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Abstract: Vanillin has been widely used as a flavoring agent in the food industry and as a precursor
in the medicine and polymer industries. However, the use of chemically synthesized vanillin is
prohibited in food and some other industries. Additionally, the harsh conditions and toxic substrates
in chemically synthesized vanillin lead to some environmental challenges and energy waste. With
the rapid development of synthetic biology, the biological production of vanillin from renewable
resources through microbial fermentation has gained great attention owing to its high selectivity and
environmentally friendly properties. Accordingly, this article will discuss the vanillin biosynthesis
technology from the aspects of chassis cell types and substrate types. The key enzymes involved in
metabolic pathways are also discussed. Then, we summarize some improvements in the process of
vanillin production to increase its production and reduce the toxicity of vanillin in microorganisms,
and the possible future directions for vanillin biosynthesis will also be outlined.
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1. Introduction

Vanillin (4-hydroxy-3-methoxybenzaldehyde), the primary ingredient in vanilla bean
or pod extracts, possesses a rich, creamy, and distinctive vanilla smell, which is also one of
the most significant aromas in the world. Vanillin can serve as a flavoring agent in the food
industry (about 60%), a pharmaceutical intermediate in the pharmaceutical industry (about
7%), and a scent ingredient in the cosmetics sector (about 33%) (Figure 1) [1,2]. The market
demand for vanillin reached 18,600 tons globally by 2016, and its demand is predicted to
grow at a CAGR of 7.4% from 2017 to 2025, indicating great market potential [3,4].

At present, three methods are mainly used for vanillin production: plant extraction,
chemical synthesis, and biosynthesis. Natural vanillin is generally extracted from vanilla,
orchids, and other plants, which is very expensive, with a price of USD 1200 to USD
4000 per kilogram. As this process is significantly affected by the plant’s development
cycle, growing environment, and processing costs, the natural extraction of vanillin cannot
satisfy market demand [5]. Currently, chemical synthesis is the main method used for the
industrial-scale production of vanillin. Compared with natural extraction, the market price
of chemically synthesized vanillin is only 1% of natural vanillin (about USD 10 per kg) [6].
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Figure 1. Vanillin production methods and applications.

Chemically synthesized vanillin is mainly used for the synthesis of some polymers,
deodorants, floor polishes, etc. [1]. Although vanillin is an essential flavoring ingredient, the
use of chemically synthesized vanillin is prohibited in food and some other industries [4].
Additionally, the harsh conditions and human toxicity potential of chemically synthesized
vanillin have caused some environmental concerns and energy waste [7]. With the rapid
development of synthetic biology, the biological production of some natural products from
renewable resources through microbial fermentation has gained great attention owing
to their high selectivity and environmentally friendly properties [8]. In terms of vanillin
production, it can be either de novo synthesized or transformed from some substrates such
as eugenol, isoeugenol, and ferulic acid through microbial or enzymatic conversion [1].

In this review, we mainly summarize the current status of vanillin biosynthesis tech-
nology, including the feasibility of lignin-derived vanillin biosynthesis/transformation,
production process optimization, and downstream recovery technology. The possible
direction and future development trends of vanillin biosynthesis are also outlined.

2. Biological Production of Vanillin from Ferulic Acid

In nature, vanillin can be de novo synthesized by some plants and microorganisms.
Furthermore, some enzymes can also transform vanillin precursors such as ferulic acid,
eugenol, isoeugenol, phenolic stilbenes, etc., into vanillin [2]. Among these precursors, the
most extensively used is ferulic acid, which is a cinnamic acid derivative naturally found
in some plant cells (Figure 2) [3].
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Figure 2. Pathways for the production of ferulic acid-derived vanillin using biotransformation meth-
ods and related producers: (a) CoA-dependent conversion in most microorganisms or engineered
bacteria such as Amycolatopsis, Pseudomonas, Sphingomonas paucimobilis SYK-6, Streptomyces, Pedio-
coccus acidilactici BD16, and E. coli [3,9]; (b) CoA-independent conversion designed in recombinant
E. coli [10]; (c) a two-step conversion pathway for vanillin production combining Aspergillus niger and
Pycnoporus cinnabarinus [11]; (d) a one-step synthetic pathway for the production of vanillin in plant
cells [12].
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In general, four metabolic pathways play a role in vanillin production using ferulic
acid (Figure 2). The first one is the CoA-dependent transformation pathway existing in
most microorganisms, such as Amycolatopsis, Pseudomonas, Sphingomonas, Streptomyces,
and Streptococcus [3,9]. In this metabolic pathway, feruloyl-CoA is generated from ferulic
acid in a reaction catalyzed by feruloyl-CoA synthetase/ligase Fcs, which can be further
converted to 4-hydroxy-3-methoxy-β-hydroxypropionyl-CoA via the catalysis of enoyl-CoA
hydratase/aldolase Ech. Then, vanillin is generated through further catalysis of Ech. The
second method involves the CoA-independent conversion pathway [10]. In this metabolic
pathway, ferulic acid first removes the carboxyl group to generate 4-vinylguaiacol under
the catalysis of ferulic decarboxylase Fdc and then generates vanillin under the catalysis of
4-vinylguaiacol oxygenase Cso2. The third mechanism involves a two-step bioconversion
process. In the first step, Aspergillus niger transforms ferulic acid into vanillic acid, and in
the second step, vanillic acid is reduced to vanillin by Pycnoporus cinnabarinus. Although
this biotransformation process has been reported, the specific functional enzymes involved
in this transformation process are still unknown [11]. The fourth method is a one-step
synthetic pathway found only in plant cells [12]. In this pathway, ferulic acid can directly
generate vanillin via the continuous catalysis of vanillin synthase VpVAN (Figure 2).

In most cases, the biotransformation of ferulic acid using microbes involves well-
known coenzyme A-dependent and non-β-oxidative pathways of ferulic acid to feruloyl-
CoA and feruloyl-CoA to vanillin, which are catalyzed using the feruloyl-CoA synthetase
(Fcs) and enoyl-CoA hydratase/aldolase (Ech), respectively [13]. This two-step metabolic
process mainly involves fcs and ech genes and requires the participation of CoASH, ATP,
and MgCl2 (Figure 2) [14].

2.1. Biotransformation of Ferulic Acid into Vanillin Using Native Microbial Strains

In 1996, researchers described a two-step process for vanillin production, in which
two filamentous fungi were employed for the biotransformation of ferulic acid to vanillin.
Within this system, A. niger can convert ferulic acid to vanillic acid with a molar yield of
88%, whereas Pycnoporus cinnabarinus reduces vanillic acid to vanillin with a molar yield
of 22%. As P. cinnabarinus mainly converts vanillic acid to methoxyhydroquinone, the
resulting vanillin content is relatively low [11]. However, this reaction can be optimized by
adding cellobiose to the medium, which can induce changes in the metabolic pathway of
P. cinnabarinus, and the molar yield of vanillin can be increased by 51.7% [15]. Although
this biotransformation process has been reported, the specific functional enzyme elements
involved in this transformation process are still unknown [11].

Vanillin can be indigenously produced by many wild-type strains when ferulic acid is
used as the substrate, including Corynebacterium glutamicum [16], Sphingomonas paucimo-
bilis [17], wine-associated lactic acid bacteria [18], and Bacillus aryabhattai [19]. In particular,
the Gram-positive bacteria Amycolatopsis sp. and Gram-negative Pseudomonas sp. are
superior candidates for vanillin production owing to their robust tolerance to vanillin.
Thus far, the highest 22.3 g/L of vanillin production has been obtained by the recombi-
nant Amycolatoposis sp. ATCC 39116, in which the vanillin dehydrogenase gene (vdh) is
knocked out, and feruloyl-CoA synthetase (Fcs) and enoyl-CoA hydratase/aldolase (Ech)
are overexpressed [20,21]. In terms of the wild-type strain, Amycolatopsis sp. ATCC 39,116
led to the highest vanillin production rates through a multiple-pulse-feeding strategy with
a production yield of 0.69 g vanillin/g ferulic acid [22]. However, it should be noted that the
mycelial lysis entangled in viscous fermentation broths and unfavorable pellet formation
increased the load in downstream process handling despite their considerable production
advantages [9]. The P. putida KT2440 is a physiologically extremely versatile non-pathogenic
bacterium that is applied as a “biosafety strain” in biotechnological processes, as autho-
rized by the USA National Institute of Health [23]. P. putida KT2440vdhΩKm is a mutant
with inactivated molybdate transporter. The conversion rate and molar yield of vanillin
in this strain can reach 86% within 3 h [24]. Moreover, it is also reported that Strepto-
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myces sp.V-1 has a high vanillin production capacity, which reaches 5 g/L using fed-batch
fermentation [25,26].

Many of the natural strains used for vanillin synthesis not only have the pathway to
synthesize vanillin but also the pathway to further metabolize vanillin [20]. For example,
some microorganisms can use vanillin as a source of carbon and energy for their growth
and metabolism, further causing the continued conversion of vanillin to other products.
In some bacteria, vanillin dehydrogenase (Vdh) has been identified to catabolize lignin-
derived aromatics, demonstrating catalytic activity for a wide range of aromatic substrates,
including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, O-phthaldialdehyde, cin-
namaldehyde, syringaldehyde, and benzaldehyde [16,17,27]. Vdh uses NAD+ or NADP+

as co-factors, facilitating the continuous oxidization of vanillin to vanillic acid [16,20].
Vanillic acid can be further metabolized to guaiacol or protocatechuate with the catalysis
of vdcBCD and vanAB, respectively (Figure 2) [28,29]. Additionally, it was found that
after the knockout of the vdh gene, Amycolatoposis sp. ATCC 39116∆Vdh reduced vanillin
catabolism by nearly 90%, while the final concentration of vanillin reached 2.2 g/L [21].
Even though most studies focused on the inactivation of vanillin dehydrogenase (Vdh) to
block the vanillin catabolic pathway, the problem of vanillin degradation still cannot be
resolved since some microbes have additional complex competing degradation processes.
For example, it was revealed that even after the inactivation of the vdh gene in P. putida
KT2440 via the insertion of Ω elements, the variant P. putida KT2440 vdhΩKm was still able
to grow on vanillin owing to the influence of other aldehyde dehydrogenases [23,30].

2.2. Biotransformation of Ferulic Acid into Vanillin Using Engineered Microbes

The application of genetic engineering to modify model strains opens up a new
opportunity for high vanillin production. In terms of vanillin synthesis, model microorgan-
isms, such as Escherichia coli or Saccharomyces cerevisiae, have been genetically modified for
vanillin production because of their clear genetic background and relative ease of cultivation
(Table 1). Currently, researchers have focused on vanillin conversion from ferulic acid via
the heterologous expression of fcs and ech genes (encoding feruloyl-CoA synthetase and
enoyl-CoA hydratase/aldolase) in model microorganisms in the context of whole-cell or
cell-free catalytic systems [4,31–34]. Lee et al. suggested a unique metabolic engineering
concept for recombinant E. coli introduced with fcs and ech genes to satisfy the need for
coenzymes in this pathway [35]. Furthermore, the TCA cycle was modified to encour-
age the use of the glyoxylate bypass and increase the conversion of the extra acetyl-CoA
produced via the ferulic acid metabolic pathway into the CoA needed for the coenzyme
A-dependent non-β-oxidative pathway. Under these strategies, the production of vanillin
reached 5.14 g/L, and the molar conversion rate was 86.6% within 24 h of fermentation [35].
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Table 1. Synthesis of vanillin using engineered strains.

Substrate Strain Main Strategies Production References

Eugenol Recombinant
Escherichia coli

Coexpression of vaoA, calA, calB, fcs, and
ech genes. 0.3 g/L [36]

Ferulic acid

Recombinant
Escherichia coli

JM109-FE-F

Construction of an efficient cell-free
catalytic system with FCS-Str and
ECH-Str combination at 1:1; using

resting cells

2.3 g/L [32]

Recombinant
Escherichia coli FR13

Integration of Fcs and Ech onto
chromosomes; using resting cells;
fed-batch fermentation; using a
two-phase (solid–liquid) system

4.3 g/L [4]

Recombinant
Escherichia coli top 10

Introduction of the cloned vanillin
biosynthetic gene cassette in the

pCCIBAC expression vector
0. 068 g/L [32]

Recombinant
Escherichia coli

Using a model-driven approach to
fine-tune nutrients 0.91 g/L [33]

Recombinant
Escherichia coli

Using a two-pot bioprocess;
introduction of fdc and cso2 genes;
designing the cultivation medium

7.9 g/L [10]

Recombinant
Escherichia coli

NTG-VR1

Production of vanillin plasmid pTAHEF
containing fcs and ech genes; using NTG
mutagenesis; employing 50% (w/v) of

XAD-2 resin

2.9 g/L [34]

Recombinant
Escherichia coli

Coexpression of gltA, icdA, fcs,
and ech genes. 5.1 g/L [35]

L-tyrosine, glucose,
xylose, glycerol

Recombinant
Escherichia coli

Mimicking the construction of the
phenylpropanoid pathway in
microorganisms and inducing

five enzymes

0.097 g/L,
0.019 g/L,
0.013 g/L,
0.024 g/L

[37]

Glucose
Recombinant

Saccharomyces cerevisiae
Using an in silico strategy based on the

strain S. cerevisiae 0.500 g/L [38]

Recombinant
Saccharomyces cerevisiae

Coexpression of four genes: 3DSD,
ACAR, OMT, and UGT 0.045 g/L [39]

Isoeugenol

Recombinant
Escherichia coli

Overexpression of isoeugenol
monooxygenase; employing the

magnetic chitosan membrane
38.3 g/L [40]

Recombinant
Escherichia coli

Expression of the IEM720 gene;
employing the sol–gel chitosan

membrane
4.5 g/L [41]

Recombinant
Escherichia coli

Introduction of a plasmid with the
isoeugenol monooxygenase gene 28.3 g/L [42]

Moreover, a new coenzyme-independent two-pot vanillin biosynthetic pathway has
been designed in E. coli to address the complexity of the catalytic process and the costly addi-
tion of cofactors. During this process, ferulic acid decarboxylase (Fdc) from B. pumilus ATCC
14,884 catalyzes the conversion of ferulic acid to 4-vinylguaiacol, and 4-vinylguaiacol oxyge-
nase from Caulobacter segnis ATCC 21,756 (Cso2) catalyzes the conversion of 4-vinylguaiacol
to vanillin, both of which are overexpressed in E. coli (Figure 2). Finally, the production of
vanillin synthesized by the genetically engineered E. coli reached 7.8 g/L [10]. Furthermore,
two Cso2 mutants, A49P and Q390A, were successfully obtained using a site mutagenesis
strategy, which increased the vanillin yield by 18–25% [43]. Currently, the genetic instability
of recombinant strains is still a bottleneck in the existing research on genetically modified
organisms. How to enhance the expression of vanillin synthesis genes in microorganisms
while maintaining stable strain production may be a future direction for vanillin production
using genetically engineered microorganisms.
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2.3. Synthesis of Vanillin from Ferulic Acid Using Plants

As stated above, natural vanillin generally exists in the pods of V. planifolia in the
form of glycoside, which can protect plants from vanillin toxicity [39]. The synthesis of
vanillin from endogenous ferulic acid in plants is mainly achieved with vanillin synthetase
(VpVAN). VpVAN was first reported in V. planifolia [44,45]. Glechoma hederacea is another
vanillin-producing plant, whose vanillin synthase shares 71% sequence identity with
VpVAN in V. planifolia [12]. Chee et al. modified vanillin production in plant systems
by using the callus tissues containing a codon-optimized VpVAN gene from Capsicum
frutescens, and the vanillin content of transformed calli reached 0.057% (wild-type sample
without vanillin) [46]. The vanillin yield can reach 544.72 µg/g in the fresh callus of rice
cell culture after the overexpression of the vanillin synthase gene (VpVAN) in rice [47]. The
use of plants to synthesize vanillin is affected by field conditions, growth environment, and
processing costs, which leads to insufficient output to meet the market demand.

3. Vanillin Bioproduction from Lignin

Lignin is the most abundant aromatic polymer in nature, which can be converted to
aromatic monomers via the action of depolymerizing enzymes [48]. Various fungi and
bacteria have the ability to break down lignin, which can secrete laccase, manganese per-
oxidase (MnP), lignin peroxidase (LiP), dye-decolorizing peroxidase (DyP), and versatile
peroxidases (VP) [49]. Basidiomycetous fungi (white rot and brown rot) have been exten-
sively studied to achieve vanillin production from lignin [50]. For example, Phanerochaete
chrysosporium NCIM 1197 can produce 55 µg/mL of vanillin from groundnut shell after
72 h [51]. Some bacteria such as Staphylococcus lentus can produce 72.55 mg/L vanillin from
2000 mg/L Kraft lignin after 6 days at 35 ◦C [52]. B. pumilus ZB1 also has the potential to
transform guaiacyl lignin monomers, and 61.1% of isoeugenol and eugenol in 10 g/L of
pyrolyzed masson pine bio-oil could be converted to 56.09 mg/L vanillin by B. pumilus
ZB1 [53].

Recently, some genetically modified microbes have also been developed to realize
vanillin production from lignin. For instance, after the deletion of the gene encoding vanillin
dehydrogenase (vdh), which is responsible for the conversion of vanillin to vanillic acid, the
lignin-degrading strain Rhodococcus jostii RHA1 accumulated 96 mg/L of vanillin after 144 h
of culture with 2.5% wheatgrass lignocellulose [28,54]. In another study, the recombinant
B. ligniniphilus L1 with the knockout of vanillin dehydrogenase accumulated 352 mg/L
of vanillin with a conversion yield of 1.76% [55]. As microorganisms are less able to
utilize water-insoluble or macromolecular lignin, biotransformation can be combined with
physical or chemical methods to pre-treat such substrates to a fragmented or water-soluble,
low-molecular-weight depolymerized form, which presumably allows microorganisms
(especially bacteria) to assimilate lignin degradation products more efficiently [56].

4. Vanillin Production Using Other Substrates

Due to the extensive presence of ferulic acid in agro-industrial byproducts, such as
sugar beet pulp, rice bran, wheat bran, and maize bran, many efforts have been directed
toward achieving vanillin production from these wastes (Table 2) [57]. For instance, a
natural bacterial consortium can synthesize 0.9 mg/mL vanillin from bamboo chips [58],
and 708 mg/L of vanillin can be synthesized from ferulic acid in wheat bran [59].
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Table 2. Synthesis of vanillin from different substrates.

Microorganism Substrate Time Yield References

Pediococcus acidilactici BD16 (fcs+/ech+) Rice bran containing 0.257 mM FA 24 h 4.0 g/L [60]
Aspergillus niger CGMCC0774 and

Pycnoporus cinnabarinus CGMCC1115 Rice bran oil 72 h 2.8 g/L [61]

Streptomyces sannanensis MTCC 6637 Wheat bran 5 d 0.71 g/L [59]
E. coli strain JM109(pBB1) Wheat bran containing ferulic acid - 2.5 g/L [62]

14 natural bacterial consortium Bamboo chips from Bambusa tulda
(ligno-cellulosic biomass) 8 d 0.9 g/L [58]

Aspergillus niger I -1472 and Pycnoporus
cinnabarinus MUCL 39532 Sugar beet pulp 8 d 0.11 g/L [63]

A. niger I-1472 and P. cinnabarinus
MUCL39533 Maize bran 7–8 d 0.77 g/L [64]

In addition to using ferulic acid derived from agricultural waste products as sub-
strates, the biotransformation of other precursors such as eugenol or isoeugenol is also an
alternative method for vanillin production. Eugenol can be converted to vanillin using
microorganisms such as Pseudomonas sp. strain HR199 [65], Rhodococcus sp. [66], Serratia
marcescens [67], and B. cereus NCIM-5727 [68]. In terms of strain HR199 (DSM7063), the
enzymatic conversion of eugenol to vanillin via coniferyl alcohol, coniferyl aldehyde, and
ferulic acid pathway has been thoroughly explored (Figure 3A). The mutant Pseudomonas sp.
strain HRvdhΩKm obtained by knocking out the vanillin metabolism gene was able to ac-
cumulate up to 2.9 mM vanillin in a mineral medium with 6.5 mM eugenol [36]. Currently,
Bacillus sp., including B. subtilis HS8, B. aryabhattai BA03, and B. pumilus S-1, as well as
Pseudomonas sp., including P. putida IE27, P. nitroreducens Jin1, and P. aeruginosa ISPC2), are
the two main native strains known to produce vanillin by metabolizing isoeugenol [69–75].
The one-step conversion of isoeugenol to vanillin involves two enzymes: lipoxygenase
(LOX) and isoeugenol monooxygenase (IEM) [76]. For the latter, researchers have suc-
cessively identified, purified, and characterized isoprenol monooxygenase (IEM) from
P. putida IE27 and P. nitroreducens Jin1, which can convert isoeugenol into vanillin without
adding cofactors (Figure 3B) [77,78]. To further increase enzyme activity and eliminate
unwanted byproducts, IEM can be modified and overexpressed in E. coli. The final vanillin
concentration can reach 4.5 g/L (about 75% conversion) by using the site-saturation muta-
genesis strategy in IEM based on the selection of a “three-criteria” in silico system for a
favorable substitution position [41]. IEM can also be fused with amphiphilic short peptide
18A to boost the catalytic activity of this active aggregate IEM720-18A and improve the
enzymatic stability through immobilization methods [79]. Additionally, a combinatorial
strategy can be used to improve the enzymatic thermostability with a vanillin production
rate of 240.1 mM [40,80].

To further reduce production costs, researchers have explored the de novo synthesis
of vanillin from glucose (Figure 4). Hansen et al. first developed the recombinant Saccha-
romyces cerevisiae VAN286 with the introduction of a shikimic acid pathway in S. cerevisiae to
achieve the de novo synthesis of vanillin from glucose. The resulting vanillin concentration
was 45 mg/L [39]. Afterward, Brochado et al. developed a metabolically engineered S.
cerevisiae using a silico metabolic engineering strategy. The vanillin glucoside produced was
500 mg/L [38]. This method was mimicked in the assembly of a natural pathway in E. coli
for the de novo synthesis of vanillin using glucose (19.3 mg/L vanillin), tyrosine (97.2 mg/L
vanillin), xylose (13.3 mg/L vanillin), and glycerol (24.7 mg/L) with less impact on host cell
metabolism and potential to exploit tyrosine as a substrate [37].
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pathway [37]; the green part is a vanillin synthesis route developed in S. cerevisiae via the 3-
dehydromangiferic acid pathway [39]. DAHP, 3-deoxy-d-arabino-heptulosonate-7-phosphate; 4-
HPPD, 4-hydroxyphenylpyruvate; 4H3MH-CoA, 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-
CoA; 3-DHS,3-dehydroshikimate; Fbr-CM, fbr-chorismate mutase; TAL, tyrosine ammonia-lyase;
C3H, 4-coumarate 3-hydroxylase; COMT, caffeate O-methyltransferase; FCS, feruloyl-CoA syn-
thetase; ECH, enoyl-CoA hydratase/aldolase; 3DSD, 3-dedhydroshikimate dehydratase; ACAR, aryl
carboxylic acid reductase; OMT, O-methyltransferase; UGT, UDP-glycosyltransferase.

5. Process Optimization

As vanillin is toxic to microbes, it is difficult to accumulate high concentrations of
vanillin via the direct microbial route, especially for long-term cultivation [81]. Several
optimization strategies have been reported: (1) The optimization of medium composition
and reactor design involves a two-pot conversion process of vanillin based on ferulic
acid. The addition of FeCl2 to the medium enhances the Cso2 activity in the recombinant
E. coli, facilitating the conversion of 4-vinyl guaiacol to vanillin in the second stage and
developing immobilization techniques for the two key enzymes (Fdc and Cso2) during the
two-pot conversion process. This immobilized Cso2 catalyst allowed for the production
of 6.8 mg of vanillin from isoeugenol through ten reaction cycles at a 1 mL scale [10].
(2) Another strategy is the screening or genetic construction of more robust strains. For
example, the introduction of polyhydroxybutyrate (PHB) or cyclopropane-fatty acid-acyl-
phospholipid synthase genes into E. coli can promote the tolerance of the cell to vanillin
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(the growth rate of the engineering strain is, respectively, 2 times and 3.3 times higher
than the original strain) [82,83]. Additionally, it was found that overexpressing specific
reductase and dehydrogenase genes, for instance, alcohol dehydrogenase, acetaldehyde
dehydrogenase, and NADH-dependent aldehyde reductase, could improve S. cerevisiae’s
tolerance to vanillin [84]. (3) This method involves reducing the accumulation of vanillin in
the culture medium and vanillin toxicity, which leads to cell production. In experimental
studies, the use of adsorbents to bind vanillin is an effective solution. For example, the sol–
gel chitosan membrane used to alleviate the inhibition of vanillin products was combined
with engineered E. coli cells, and the final vanillin concentration reached 4.5 g/L (about 75%
conversion rate) [41]. Moreover, a solid–liquid two-phase partitioning bioreactor (TPPB)
system was used as an in situ product removal technique to enhance the transformation
productivity of this strain. Using Hytrel G4078W as the sequestering phase, a final vanillin
concentration of 19.5 g/L was produced in the solid–liquid fed-batch TPPB mode. In addi-
tion, a multi-pulse-feeding strategy was implemented to overcome the toxic accumulation
of vanillin in fermentation broth via staged centrifugation, resulting in a 64% increase in the
volumetric productivity of vanillin (0.46 g L−1h−1) compared with the single-pulse-feeding
technique (0.29 g L−1h−1) [22]. (4) Use the resting cell catalysis strategy. Since the cell
is deficient in some essential nutrients, the resting microbe cannot multiply. However,
the various enzyme systems in the cell can still ferment other nutrients and have a high
capacity for product creation. Resting cells have long been used in vanillin production for
their quick reaction time, high bioaccumulation, simplicity of product separation, and less
influence on the accumulation of toxic substrates [4,31,32,62,75,85]. It was found that the
Pseudomonas fluorescens BF13-1p4 (pBB1) cell can synthesize vanillin without unwanted
and toxic byproducts (such as vanillin alcohol, protocatechuic acid, and protocatechuic
aldehyde) using a resting-cell strategy, which is also one of the few ideal conditions for
vanillin production since it is entirely free of other byproducts [27].

6. Downstream Engineering: Vanillin Recovery

One of the challenges for the industrialization of vanillin production is to recover/purify
vanillin from the solution [86]. Crystallization is probably the most widely used technology;
however, it only becomes a competitive technology when the vanillin concentration is
above 10 g/L (the lowest concentration allowed for crystallization at 20 ◦C) [86]. Adsorp-
tion is an extensively studied process for vanillin recovery [25,87,88]. For instance, vanillin
gathered in resin DM11 can be eluted using butyl acetate (1:2, w/v) and then evaporated at
30 ◦C with 19.2 g/L of vanillin production after 55 h [25]. However, the adsorption-based
recovery is unavoidably plagued due to the lack of selectivity for vanillin, contamination
mixing, and excessive usage of non-sustainable organic solvents. Similar issues of solvent
loss also occurred with other frequently used solvent extraction techniques [89,90].

Currently, there has been a gradual increase in purification techniques in combination
with membrane technology. Using pervaporation with the dense top layer of the composite
membrane under low pressure, researchers recovered vanillin directly after fermentation
without extraction using additional solvents and avoided the mixing of other impurities
(such as ferulic or vanillic acid) [91]. In another study, a method was developed to transport
vanillin utilizing Cyanex 923 as an organic carrier using liquid membrane (SLM) technology,
and more than 94.4% of vanillin was transferred after 8 h [92].

7. Perspectives

The expression of key enzymes either intracellular or extracellular is the key to the
biological production of vanillin. For the expansion and cost-reduction adjustments of
vanillin production, learning how to further boost or inhibit the activity of necessary en-
zymes and increase the stability and reusability of enzymes should be considered. It is more
challenging for microorganisms to directly utilize various low water-soluble ferulic acid
substitution substrates such as straw and other lignocellulose for conversion to vanillin.
One option is to pre-treat the substrate, for instance, through rapid pyrolysis, alkali hydrol-
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ysis, etc. Nevertheless, it is crucial to consider how to facilitate a non-toxic or low-toxic
depolymerization process [48]. On the other hand, a novel fermentation strategy, consoli-
dated bioprocessing (CBP), is applied to lignocellulose production fuels, which can be used
as a reference for lignocellulose production vanillin [93]. In nature, several types of fungi
and bacteria have been reported to secret enzymes to depolymerize lignocellulose [94]. CBP
realizes the division of labor among microorganisms in the fermentation process through
the combination of lignocellulose-depolymerizing strains and vanillin-synthesizing strains,
which not only reduces the metabolic pressure of a single microorganism to synthesize
complete biological products but can also withstand more changes in the environment.

Vanillin toxicity has always been an obstacle in the whole production process, so
finding a chassis cell factory with high vanillin tolerance is the most direct and effective
solution. The multi-enzyme cascade catalysis in a cell-free system can effectively avoid
vanillin toxicity. Although the industrial application and production of chemicals using
cell-free systems with multi-enzyme cascades have not been realized, this method has been
investigated for starch synthesis using carbon dioxide [95]. Moreover, cell-free catalysis
can also decrease the separation cost and reduce environmental pollution in the vanillin
separation process.

8. Conclusions

In conclusion, in the current study, we investigated two features of the biosynthesis
of vanillin. Firstly, we provided an overview of methods for increasing product accu-
mulation by the overexpression of native or heterologous vanillin production genes in
microorganisms or plant tissue cells. Secondly, methods for the prevention of the synthesis
of byproducts and the degradation of vanillin in organisms resulting from endogenous
aldehyde reductase, aldehyde dehydrogenase, or other competing routes were also in-
vestigated. In this article, vanillin synthesis pathways and related genes reported in the
literature were summarized. An overview of the latest progress and future development in
the biological production of vanillin from lignin and ferulic acid was provided, and several
production process optimization technologies were compared. Currently, the ongoing
advances in biotechnology present novel opportunities to add value to unwanted agricul-
tural byproducts, as well as to lower costs and increase the production of high-quality and
nature-identical vanillin.
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