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Abstract: Foodborne prevention and treatment of hyperuricemia (HUA) has received widespread
attention. Lactic acid bacteria (LAB) can improve intestinal function, while traditional medicine
dandelion has the functions of detoxification and detumescence. Whether LAB fermented dandelion
has any effects on HUA and the underlying mechanism is not clear. To address these questions,
Lactobacillus acidophilus was selected or maximal xanthine oxidase activity. The effect of Lactobacillus
acidophilus fermented dandelion (LAFD) on uric acid metabolism was evaluated by the HUA mouse
model. Expression levels of UA, BUN, CRE, XOD, and inflammatory factors in serum were detected.
Paraffin sections and staining were used to observe the kidney and small intestine, and mRNA
expression of GLUT9, URAT1, OAT1, and ABCG2 related to uric acid metabolism were investigated.
Furthermore, the intestinal flora was studied by contents of the cecum and high throughput 16S
rRNA sequencing. The results showed that LAFD had a significant inhibitory effect on XOD in vitro
(p < 0.01). LAFD could reduce the levels of UA, BUN, CRE, XOD, IL-1 β, IL-6, and TNF- α in serum
(p < 0.05), thus inhibiting inflammatory reaction, and reducing UA by decreasing the mRNA expres-
sion of GLUT9, URAT1 in kidney and increasing the mRNA expression of OAT1 and ABCG2 in
kidney and small intestine (p < 0.05). In addition, the 16S rRNA gene sequencing analysis demon-
strated that LAFD treatment can help restore the imbalance of the intestinal microbial ecosystem and
reverse the changes in Bacterodietes/Firmicutes, Muribaculaceae, Lachnospiraceae in mice with HUA. It
is suggested that the mechanism of LAFD in treating HUA may be related to the regulation of the
mRNA expressions of GLUT9, URAT1, OAT1, and ABCG2 in the kidney and small intestine, as well
as the regulation of intestinal flora, which provides the experimental basis for the development of
new plant fermented products.
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1. Introduction

Hyperuricemia (HUA) is a chronic clinical syndrome, where the blood uric acid content
is significantly higher than the normal value due to the disorder of purine metabolism and
abnormal excretion of uric acid in the human body [1]. HUA is not only the basic stage
of gout but also easily induces cardiovascular disease, diabetes, chronic kidney disease,
non-alcoholic fatty liver, etc [2]. At present, the treatment and prevention measures for
HUA mainly use the effect of exogenous drugs and restrict the intake of purine substances
in the diet. Most clinical uric-acid-lowering drugs rely on xanthine oxidase inhibitors
(allopurinol) and uricosuric drugs (benzbromarone). Long-term use will cause serious
adverse reactions in the human body [3,4]. Therefore, it is urgent to find new ways to
reduce uric acid in the blood of the HUA population, and it is of great significance to
explore a new type of HUA treatment and prevention method with low toxicity and side
effects and certain food origin.
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Dandelion (Taraxacum mongolicum Hand.-Mazz.) is a perennial herb of Compositae.
Dandelion contains a variety of functional ingredients, such as phenolic acids, flavonoids,
polysaccharides, terpenoids, and sterol compounds, etc., which have anti-inflammatory [5],
anti-oxidation [6], anti-cancer [7], hypoglycemic [8], anti-obesity [9], immune regula-
tion [10], and traditional heat-clearing and detoxifying bioactivities. Previous studies
have shown that the water extract of dandelion can reduce the serum uric acid content
of rats with HUA [11], and has a good protective effect on rat kidney damage caused by
persistently elevated uric acid levels [12].

The use of micro-organisms to ferment traditional Chinese medicine has the advan-
tages of reducing toxicity, expanding drug efficacy, and improving absorption rate [13].
During fermentation, substrates such as medicinal plants are decomposed or converted
into compatible components, thereby improving the properties of the substrate through
the production and enhancement of bioactive compounds. Fermentation mainly improves
the pharmacological properties of traditional Chinese medicine through the modification
of natural molecules (such as flavonoids, phenolic acids, saponins, phytosterols, etc.) to
better promote health and prevent diseases [14]. The fermentation process of lactic acid
bacteria (LAB) can produce new active substances, such as exopolysaccharides, and mild
microbial fermentation conditions can protect the active ingredients to a certain extent [13].
For example, the use of Lactobacillus plantarum to ferment cinnamon can enhance pheno-
lic substances and flavonoids and improve antioxidant and anticancer activities without
producing toxic substances [15]. Mulberry leaf extract fermented with Lactobacillus aci-
dophilus A4 can better improve 5-fluorouracil-induced intestinal mucositis in rats [16].
Artemisia selengensis Turcz fermented by Lactobacillus acidophilus can significantly in-
crease the content of free polyphenols, enhance the inhibition of xanthine oxidase (XOD)
in vitro, and have a better effect on alleviating HUA than the unfermented counterpart [17].
Recently, our research group carried out some work in the field of two-way fermenta-
tion of traditional Chinese medicine and found that the fermentation liquid obtained by
fermenting plants with edible micro-organisms has a variety of active ingredients and
functions [18–20]. The antioxidant phenols and flavonoids in the fermentation super-
natant, such as ellagic acid, vanillin, luteolin, kaempferol, myricetin, isorhamnetin, and
(+)-gallocatechin, by bidirectional metabolites from Tremella fuciformis and Acanthopanax
trifoliatus was found increased significantly [18]. The exopolysaccharide yield and antioxi-
dant activity of the fermentation products of Schizophyllum commune were increased by
the addition of Radix Puerariae [19], and the fermentation supernatant could prolong the
lifespan of Caenorhabditis elegans and improve stress resistance [20].

Whether dandelion fermented by LAB has any effects on lowering uric acid and how
it works has not been reported. Therefore, this study screened the optimal fermentation
strains through in vitro XOD inhibition testing to explore the effect of fermented dandelion
on HUA animal models. Additionally, the underlying mechanism is investigated through
inflammatory factors, mRNA expression levels, and gut microbiota. This work is aimed
to provide the experimental basis for the research and development of new dandelion-
fermented products.

2. Materials and Methods
2.1. Materials

Dandelion was purchased from Guangdong Shizhen Pharmaceutical Co., Ltd.
(Guangzhou, China), batch number 211101; Lactobacillus plantarum GDMCC1.648,
GDMCC1.191, GDMCC1.140, Lactobacillus acidophilus GDMCC1.412, and Lactobacillus ca-
sei GDMCC1.159 were purchased from Guangdong microbial strain Preservation Center;
Lactobacillus rhamnosus ATCC7469 and MRS culture medium were purchased from Guang-
dong Huankai Microbiological Technology Co., Ltd. (Guangzhou, China) UA, BUN, CRE,
XOD, ALT, AST kits were purchased from Nanjing Jiancheng Reagent Co., Ltd. (Nanjing,
China); and IL-6, IL-1 β, and TNF- α Elisa kits were purchased from Jiangsu Enzymatic
Immunization Co., Ltd. (Nanjing, China).
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2.2. Preparation of Fermented Dandelion

The dried dandelion was crushed and sifted through 50 meshes, and MRS liquid
medium was added according to the ratio of material to liquid at 1:10, sterilized at
121 ◦C for 15 min, then cooled the sterilized liquid medium naturally to room temperature.
According to the inoculation amount of 5%, Lactobacillus plantarum, Lactobacillus acidophilus,
Lactobacillus casei, and Lactobacillus rhamnose were inoculated twice and fermented at 37 ◦C
for 4 days to obtain dandelion fermentation broth. Unfermented dandelion was set as the
control group.

2.3. Determination of the Inhibitory Activity of XOD

The inhibitory activity of XOD was performed with a minor modification described
previously [21,22]. Add 50 µL XOD solution of 0.25 U/mL to 50 µL dandelion or fermented
dandelion solution to react. After incubating for 10 min at 37 ◦C, 50 µL xanthine solution
was added to start the reaction. After the next 10 min, the absorbance of the reaction
system was recorded under 295 nm. The inhibition rates of fermented traditional Chinese
medicine extracts with concentrations of 1.25, 2.5, 5, 10, 15, and 20 mg/mL of XOD solution
were determined, and three compound holes were set for each concentration. In this
experiment, the XOD solution concentrations of 0, 0.125, 0.25, 0.5,1, 1.5 U/mL and enzyme
reaction times of 5, 10, 15, 20, and 25 min were investigated, and it was determined
that the enzyme concentration of 0.25 U/mL and enzyme reaction time of 10 min were
used as the reaction system. The drug concentration where the inhibition rate was 50%,
namely the half inhibitory concentration (IC50), was calculated to determine the optimal
fermentation strain.

2.4. Determination of Total Phenolic Content and Total Flavonoid Content

The content of total phenol was determined by the Folin-Ciocalteu colorimetric method
with slight modifications [23]. The solution to be tested was mixed with 1 mL Folin reagent
(0.6 mol/L), and the 2 mL Na2CO3 solution (0.15 g/mL) was added quickly. After mixing,
the volume was fixed to 25 mL, and the mixture solution was incubated for 50 min avoiding
light at room temperature. The absorbance value was determined under 756 nm. The total
phenol content was expressed as the Gallic acid equivalent (mg GAE/g).

The total flavonoid content was determined by the AlCl3 colorimetric method with
minor modifications [24]. The total flavonoid contents were determined by the aluminum
nitrate colorimetric method. The solution to be measured was placed in a 10 mL measuring
flask. Distilled water of 5 mL and 5% sodium nitrite of 0.3 mL was added to the flask
separately, then shaken the mixture and standed it for 6 min. Ten percent aluminum nitrate
of 0.3 mL was added, After mix and stand it for 6 min, 4 mL sodium hydroxide of 4%
concentration was added, Finally, water was added to the scale. The absorbance value
of the mixed solution was determined at 510 nm after intensive mixing and standing for
15 min at room temperature. Rutin is used as a standard, and data are calculated in
milligrams of rutin equivalent (mg RE/g) per gram of sample.

2.5. Antioxidant Activity Assay
2.5.1. Determination of DPPH Free Radical Scavenging Activity

According to the reference with slight modifications [25], 1 mg of DPPH was dissovled
in 10 mL anhydrous ethanol, and add 2 mL DPPH-anhydrous ethanol solution at a concen-
tration of 0.1 mg/mL. Then add the solution to be tested and mix them well, let the mixed
solution stand for 5 min in the dark at room temperature, and measure the absorbance at
517 nm. Using ultrapure water zero, ascorbic acid solution as a positive control group, and
DPPH solution as a blank control group, effective concentrations of DPPH free radical scav-
enging activity and 50% free radical scavenging activity(EC50) were calculated according to
the following formula.

DPPH free radical scavenging activity (%) = (A0 − A1)/A0 × 100% (1)
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In the formula, A0 stands for the absorbance value of the blank solution, while A1
stands for the absorbance value of the sample.

2.5.2. Determination of ABTS Free Radical Scavenging Activity

According to the previous work with slight modifications [26], the test solution of 1 mL
was taken into the plug test tube and mixed with ABTS working liquid, and the absorbance
A1 was determined at 734 nm for 10 min at 37 ◦C. The blank group used distilled water
instead of the ABTS solution, and the control group used distilled water instead of samples.

ABTS free radical scavenging activity (%) = (1 − (A1 − A2)A0) × 100% (2)

In the formula, A0: the absorbance value of the control solution; A1: The absorbance
value of the sample; A2: the absorbance value of the blank solution.

2.5.3. Determination of Reducing Power

Reducing power was determined according to the reference [27] with slight modifica-
tions, take 1.5 mL of the solution to be tested into a plug test tube, then add
1.5 mLphosphoric acid solution (0.2 mol/L, pH = 6.0), and 1.5 mL 1% potassium fer-
ricyanide, The mixture was kept in a water bath for 30 min at 50 ◦C, then taken it out and
cooled to room temperature, add 1.5 mL trichloroacetic acid of 10% concentration was
added to the mixture, place for 3 min, remove 2 mL 0.1% FeCl3, fully react for 10 min, and
determine the absorbance at 700 nm.

2.6. Animal Grouping, Modeling, and Administration

In total, 70 male Kunming mice (20 ± 2 g) were purchased from Zhejiang Weitong
Lihua Experimental Animal Technology Co., Ltd. (Jiaxing, China) (quality certificate: SCXK
(Zhe) 2019-0001). After 7 days of adaptive feeding, they were randomly divided into
the control group, model group, allopurinol group (0.02 g/kg/day), fermented dande-
lion low and high dose groups (0.1, 0.4 g/kg/day), dandelion low and high dose groups
(0.1, 0.4 g/kg/day), with 10 rats in each group. The mouse model of HUA was estab-
lished by continuous intragastric administration of potassium oxonate(300 mg/kg) and
hypoxanthine (300 mg/kg) once per day. All groups except for the control group were
established as HUA model mice, and the corresponding treatment drug was administered
1 h after the administration of the modeling drug, starting on day 8 for 4 weeks. During the
5 weeks experiment, the body weight of mice was recorded once a week. At the end of the
experiment, serum was collected by centrifugation (4 ◦C, 4000× g for 10 min) and stored
at −80◦C until further analysis. Complete kidneys were collected, washed, weighed, and
part of the kidney tissue was fixed in 4% paraformaldehyde, and the other part was stored
at −80◦C. The ileum was cut out and rinsed with saline; part of the ileum was fixed in 4%
paraformaldehyde and the rest was stored at −80◦C. Cut off the cecum and squeeze out
the contents of the cecum with sterile forceps into sterile Ep tubes and store at −80◦C.

2.7. Serum Index Detection

Uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) levels in serum and XOD
were measured according to the kit instructions; the levels of related inflammatory factors
TNF-α, IL-1β, and IL-6 were measured by enzyme-linked immunoassay (ELISA).

2.8. Morphological Observation

The kidney and ileum of mice were transferred from 4% paraformaldehyde solution,
cut into small squares, placed in the embedding box, rinsed for 2 h using running water,
dehydrated with gradient ethanol, paraffin wax immersion, embedding, sectioning, HE
staining, and other steps, observed under the microscope, and images were collected to
analyze the condition of the kidney and ileum.



Fermentation 2023, 9, 352 5 of 19

2.9. qRT-PCR Analysis

Total RNA from mouse kidney and ileal tissues was extracted with the Trizol reagent.
After homogenization, 1/5 volume of chloroform was added and centrifuged for separation.
The supernatant was further precipitated with an equal volume of isopropanol to obtain the
RNA precipitate. After two rounds of washing with 75% ethanol, it was then solubilized
with DEPC water. Reverse transcription was performed by referring to the Servicebio®RT
First Strand cDNA Synthesis Kit. qRT-PCR was run in the following conditions: 95 ◦C, 30 s;
95 ◦C, 15 s; 60 ◦C, 30 s. The primer sequences for genes URAT1, GLUT9, OAT1, ABCG2
are shown in Table 1. GAPDH was used as an internal standard for quantification, and the
relative expression of target gene mRNA was calculated by the 2−∆∆Ct method.

Table 1. Primer sequences of qRT-PCR.

Genes Forward Primer (5′-3′) Reverse Primer (5′-3′)

GAPDH CCTCGTCCCGTAGACAAAATG TGAGGTCAATGAAGGGGTCGT
GLUT9 ATGGTCCTTCTCGCTCGTCG TATCCGGGTCAATGGGCTGT
URAT1 CGCTTCCGACAACCTCAAT GAGTTACATACCAGGTCCCACG
OAT1 TGTGCTTCCTAGTCATCAATTCCA CAGGGATGTGCGAATGATTGTA

ABCG2 TTGTCCAGGATTCAATGTAACGG TGACAGTTCGATGCCCTGATTT

2.10. Gut Microbiological Analysis

DNA extraction from the contents of the cecum of each group of mice was performed
according to the instructions of the DNA kit, and the DNA concentration and purity were
checked by 1% agarose gel electrophoresis for conformity. V3 and V4 hypervariable regions
of 16S rRNA were selected and amplified using the primer pairs: F: ACTCCTACGGGAG-
GCAGCA; R: GGACTACHVGGGTWTCTAAT. The Illumina Novaseq platform is used
for sequencing, and the original sequencing sequence uses Trimmatic v0.33 and cutadapt
1.9.1 software to filter the quality of each sample. The dada2 method in QIIME2 2020.6
is used for noise removal; the two-end sequence is spliced, and the chimeric sequence
is removed to obtain the final effective data. Operational taxonomy units (OTUs) with
similarity at 97% were selected to calculate the diversity index (USEARCH v10.0). Using
QIIME2 2020.6 to generate species abundance tables at different taxonomic levels; addi-
tionally, analyze and evaluate Alpha diversity index of the sample, including the Chao1,
Shannon, Simpson indexes. Beta diversity analysis was performed using QIIME software
to compare the similarity of different samples in terms of species diversity. Principal coor-
dinates analysis (PCoA) examined the abundance and diversity of OTUs. LefSe analysis
(http://huttenhower.sph.harvard.edu/lefse/ accessed on 26 October 2022.) was used to
estimate the magnitude of the effect of each species’ abundance on the differential effect
using linear discriminant analysis (LDA = 3.5).

2.11. Statistical Analysis

The statistical analysis and plots were performed using IBM SPSS Statistics 26 and
GraphPadPrism8 software. The results were expressed as mean ± standard deviation (SD).
Data were analyzed using one-way ANOVA, and significant differences between the two
groups were analyzed using a t-test. p < 0.05 indicates statistical significance.

3. Results
3.1. Determination of XOD Inhibitory Activity

The IC50 of dandelion and each fermentation solution on XOD was determined and
the results are shown in Table 2. The IC50 value of Lactobacillus acidophilus fermented
dandelion(LAFD) was the smallest at 15.55± 2.31 mg/mL, which was significantly different
from the unfermented group (p < 0.01) and was therefore determined as the optimal
fermenting strain for subsequent experiments.

http://huttenhower.sph.harvard.edu/lefse/
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Table 2. IC50 of dandelion and each fermentation solution on XOD.

Drug IC50 (mg/mL)

Dandelion 19.80 ± 1.23 a

Lactic acid bacteria 1.648 fermentation dandelion 20.33 ± 1.79 a

Lactic acid bacteria 1.191 fermentation dandelion 18.45 ± 1.19 ab

Lactic acid bacteria 1.140 fermentation dandelion 19.13 ± 0.98 a

Lactobacillus casei fermentation dandelion 16.10 ± 2.30 b

Lactobacillus rhamnosus fermentation dandelion 19.47 ± 0.78 a

Lactobacillus acidophilus fermentation dandelion 15.55 ± 2.31 b

Different lowercase letters indicate statistically significant differences (p < 0.05) between the groups.

3.2. Content and Antioxidant Activity Determination

The total phenolic and flavonoid contents of unfermented dandelion were
7.88± 0.18 mg GAE/g and 23.39± 0.34 mg RE/g, respectively. Meanwhile, the total pheno-
lic content and flavonoid of LAFD were 16.05± 0.22 mg GAE/g and 20.81 ± 0.19 mg RE/g,
respectively. LAFD at least doubled the total phenolic content compared to unfermented
dandelion. The slight decrease in total flavonoid content may be explained by the fermenta-
tion process continues which the substances in fermented dandelion are utilized, degraded,
and transformed by micro-organisms [28]. As shown in Figure 1, the EC50 values of DPPH
radical and ABTS radical of LAFD were 1.25 ± 0.02, 0.36 ± 0.01 mg/mL, while those of
unfermented dandelion were 2.95 ± 0.08, 0.81 ± 0.02 mg/mL. It is proved that LAFD has
a stronger free radical scavenging ability than unfermented dandelion. The greater the
reducing power, the stronger the oxidation resistance. The reducing power of LAFD was
significantly higher than that of unfermented dandelion. The above results showed that
LAFD had better antioxidant activity than unfermented dandelion.
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Figure 1. Determination of the antioxidant activity of dandelion and fermented dandelion. (A) ABTS
radical scavenging rate. (B) DPPH radical scavenging rate. (C) Determination of reducing power. The
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3.3. Effects on Serum UA and XOD of Mice with HUA

As shown in Figure 2, the levels of UA and XOD in the model group were signifi-
cantly higher than those in the blank group (p < 0.001), indicating that potassium oxonate
combined with hypoxanthine induced the HUA model successfully. Barakat M. ALRashdi
reported that M. quadrangular reduced HUA model serum uric acid, creatinine, urea, and
XO activity [29]. Consistent with our study, compared with the model group, each adminis-
tration group significantly decreased the level of UA in HUA mice (p < 0.001) and showed
a certain dose dependence. Among them, LAFD had a better uric-acid-lowering effect than
unfermented dandelion (p < 0.05). Allopurinol, D-H, and FD-H, significantly decreased the
level of serum XOD in mice (p < 0.001, p < 0.01). Compared with the control group and the
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ALL group, there was no significant difference in UA and XOD in the FD-H group, which
indicated that LAFD had the same curative effect as positive drugs and could effectively
restore the levels of UA and XOD.

Fermentation 2023, 9, x FOR PEER REVIEW 7 of 19 
 

 

3.3. Effects on Serum UA and XOD of Mice with HUA 
As shown in Figure 2, the levels of UA and XOD in the model group were signifi-

cantly higher than those in the blank group (p < 0.001), indicating that potassium oxonate 
combined with hypoxanthine induced the HUA model successfully. Barakat M. ALRashdi 
reported that M. quadrangular reduced HUA model serum uric acid, creatinine, urea, and 
XO activity [29]. Consistent with our study, compared with the model group, each admin-
istration group significantly decreased the level of UA in HUA mice (p < 0.001) and 
showed a certain dose dependence. Among them, LAFD had a better uric-acid-lowering 
effect than unfermented dandelion (p < 0.05). Allopurinol, D-H, and FD-H, significantly 
decreased the level of serum XOD in mice (p < 0.001, p < 0.01). Compared with the control 
group and the ALL group, there was no significant difference in UA and XOD in the FD-
H group, which indicated that LAFD had the same curative effect as positive drugs and 
could effectively restore the levels of UA and XOD. 

 
Figure 2. Effects of fermented dandelion on serum UA and XOD in mice with HUA. (A) Serum UA 
level. (B) Serum XOD activity. The data are expressed as mean ± SD (n = 8). Different lowercase 
letters indicate statistically significant differences (p < 0.05) between the groups. ALL, allopurinol; 
D-L, dandelion low dose group; D-H, dandelion high dose group; FD-L, low dose group of LAFD; 
FD-H, high dose group of LAFD. 

3.4. Effect on Liver and Kidney Function of Mice with HUA 
Hyperuricemia can cause certain damages to the liver such as hepatocyte inflamma-

tion, apoptosis, and hepatic steatosis [30]. Additionally, the kidneys are one of the most 
important sites for uric acid excretion, with BUN and CRE also commonly used as indica-
tors of kidney damage from hyperuricaemia [31]. As shown in Figure 3, the levels of ALT, 
AST, CRE, and BUN in the serum of mice in the model group increased significantly (p < 
0.001), indicating that the model of potassium oxonate combined with hypoxanthine 
caused certain liver and kidney damage, and the levels of ALT and AST in each admin-
istration group decreased to varying degrees (p < 0.05, p < 0.001), reducing liver damage. 
Allopurinol, D-H, and FD-H decreased the CRE level (p < 0.001, p < 0.01, p < 0.01). D-H 
and FD-H decreased the BUN level (p < 0.01, p < 0.001), reducing renal injury. Interestingly, 
compared with the control group, there was no significant difference in BUN in the FD-H 
group, which indicated that LAFD can reduce BUN levels to normal levels. Thus, FD-H 
was more effective at protecting the kidneys than allopurinol. 

Figure 2. Effects of fermented dandelion on serum UA and XOD in mice with HUA. (A) Serum UA
level. (B) Serum XOD activity. The data are expressed as mean ± SD (n = 8). Different lowercase
letters indicate statistically significant differences (p < 0.05) between the groups. ALL, allopurinol;
D-L, dandelion low dose group; D-H, dandelion high dose group; FD-L, low dose group of LAFD;
FD-H, high dose group of LAFD.

3.4. Effect on Liver and Kidney Function of Mice with HUA

Hyperuricemia can cause certain damages to the liver such as hepatocyte inflam-
mation, apoptosis, and hepatic steatosis [30]. Additionally, the kidneys are one of the
most important sites for uric acid excretion, with BUN and CRE also commonly used as
indicators of kidney damage from hyperuricaemia [31]. As shown in Figure 3, the levels of
ALT, AST, CRE, and BUN in the serum of mice in the model group increased significantly
(p < 0.001), indicating that the model of potassium oxonate combined with hypoxanthine
caused certain liver and kidney damage, and the levels of ALT and AST in each adminis-
tration group decreased to varying degrees (p < 0.05, p < 0.001), reducing liver damage.
Allopurinol, D-H, and FD-H decreased the CRE level (p < 0.001, p < 0.01, p < 0.01). D-H
and FD-H decreased the BUN level (p < 0.01, p < 0.001), reducing renal injury. Interestingly,
compared with the control group, there was no significant difference in BUN in the FD-H
group, which indicated that LAFD can reduce BUN levels to normal levels. Thus, FD-H
was more effective at protecting the kidneys than allopurinol.
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Figure 3. Effect of fermented dandelion on liver and kidney function in mice with HUA. (A) Serum
ALT level. (B) Serum AST level. (C) Serum CRE level. (D) Serum BUN level. The data are expressed
as mean ± SD (n = 8). Different lowercase letters indicate statistically significant differences (p < 0.05)
between the groups. ALL, allopurinol; D-L, dandelion low dose group; D-H, dandelion high dose
group; FD-L, low dose group of LAFD; FD-H, high dose group of LAFD.
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3.5. Effects on the Levels of Inflammatory Factors IL-1 β, IL-6, and TNF- α in Mice with HUA

Hyperuricemia leads to inflammation and promotes the production of inflammatory
factors, which can lead to gout, urinary stones, uric acid nephropathy, etc [32]. Figure 4.
shows that a persistently high level of uric acid would lead to an inflammatory reaction
and increase the levels of inflammatory cytokines IL-1 β, IL-6, and TNF- α (p < 0.001).
Compared with the model group, the levels of IL-1 β, IL-6, and TNF- α decreased in all
treatment groups. Among them, the levels of IL-1 β and IL-6 in the high-dose group before
and after LAFD showed significant differences (p < 0.05). There was a significant difference
in IL-1β (p < 0.05) and IL-6 (p < 0.001) in the FD-H group and the ALL group, while no
significant difference for TNF-α between the FD-H group and the ALL group was detected.
Therefore, FD-H had comparable anti-inflammatory activity as the positive drugs.
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Figure 4. Effects on the levels of inflammatory factors IL-1 β, IL-6, and TNF- α in mice with HUA.
(A) Serum IL-1 β level; (B) Serum IL-6 level; (C) Serum TNF- α level. The data are expressed as
mean ± SD (n = 8). Different lowercase letters indicate statistically significant differences (p < 0.05)
between the groups. ALL, allopurinol; D-L, dandelion low dose group; D-H, dandelion high dose
group; FD-L, low dose group of LAFD; FD-H, high dose group of LAFD.

3.6. Effects on Renal Pathological Changes in Mice with HUA

Elevated serum levels of uric acid can cause structural changes in the kidney, including
the glomerulus, capsule, and tubules [33]. As shown in Figure 5A, the histological charac-
teristics of the kidney in the control group were normal, the size of renal tubular epithelial
cells was arranged neatly, and no inflammatory cell infiltration was found. Compared
with control group, the model group showed glomerular atrophy and more renal tubular
injury, such as dilatation of the renal tubule, narrowing of the tubular wall, infiltration of
the inflammatory cells, swelling and exfoliation of some renal tubular epithelial cells, and
cytoplasmic vacuolization. Compared with the model group, renal tubule dilatation, tube
wall narrowing, and inflammatory cell infiltration were alleviated in each treatment group,
and the normal histological characteristics were maintained. Additionally, the shape of the
glomerulus tended to be more circumference styled in the ALL group, D-H group, and
FD-H group compared to the model group.
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Figure 5. Effects of fermented dandelion on kidney and ileum of mice with HUA. (A) Renal patho-
logical section (200×). (B) Pathological section of the small intestine (100×). ALL, allopurinol; D-L,
dandelion low dose group; D-H, dandelion high dose group; FD-L, low dose group of LAFD; FD-H,
high dose group of LAFD.

3.7. Effect on Pathological Changes of Ileum in Mice with HUA

As shown in Figure 5B, the ileal mucosal epithelium of the blank group was intact,
the villi were abundant, the glands were rich and orderly arranged, and the epithelial cells
were arranged neatly. Compared with the blank group, the ileal mucosa of the model group
was exfoliated, the small intestinal villi were sparse and broken, the villi epithelial cells
were shedding, and the intestinal glands were atrophied. Compared with the model group,
the pathological changes of ileum in ALL group were significantly alleviated. Except for a
few villi epithelial cell necrosis, other pathological phenomena were significantly improved.
In mice in the dandelion and fermented dandelion groups, the pathological damage of the
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ileum was alleviated, the morphology was more complete, the epithelial cells of the ileum
were arranged closely, and some of the villous epithelial cells were necrotic and exfoliated.

3.8. Effects on the Levels of GLUT9, URAT1, OAT1 mRNA in Kidney and ABCG2 mRNA in
Small Intestine in Mice with HUA

As shown in Figure 6, the contents of GLUT9 mRNA and URAT1mRNA in the kidney
in the Model group were significantly higher than those in the control group (p < 0.001),
while the contents of OAT1 mRNA and ABCG2 mRNA in the small intestine decreased
significantly (p < 0.001). Compared with the model group, GLUT9 mRNA expression in
the kidney was significantly increased in each group (p < 0.001), URAT1 and OAT1 mRNA
expression in the kidney of D-H group was significantly increased (p < 0.01, p < 0.001);
the mRNA expression of OAT1 in the kidney in FD-L group was significantly increased
(p < 0.001); and the mRNA expression of URAT1 and OAT1 in kidney in the ALL and
FD-H groups was significantly increased (p < 0.001). The ALL and FD-H groups could
significantly down-regulate the mRNA expression of ABCG2 in the small intestine.

Fermentation 2023, 9, x FOR PEER REVIEW 10 of 19 
 

 

group, the pathological changes of ileum in ALL group were significantly alleviated. Ex-
cept for a few villi epithelial cell necrosis, other pathological phenomena were signifi-
cantly improved. In mice in the dandelion and fermented dandelion groups, the patho-
logical damage of the ileum was alleviated, the morphology was more complete, the epi-
thelial cells of the ileum were arranged closely, and some of the villous epithelial cells 
were necrotic and exfoliated. 

3.8. Effects on the Levels of GLUT9, URAT1, OAT1 mRNA in Kidney and ABCG2 mRNA in 
Small Intestine in Mice with HUA 

As shown in Figure 6, the contents of GLUT9 mRNA and URAT1mRNA in the kid-
ney in the Model group were significantly higher than those in the control group (p < 
0.001), while the contents of OAT1 mRNA and ABCG2 mRNA in the small intestine de-
creased significantly (p < 0.001). Compared with the model group, GLUT9 mRNA expres-
sion in the kidney was significantly increased in each group (p < 0.001), URAT1 and OAT1 
mRNA expression in the kidney of D-H group was significantly increased (p < 0.01, p < 
0.001); the mRNA expression of OAT1 in the kidney in FD-L group was significantly in-
creased (p < 0.001); and the mRNA expression of URAT1 and OAT1 in kidney in the ALL 
and FD-H groups was significantly increased (p < 0.001). The ALL and FD-H groups could 
significantly down-regulate the mRNA expression of ABCG2 in the small intestine. 

 
Figure 6. Effects of fermented dandelion on uric acid transporter mRNA in the kidney and small 
intestine of mice with HUA. (A) Renal GLUT9 mRNA level; (B) Renal URAT1 mRNA level; (C) 
Renal OAT1 mRNA level; (D) Small intestine ABCG2 mRNA level. The data are expressed as mean 
± SD (n = 4 or 5). Different lowercase letters indicate statistically significant differences (p < 0.05) 
between the groups. ALL, allopurinol; D-L, dandelion low dose group; D-H, dandelion high dose 
group; FD-L, low dose group of LAFD; FD-H, high dose group of LAFD. 

3.9. Effect on the Intestinal Microflora of Mice with HUA 
To detect whether the protective effect of dandelion and fermented dandelion is re-

lated to intestinal microflora, the 16S rRNA V3-V4 region of bacteria in the intestinal con-
tents was sequenced. The Venn map showed a decrease in intestinal microflora diversity 
(Figure 7B) in mice with high uric acid. The Alpha diversity analysis mainly includes the 
Chao1, Shannon, and Simpson indexes. The results in Figure 7A show that the intestinal 
microbial diversity in the model group was significantly lower than that in the control 
group (p < 0.05), while FD-L and FD-H significantly increased the Shannon index (p < 0.05, 
p < 0.01). In addition, β-diversity analysis was carried out to study the similarity of intes-
tinal microbial community structure among different samples. The PCoA diagram 
showed that (Figure 7C) the structure of intestinal microbiota in the model group was 
significantly different from that in the control group. As expected, there was a significant 
separation between the FD-H group and the model group. The above results show that 
the diversity of intestinal flora can be restored by fermented dandelion. 

The OTU cluster analysis was used to further visualize the composition and structure 
of each group of intestinal flora at the gate level. As shown in Figure 8A, Bacteroidota and 

Figure 6. Effects of fermented dandelion on uric acid transporter mRNA in the kidney and small
intestine of mice with HUA. (A) Renal GLUT9 mRNA level; (B) Renal URAT1 mRNA level; (C) Renal
OAT1 mRNA level; (D) Small intestine ABCG2 mRNA level. The data are expressed as mean ± SD
(n = 4 or 5). Different lowercase letters indicate statistically significant differences (p < 0.05) between
the groups. ALL, allopurinol; D-L, dandelion low dose group; D-H, dandelion high dose group;
FD-L, low dose group of LAFD; FD-H, high dose group of LAFD.

3.9. Effect on the Intestinal Microflora of Mice with HUA

To detect whether the protective effect of dandelion and fermented dandelion is
related to intestinal microflora, the 16S rRNA V3-V4 region of bacteria in the intestinal
contents was sequenced. The Venn map showed a decrease in intestinal microflora diversity
(Figure 7B) in mice with high uric acid. The Alpha diversity analysis mainly includes the
Chao1, Shannon, and Simpson indexes. The results in Figure 7A show that the intestinal
microbial diversity in the model group was significantly lower than that in the control group
(p < 0.05), while FD-L and FD-H significantly increased the Shannon index (p < 0.05,
p < 0.01). In addition, β-diversity analysis was carried out to study the similarity of
intestinal microbial community structure among different samples. The PCoA diagram
showed that (Figure 7C) the structure of intestinal microbiota in the model group was
significantly different from that in the control group. As expected, there was a significant
separation between the FD-H group and the model group. The above results show that the
diversity of intestinal flora can be restored by fermented dandelion.
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Figure 7. Effects of fermented dandelion on intestinal microflora diversity in mice with HUA.
(A) Alpha diversity analysis; (B) Venn; (C) PCoA. The data are expressed as mean ± SD (n = 6).
Different lowercase letters indicate statistically significant differences (p < 0.05) between the groups.
A: Control; B: Model; C: ALL, allopurinol; D: D−L, dandelion low dose group; E: D−H, dandelion
high dose group; F: FD−L, low dose group of LAFD; G: FD−H, high dose group of LAFD.

The OTU cluster analysis was used to further visualize the composition and structure
of each group of intestinal flora at the gate level. As shown in Figure 8A, Bacteroidota and
Firmicutes are the main components of intestinal bacterial communities. The Bacteroidota
in the model group was significantly higher than that in the control group (p < 0.001)
the Firmicutes in the model group was significantly lower than that in the control group
(p < 0.001) and the Bacteroidota/Firmicutes in the model group was significantly higher than
that in the control group (p < 0.001), while the FD-H group could finally reverse this trend
(p < 0.05, p < 0.001, p < 0.001). Similarly, Cao et al. reported that Lactobacillus paracasei
X11 could restore the ratio of Bacteroidetes to Firmicutes (Bac/Firm ratio) [34]. Figure 8B
shows the results of species flora at the family level. Muribaculaceae, Lachnospiraceae, Pre-
votellaceae, and Fusobacteriaceae are the dominant bacteria. Yongliang Chu et al. reported
that all differential species in Bacteroides, Prevotella, and Fusobacterium were enriched in gout
patients [35]. In our study, compared with the control group, Bacteroidetes, Prevotellaceae,
and Fusobacteriaceae were increased in the model group. Compared with the control group,
Muribaculaceae in the model group increased significantly (p < 0.001), while Lachnospiraceae
decreased significantly (p < 0.001). This trend was significantly reversed after the admin-
istration of fermented dandelion (p < 0.001). Lee, Y et al. reported that Lacticaseibacillus
paracasei MJM60396 modulates hyperuricemia by improving bacterial abundance in the
intestinal flora, with increased relative abundance of Lachnospiraceae, which are associated
with intestinal barrier integrity [36]. Our findings are consistent with the study, imply-
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ing that LAFD supplementation may improve the hyperuricemia phenotype in mice via
influencing bacterial abundance in the intestinal flora.
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To further explore the changes in key microbiota among the groups, LEfSe analysis 
was used to obtain the cladistic diagram of phyla and genera, and the dominant micro-
organisms were shown in each group. As shown in Figure 9A, Clostridia and Firmicutes 
are the main microorganisms in the control group; Bacteroidales and Muribaculaceae are the 

Figure 8. Effects of fermented dandelion on intestinal microbiota of mice with HUA. (A) Phylum
level; (B) Family level. The data are expressed as mean ± SD (n = 6). Different lowercase letters
indicate statistically significant differences (p < 0.05) between the groups. A: Control; B: Model; C:
ALL, allopurinol; D: D-L, dandelion low dose group; E: D-H, dandelion high dose group; F: FD-L,
low dose group of LAFD; G: FD-H, high dose group of LAFD.
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To further explore the changes in key microbiota among the groups, LEfSe analysis
was used to obtain the cladistic diagram of phyla and genera, and the dominant micro-
organisms were shown in each group. As shown in Figure 9A, Clostridia and Firmicutes are
the main microorganisms in the control group; Bacteroidales and Muribaculaceae are the main
microorganisms in the model group; Lachnospiraceae, Desulfovibrio, and Ligilactobacillusare
are the dominant bacteria in the FD-H group. According to the correlation analysis between
intestinal microflora and the HUA index (Figure 9B), the correlation between Bacteroidota
and the HUA index was the highest, including UA, BUN, CRE, and XOD (p < 0.001). In
addition, Firmicutes and Campylobacter were correlated with these four indices (p < 0.05).
Acidobacteriota and Verrucomicrobiota were correlated with UA (p < 0.05); Desulfobacterota
and Fusobacterioata were correlated with BUN (p < 0.001), Fusobacterioata and Acidobacteriota
were correlated with CRE (p < 0.01, p < 0.05), Acidobacteriota and Gemmatimonadota were
correlated with XOD(p < 0.01). Based on the above results, we speculate that the intestinal
microflora of HUA mice treated with fermented dandelion may play a key role in reducing
uric acid.
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Figure 9. Effects of fermented dandelion on intestinal microbiota of mice with HUA. (A) LEfSe
analysis; (B) Relativity analysis. The data are expressed as mean ± SD (n = 6). Compared with
HUA index, * p < 0.05, ** p < 0.01, *** p < 0.001. A: Control; B: Model; C: ALL, allopurinol; D: D−L,
dandelion low dose group; E: D−H, dandelion high dose group; F: FD−L, low dose group of LAFD;
G: FD−H, high dose group of LAFD.
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4. Discussion

The remarkable characteristic of HUA is that the content of uric acid in the blood is
higher than the normal level. How to reduce the concentration of serum uric acid has
become the key to the treatment of HUA. In recent years, the search for effective or new
bioactive compounds from a variety of traditional herbs, natural products, or LAB and
other micro-organisms to treat HUA has attracted the people’s attention.

As an important member of human intestinal flora, probiotics have the characteristics
of being non-toxic, harmless, having no side effects, and having more advantages than
drugs in the treatment of HUA [37]. Additionally, probiotics have shown a variety of
benefits, such as immune regulation [38], improving intestinal function and preventing
intestinal flora ecological disorders [39], and alleviating inflammation caused by HUA [40].
Additionally probiotics also reduce purine absorption, improve purine metabolism, and
inhibit the increase in serum uric acid levels by maintaining intestinal microbial homeosta-
sis [41]. Hsieh, MW et al. screened three kinds of LAB with the best purine degradation.
LAB could not only protect renal function but also effectively regulate the concentration of
uric acid in the body [42]. Yuanxun Xiao et al. isolated LAB from 18 pickles and proved
that LAB can relieve HUA and renal injury through animal experiments [43].

Currently, the comprehensive cooperative research on the two natural active sub-
stances of medicinal plants and probiotics has gradually attracted widespread attention.
At the same time, people pay more and more attention to the study of traditional Chinese
medicine fermented by probiotics. Pei Y et al. fermented bovine bile with Massa Medicata
Fermentata. Fermented bovine bile may have anti-inflammatory effects by weakening the
activation of NLRP3 inflammatory bodies and enhancing the anti-inflammatory effect of
bovine bile [44]. Le Su et al. found that compared with Salvia miltiorrhiza, the fermentation
products of Salvia miltiorrhiza could more effectively alleviate the experimental ulcerative
colitis induced by sodium dextran sulfate in mice [45]. Therefore, in this experiment, LAB
was selected to ferment dandelion to explore the effect and mechanism of HUA.

Dandelion polyphenols have strong antioxidant, anticancer, antibacterial, antiviral,
and anti-inflammatory activities [46]. The content of polyphenols in LAFD was doubled
and the antioxidant activity was significantly enhanced. XOD is a key factor in purine
catabolism, which catalyzes the metabolism of hypoxanthine and xanthine to uric acid.
Inhibition of XOD activity is beneficial to reducing uric acid [47]. To effectively screen the
fermentation strains to reduce HUA, six kinds of LAB were evaluated by the XOD inhibition
test in vitro. We found that LAFD has the smallest IC50 and the strongest inhibitory effect
on XOD. As an important intestinal probiotic in the family of LAB, Lactobacillus acidophilus
can participate in the host’s intestinal regulation through the production of metabolites and
the regulation of intestinal microflora [48]. Studies have shown that Lactobacillus acidophilus
reduces renal fibrosis in mice with chronic kidney disease through immunomodulatory
effects [49]. Lactobacillus acidophilus fermented Artemisia annua (AST) can increase the
expression of OAT1, decrease the expression of URAT1 and GLUT9 in HUA rats, and
increase the abundance of intestinal beneficial bacteria [17].

In our study, LAFD has better uric-acid-lowering effect and liver and kidney protec-
tive function than unfermented dandelion. Uric acid stimulates inflammatory mediators
and causes inflammatory responses [50]. HUA promotes the expression of inflammatory
cytokines, such as IL-1 β, TNF- α, and IL-6 [51]. Studies have confirmed that heat-clearing
and detoxifying herbs can improve the injury induced by high uric acid by inhibiting the
inflammatory reaction of the body. In addition to dandelion, Poria cocos could alleviate
paw edema in mice with HUA and gout, decrease serum UA, TNF- α, IL-1β, IL-6, and IL-12,
and improve the infiltration of inflammatory cells in renal tubule and joint synovium [52].
In this experiment, LAFD significantly improved the levels of IL-6, TNF- α, and IL-1β in
the serum of HUA mice, and alleviated renal and intestinal inflammation.

Uric acid is mainly excreted by the kidney (65–75%) and the intestinal tract (25–35%).
Uric acid transporter is necessary for uric acid renal treatment, which can be divided into
reabsorption-related proteins and secretion-related proteins. Among them, URAT1 reab-
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sorbs uric acid in the apical membrane of renal proximal tubular epithelial cells (TECs) [53].
As a transporter, GLUT9 can reabsorb uric acid and glucose into renal tubular epithelial
cells [54]. The intestinal tract is an important organ for uric acid excretion. The endogenous
uric acid in the blood is secreted directly into the intestinal lumen of all intestinal segments
through the urate transporter [55]. The excretion of uric acid through the intestine depends
on the intestinal homeostasis maintained by the intestinal mucosal barrier [56]. ABCG2 is
expressed in the parietal membrane and plays an important role in uric acid excretion [57].
Apigenin reduces uric acid by reducing renal GLUT9 and URAT1 levels and increasing
OAT1 levels [58]. Chicory promotes intestinal uric acid excretion by regulating ABCG2
in the intestinal tract of the HUA model [59]. In this study, LAFD decreased the mRNA
expression of GLUT9 and URAT1 in the kidney of HUA mice, increased the mRNA expres-
sion of OAT1 in the kidney and ABCG2 in the small intestine, and effectively excreted uric
acid in the kidney and intestine of HUA mice.

The intestinal microbiota is another key factor in the pathogenesis of HUA [60]. In
general, the changes in intestinal microflora observed after treatment may be attributed
to the remission of the disease or the effect of therapeutic drugs [61]. Therefore, the study
of the relationship between intestinal microflora and drug therapy is helpful to determine
the biomarkers of disease remission or to clarify the mechanism of therapeutic drugs. It is
reported that HUA leads to the imbalance of intestinal microflora, including the increase
in pathogenic bacteria and the decrease in intestinal microbial diversity [62]. In this study,
LAFD restored the composition of intestinal microflora of HUA mice and enhanced the α

and β diversity of intestinal microflora.
Based on the gut kidney axis, we investigated the changes in the composition of

intestinal flora, which may lead to renal damage. Under normal circumstances, the human
intestinal microbiome is in equilibrium, and the main bacteria are Firmicutes and Bacteroidota,
accounting for >95% of intestinal bacteria [63,64]. In this study, LAFD decreased the relative
abundance of Bacteroidota, increased the relative abundance of Firmicutes, and decreased
the ratio of Bacteroides to Firmicutes. At the family level, it decreased the relative abundance
of Muribaculaceae and restored the relative abundance of Lachnospiraceae. Supplementation
of short-chain fatty acids (SCFAs) could significantly improve the intestinal barrier function
and renal function [65,66]. Studies have reported that Bacteroides mainly produce acetate
and propionate, while thick-walled bacteria produce more butyrate [67]. Butyrate is
considered to be a health-promoting molecule because it can increase insulin sensitivity [68],
exert anti-inflammatory activity [69], and regulate energy metabolism [70]. Lachnospiraceae
is one of the major producers of SCFAs and can regulate inflammation and the immune
system by producing butyrate [71,72]. It can be inferred from these results that LAFD may
regulate intestinal immune homeostasis by regulating intestinal microflora. To the best
of our knowledge, this is the first report related to the Lactobacillus acidophilus fermented
dandelion. However, the exact mechanism between the chemical composition of LAFD
and its regulation of HUA needs further study.

5. Conclusions

In this study, we screened the optimal fermentative strain of Lactobacillus acidophilus
from lactic acid bacteria with in vitro XOD inhibition assay. LAFD treats hyperuricemia
in multiple ways: (1) reducing XOD concentration and decreasing uric acid synthesis;
(2) improving liver and kidney function and inhibiting inflammation; (3) promoting uric
acid excretion by regulating the mRNA expression of GLUE9, URAT4, OAT1, ABCG2;
(4) enhancing flora diversity and maintaining intestinal homeostasis. In conclusion, our
findings may provide the key evidence that LAFD may be a promising drug candidate for
the treatment of HUA and related diseases.
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