes represent the first and third quartile values, while
black lines denote medians; whiskers encompass maximum and minimum values. All other data are
displayed as the mean ± SD, unless otherwise stated. Statistical analyses shown are from a one-way
ANOVA or Kruskal–Wallis test. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not significant.

Probiotics are defined as live microorganisms that, when administered in adequate
amounts, confer a health benefit on the host [70]. As such, fortified yogurt retains the
probiotic designation. The results show that Fiti® can be supplemented with other bacte-
rial strains.
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3.3. The pH of Yogurt Samples

A significant difference between the group means of pH (Figure 2B; one-way analysis
of variance [ANOVA]; F = 32.65, p < 0.0001) was observed. In particular, the fermented
samples containing B. breve HRVD521-US (p < 0.0001), B. animalis HRVD524-US (p = 0.0002),
B. longum SD-BB536-JP (p < 0.0001), or B. longum SD-CECT7347-SP (p = 0.001) had a lower
pH than the Fiti® controls (Figure 2B; Dunnett’s multiple comparison; α = 0.05). The de-
creased pH brought the bifidobacterial-containing samples into the “desirable” pH range
as compared to the Fiti® controls, which resided in the ‘acceptable’ range [71,72].

All yogurt samples, including the Fiti® controls, had lower pH values due to lactose
fermentation than the non-fermented milk used for production. The pH of pasteurized
cow’s milk is 6.5–7 [73–75], whereas all samples tested had a pH below 4.7 after fermentation
(Figure 2B). Looking at the fermented samples specifically, the significant decrease in pH
in the yogurt samples containing bifidobacteria compared to the Fiti® controls could be
attributed to multiple factors. These include, but are not limited to, lactose fermentation
into lactic acid and the de novo production of other short-chain fatty acids as mentioned
above [68,76,77]. Granata et al. (1996) stated it is necessary to have yogurt at pH 4.0–4.4
to maintain flavor and texture [71]. This pH range occurred here, indicating the yogurts
were of good quality. The mean pH of the Fiti® controls was 4.6. This is within the
acceptable range, and the taste and texture are well received in Tanzanian communities.
However, when the pH is higher, it can have detrimental effects on the flavor, texture, and
survivability of lactobacilli [69,71,72,78].

3.4. Sensory Properties of Yogurt Samples

The sensory characteristics rated by the panelists are presented in Figure 2C. These
include taste, texture, scent, and color. For taste, Fiti® controls had the lowest score when
compared to samples supplemented with bifidobacteria. A significant difference between
group medians was observed (Figure 2C; Kruskal–Wallis; H = 15.47, p = 0.0038). Specifically,
the yogurt samples containing B. breve HRVD521-US (p = 0.0013) or B. longum SD-BB536-
US (p = 0.0144) tasted better than Fiti® controls (Figure 2C; Dunn’s multiple comparison;
α = 0.05). A similar observation was made for texture (Figure 2C; Kruskal–Wallis; H = 11.20,
p = 0.0244) where the yogurt samples supplemented with B. longum SD-CECT7347-SP
(p = 0.0078) received significantly higher scores than Fiti® alone. This may be attributed to
the exopolysaccharides produced by bifidobacteria, which would increase the viscosity and
enhance the body texture of the fermented milk [58,69,73]. In addition, the scent and color
scores for the Fiti® controls were lower than all the yogurt samples containing probiotic
bifidobacteria. Supplementation with B. longum SD-CECT7347-SP or B. animalis HRVD-
524US resulted in the highest mean and median scores for scent and color properties,
respectively, but the reason for this is unknown. These data highlight that probiotic
bifidobacteria can easily be added to Fiti® and improve both the taste and texture of the
product without negatively impacting other aspects of palatability for the consumer (i.e.,
scent and color).

3.5. Yogurt Supplemented with Probiotic Bifidobacteria Reduce p-Cresol in a Simulated
Colon Environment

To identify whether yogurt supplemented with probiotic bifidobacteria could sequester
uremic toxins from a colonic environment, yogurt samples were cultivated in the presence
of p-cresol in a simulated colonic medium. Our analysis revealed a significant difference in
p-cresol content between group means (Figure 3; one-way analysis of variance [ANOVA];
F = 21.73, p < 0.0001). There were lower amounts of p-cresol after 24 h of inoculation of
yogurt with Fiti® strains plus one of the bifidobacterial strains in colonic medium compared
to medium alone: B. breve HRVD521-US (p = 0.0002), B. animalis HRVD524-US (p < 0.0001)
or B. longum SD-BB536-JP (p = 0.0030). The ability to reduce p-cresol was not observed in
yogurt samples containing B. longum SD-CECT7347-SP (p = 0.0886) or the Fiti® controls
(p > 0.9999). Similarly, the yogurt samples containing B. breve HRVD521-US (p = 0.0002),
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B. animalis HRVD524-US (p < 0.0001) or B. longum SD-BB536-JP (p = 0.0029) had less
p-cresol than the Fiti® controls (Figure 3; Dunnett’s multiple comparison; α = 0.05).
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Figure 3. p-Cresol is depleted by probiotic bifidobacteria-containing yogurt within a mock colonic
environment. Bacteria were cultured for 24 h in colonic medium spiked with 0.2 mg/mL p-cresol
and the remaining toxin was quantified via HPLC (n = 4). Data are displayed as the mean ± stan-
dard deviation (SD). Significance was determined by one-way ANOVA; ** p < 0.01; *** p < 0.001;
**** p < 0.0001; ns, not significant.

Reducing p-cresol availability in the human gut slows both CKD progression and
the onset of comorbidities associated with the disease [21,22,79]. While this has led to
remedies targeting the gastrointestinal tract, including inorganic phenol absorbents [80],
there is growing evidence that probiotic therapies can leverage microbial diversity to reduce
uremic toxins. Some strains of Bifidobacterium longum and Bifidobacterium breve, including
one used in this study, have decreased serum p-cresol and slowed CKD progression in
clinical studies [40,41]. However, the strain-specific contributions were muddled by the
presence of prebiotics or additional probiotic strains that are known to promote the growth
of other genera in the human gut. This highlights a need to assess these strains individually
to better define their probiotic capabilities and clinical efficacy specific to CKD. While the
bifidobacterial strains used here have been studied extensively to define their probiotic
benefits ranging from immune education, gut-barrier integrity, pathogen inhibition, and
micronutrient synthesis, their role in CKD has not been well defined [81–97].

While the potential of bifidobacterial supplementation for CKD patients has been
documented, to our knowledge, no products are available with this claim or are being used
in clinics. Indeed, this attribute is not listed on the Canadian and American websites of clin-
ically documented probiotic strains and products (www.usprobioticguide.com, accessed on

www.usprobioticguide.com
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17 March 2023; www.probioticchart.ca, accessed on 17 March 2023). Though it was initially
thought that health benefits were attained by somehow balancing the intestinal microbiota,
Stuivenberg et al. [27] challenged this notion by showing that the four bifidobacterial strains
used in this study sequester p-cresol from their environment. We built on those findings by
showing that B. breve HRVD521-US, B. animalis HRVD524-US, and B. longum SD-BB536-JP
can clear p-cresol from a mock colonic environment [27,56,57]. The initial study investigat-
ing these four strains assessed toxin clearance in media with reduced nutritional content to
promote the use of p-cresol as a carbon source [27]. In the present study, only three of the
strains were able to reduce p-cresol from the nutrient-rich simulated colonic environment.
This is not surprising, as p-cresol can be detrimental to both eukaryotic and prokaryotic
cells [98–100]; therefore, it may only be used as a “last resort” nutrient source by capable
microbes. Despite that fact, it is interesting to speculate how p-cresol could be a preferred
carbon source for some strains of bifidobacteria, such as B. breve HRVD521-US, B. animalis
HRVD524-US, and B. longum SD-BB536-JP, which still cleared it from the environment in
the presence of excess nutrients and prebiotic sources. These findings highlight that not all
probiotic strains, even from the same genus and species, have the same function.

Like the clinical investigations of probiotic bifidobacteria in CKD, the p-cresol clearing
strains used here were delivered alongside another probiotic microbe, L. rhamnosus GR-
1 [48,49,51]. Notably, the clearance of p-cresol relied on specific strains of bifidobacteria
because neither the yogurt samples supplemented with B. longum SD-CECT7347-SP nor
the Fiti® controls reduced p-cresol in the colonic mimic environment.

Fiti® and Yoba-for-life yogurts are currently accessible to over >260,000 people in
sub-Saharan Africa on a weekly basis. Since these populations face the greatest risk for
CKD development [8–11], the addition of p-cresol-clearing strains to Fiti® could have a
dramatically positive impact on CKD incidence and severity in these regions at low cost
and without needing to significantly modify the current production protocol. It would
simply require one of the bifidobacteria tested here to be dried and made available in
sachets to be added to the current strains. There is the potential to develop a probiotic
yogurt that is accessible worldwide and can act prophylactically against CKD or as an
adjunct in corroboration with other therapies. The next step is to perform a clinical trial to
verify efficacy in a human cohort.

4. Conclusions

In conclusion, this study has shown that Fiti® starter-culture sachets being provided to
African communities to produce yogurt can be easily supplemented with certain p-cresol-
clearing Bifidobacterium strains for added health benefits. The addition of these strains
improved the sensory properties of Fiti® and had a stimulatory effect on L. rhamnosus GR-1,
a probiotic strain used in yogurt production. CKD patients have lower abundances of bifi-
dobacteria and lactobacilli than healthy controls, and oral supplementation of these genera
has shown promise in slowing disease progression [35,45]. Thus, delivering these genera
via the consumption of Fiti® could have profound benefits for preventing and/or slowing
the progression of CKD. Our analyses also revealed that three of the four bifidobacterial
strains maintained p-cresol clearance following yogurt production and could clear the toxin
from a simulated colonic environment. As such, this study highlights a new potential
mechanism for reducing p-cresol in the colon and provides an inexpensive and effective
way of delivering the strains in fermented food. As summarized in Figure 4, bifidobacteria
have additional properties that are beneficial to CKD patients, including the inhibition of
pathogen colonization [68,101], reducing toxin translocation [102], and enhancing beneficial
commensals through the production of short-chain fatty acids [27,59,68]. While these data
are promising, a clinical study is a crucial next step to verify the CKD-specific benefits of
consuming bifidobacteria-supplemented Fiti® in humans.

www.probioticchart.ca
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