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Abstract: Intestinal barrier dysfunction and gut microbiota disorders have been associated with
various intestinal and extraintestinal diseases. Fermented wheat bran polysaccharides (FWBP)
are promising natural products for enhancing the growth performance and antioxidant function
of zebrafish. The present study was conducted, in order to investigate the effects of FWBP on
the intestinal motility and barrier function of zebrafish, which could provide evidence for the
further potential of using FWBP as a functional food ingredient in the consideration of gut health.
In Experiment 1, the normal or loperamide hydrochloride-induced constipation zebrafish larvae
were treated with three concentrations of FWBP (10, 20, 40 µg/mL). In Experiment 2, 180 one
month-old healthy zebrafish were randomly divided into three groups (six replicates/group and
10 zebrafish/tank) and fed with a basal diet, 0.05% FWBP, or 0.10% FWBP for eight weeks. The results
showed that FWBP treatment for 6 h can reduce the fluorescence intensity and alleviate constipation,
thereby promoting the gastrointestinal motility of zebrafish. When compared with control group,
zebrafish fed diets containing FWBP showed an increased villus height (p < 0.05), an up-regulated
mRNA expression of the tight junction protein 1α, muc2.1, muc5.1, matrix metalloproteinases 9 and
defensin1 (p < 0.05), an increased abundance of the phylum Firmicutes (p < 0.05), and a decreased
abundance of the phylum Proteobacteria, family Aeromonadaceae, and genus Aeromonas (p < 0.05).
In addition, 0.05% FWBP supplementation up-regulated the intestinal mRNA expression of IL-10
and Occludin1 (p < 0.05), enhanced the Shannon and Chao1 indexes (p < 0.05), and increased the
abundance of Bacteroidota and Actinobacteriota at the phylum level (p < 0.05). Additionally, 0.1%
FWBP supplementation significantly improved the villus height to crypt depth ratio (p < 0.05) and
increased the mRNA expression of IL-17 (p < 0.05). These findings reveal that FWBP can promote the
intestinal motility and enhance the intestinal barrier function, thus improving the intestinal health
of zebrafish.

Keywords: fermented wheat bran polysaccharides; intestinal motility; intestinal barrier; intestinal
health; zebrafish

1. Introduction

As an important organ of the digestive and immune systems in human body, the
intestine is in charge of nutrient digestion and the absorption of food [1,2]. In normal
digestion, food is transited through the gastrointestinal tract by rhythmic contractions.
Gastrointestinal dysmotility could lead to spasms or paralysis, thereby causing gastroin-
testinal diseases and morbidity [3]. Furthermore, intestinal constipation may change the
gut microbiome, potentially contributing to the impairment of gastrointestinal functions.
As the key determinant of gut health, the intestine is colonized by trillions of microbes
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comprising the gut microbiota, which participates in nutrient metabolism, regulation of
immune system and energy regulation [4]. Numerous observations have indicated that
the changes in the composition of gut microbiota are associated with various intestinal
diseases [5]. Therefore, the promotion of gastrointestinal motility and the stability of the gut
microbiota are essential ecological characteristics, given their importance to gut health. Pre-
vious studies showed that various polysaccharides possess effects regarding the regulation
of microbiota, enhancing immunity, and improving health status [6].

Wheat bran, as one available by-product of wheat processing, contains many high-
value components: proteins, non-starch polysaccharides, enzymes and vitamins. In recent
years, wheat bran polysaccharides (WBP) have attracted particular attention for their
demonstrated beneficial effects, derived from their immunomodulatory, antioxidant, anti-
hyperlipidemia, and antitumor activities [7–10]. However, wheat bran contains non-starch
polysaccharides, which are not easily digested or absorbed by fish. Microbial fermentation
technology can change the structure of non-starch polysaccharides. Recently, a novel
polysaccharide component was isolated from fermented wheat bran in our laboratory. It is
a 21.19 kDa hetero-polysaccharides (the total polysaccharide content was 96.96%), and it is
mainly composed of glucose, xylose, arabinose, galactose and mannose [11]. Through our
previous study, S. cerevisiae and B. subtilis were selected to fermented wheat bran, which
could obtain the highest yield of fermented wheat bran polysaccharides (FWBP) [12]. In
addition, our previous study showed that FWBP exhibited significant antioxidant activity
in vitro, and exhibited stronger effects on growth performance and antioxidant function
in juvenile zebrafish than WBP [13]. However, the influence of FWBP on gut health in
zebrafish is poorly investigated.

Zebrafish are fresh water fish, and has been widely studied for various purposes, such
as in ecotoxicology, immunity, and neurophysiology studies. When compared with murine
models, which have high costs, long life cycles, and complex operation, zebrafish models’
popularity is due in part to the fact that they have a shorter life cycle, easy and low-cost
breeding, a high presence of human orthologous genes, and the availability of a large
array [14]. In addition, the intestine of zebrafish is quite similar to that of humans [13,15,16].
In this aspect, zebrafish provide a useful platform for studying host–microbe interactions.
Therefore, in the current study, we assessed the effectivity of FWBP on intestinal motility
in zebrafish larvae. Furthermore, we sought to understand as to whether diets containing
FWBP can alter the composition of the gut microbiota and modulate the gut immune
response in zebrafish.

2. Materials and Methods
2.1. Preparation of Fermented Wheat Bran Polysaccharides

Wheat bran was fermented, and the FWBP was extracted from fermented wheat
bran as described in our previous study [11]. Wheat bran was fermented according to
previous methods, and the inoculum was prepared by mixing activated S. cerevisiae and
B. subtilis in a ratio of 3.3:6.7, with a final concentration of 1 × 108 CFU/mL. The WB was
inoculated with 10.4% (v/v) inoculum. Then, sterile, distilled water was added to achieve a
1:1.16 material: water ratio. The substrate was fermented at 36 ◦C for 47 h and dried at
45 ◦C for 48 h to obtain fermented WB. The fermented WB was ground and stored at 4 ◦C
for the polysaccharide extraction.

2.2. Experiment 1: Effect of FWBP on Promoting Intestinal Peristalsis and Alleviating
Constipation in Zebrafish Larvae
2.2.1. Intestinal Peristalsis-Promoting Effect in Zebrafish Larvae

Zebrafish larvae at 5 dpf were randomly selected and placed in a 6-well microplate,
with 3 mL 10 µg/L Nile red, for 16 h. Then, the zebrafish were washed with fresh embryo
media to remove the dye, and FWBP was added at concentrations of 0 (Control), 10, 20, 40
and 30 µg/mL domperidone (DOM) for 6 h. At the end of the treatment, the zebrafish were
rinsed with fresh embryo media, and we then randomly selected 20 zebrafish from each
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concentration. The intestinal fluorescence intensity of the zebrafish was measured under a
fluorescence microscope [3]. Then, according to the results of the intestinal fluorescence
intensity of zebrafish, the promotion effects of DOM and FWBP were calculated as:

promotion effect = [(DOM/FWBP group − Control group)/Control group] × 100%

2.2.2. Alleviating the Constipating Effect of FWBP in Zebrafish Larvae

Further study was carried out by establishing the constipation model of zebrafish. The
constipation zebrafish model was established with a concentration of 10 µg/mL loperamide
hydrochloride (LH). Then, we followed the steps outlined in Section 2.2.1. According to the
results of the intestinal fluorescence intensity of zebrafish, the alleviating effects of DOM
and FWBP were calculated as:

alleviating effect = [(DOM/FWBP group − LH group)/LH group] × 100%

2.3. Experiment 2: Effects of FWBP on the Immune Activity, Intestinal Morphology and Gut
MicroBiota of Zebrafish
2.3.1. Animals and Experimental Diets

A total of 180 one-month old zebrafish (66.0 ± 0.7 mg) were randomly selected from
18 aquariums (3 L), at the rate of 10 fish per aquarium, and were adapted to a recirculating
system for 14 days. After the nursery period, the zebrafish were weighed and divided
into three treatments: (1) the basal diet (Control), (2) the basal diet supplemented with
0.05% FWBP (0.05% FWBP), and (3) the basal diet supplemented with 0.1% FWBP (0.1%
FWBP). Six replicate tanks were randomly assigned per treatment group. The composition
of the commercial diet was 38.9% crude protein, 15.1% crude fat, 93.6% dry matter, and 11%
ash. Zebrafish were fed to apparent satiation for 8 weeks. In this study, the zebrafish were
fed four times a day until apparent satiety. During the experimental period, water was
exchanged automatically and the basic physicochemical parameters of the water, including
the temperature, pH, and amount of dissolved oxygen, were maintained at 28 ± 1 ◦C,
7.2 ± 0.52, and 7.28 ± 0.39 mg/L, respectively.

2.3.2. Histological of the Intestines

The intestinal samples were prepared for histological analyses, according to routine
laboratory procedures. At the end of the feeding trial, segments of the middle intestine
were surgically removed; three fish per tank (n = 18/group) were selected and preserved
in freshly prepared 4% paraformaldehyde solution. Following fixation, the fixed intestine
tissues were dehydrated in gradient ethanol, hyalinized in xylene, and embedded in wax.
Embedded midguts were sectioned at 4–5 µm and stained with hematoxylin and eosin
(HE), using a standard protocol. Then, we observed the sections using a microscope [17].

2.3.3. RT-PCR Analysis

The total RNA of intestines from zebrafish was extracted using TRIzol Reagent (In-
vitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. To construct
cDNA, the Super-Script III First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA)
was used. The primers for gene expression detection are shown in Table 1. The real-time
PCR method was used to determine the relative expression of genes, as described in our
previous work [12]. β-actin was selected as the reference gene, and was used to normal-
ize the gene expression levels. For each gene, the mRNA expression levels of the target
genes were calculated using the 2−∆∆Ct method, and data for each target transcript were
normalized to the control zebrafish (1.0) [18].
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Table 1. The primers for gene expression used in this study.

Gene Primer Sequences (5′→3′) Product Size (bp) Accession Number

IL-10
F:ACGCTTCTTCTTTGCGACTG

295 NM_001020785.2R:TTGGGGTTGTGGAGTGCTT

IL-17
F:CCCATCCATCCAATCAACAA

134 NM_001020787.1R:ACCTCAACGCCGTCTATCAG

TJPα
F:CCATTGAGACAGGAGTAAGCATT

153 XM_009303250.3R:ACATCACCAGAGGACTCAACAGA

Occludin1
F:GATGTGGAGGACTGGGTCAATA

183 NM_212832.2R:GCCGCTGCTAATAGGGACTG

Mucin2.1
F:GCCGCTGCTAATAGGGACTG

210 XM_021470771.1R:CGACAGTTTTCGATTTACGTG

Mucin5.1
F:AATAATCTTGCCTGCCCAGAGT

190 XM_021470622.1R:CGACATTGATTTCAGTGATGTTCA

MMP9
F:GCCTGCCAAATCAAGGAGTT

101 NM_213123.1R:CGTTCACCATTGCCTGAGAT

defensin1
F:GCATCCTTTCCCTGGAGTT

91 NM_001081553.1R:AGCCTAATGGTCCGAAGTAAA

IL-10: Interleukin 10; IL-17: Interleukin 17; TJPα: tight junction protein α; MMP9: Matrix metalloproteinases 9.

2.3.4. 16S rRNA Gene Sequencing Analyses of Zebrafish Gut Microbiota

Zebrafish were fed FWBP diets for eight weeks, then, four hours after the last feed-
ing session, the digesta samples were collected from three biological replicates for each
group [19], with six pooled samples per treatment as biological replicates. The gut mi-
crobiota from the experimental zebrafish was analyzed using bacterial 16S rRNA gene
sequencing. Total genomic DNA from the intestinal content was extracted according to the
manufacturer’s instructions. Then, 16S rRNA genes from the genomic DNA samples were
amplified by PCR using specific primers for the V4 region of bacterial 16S rRNA. The PCR
amplification was performed with the following protocol: 30 s of initial denaturation at
98 ◦C; 98 ◦C for 10 s; 50 ◦C for 30 s; 72 ◦C for 30 s; repeated for 30 cycles; a final elongation
step at 72 ◦C for 10 min. All procedures were conducted using the Novo-gene Bioinformat-
ics Technology Co., Ltd. (Beijing, China). The sequencing library was quantified by Qubit
and qPCR, and the barcoded V4 PCR amplicons were sequenced using a NovaSeq6000
platform, according to the manufacturer’s protocol [20].

2.4. Statistical Analysis

All results for different treatment groups are shown as mean ± standard error (SE).
The data were analyzed by one-way ANOVA in SAS. For treatments that showed significant
differences, means were compared using the Tukey’s test. The level of significance was set
at p < 0.05.

3. Results
3.1. Experiment 1: Effect of FWBP on Promoting Intestinal Peristalsis and Alleviating
Constipation in Zebrafish

FWBP was shown to promote intestinal peristalsis in the zebrafish, with the results
shown in Figure 1. The intestinal fluorescence intensity of zebrafish in the morpholine
group, as well as the FWBP groups with different concentrations, is significantly lower
than that of the control group (p < 0.05). The intestinal motility in zebrafish, promoted by
different concentrations of FWBP, increases and then decreases with increasing concentra-
tions of FWBP. The intestinal motility promotion effect of FWBP in zebrafish at 20 µg/mL
was 25.98%.
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The effect of FWBP on the relief of constipation in zebrafish is shown in Figure 2. The
fluorescence intensity of the LH group was significantly higher than that of the control
group (p < 0.05), indicating that the constipation model was successfully established.
However, zebrafish groups treated with morpholine, as well as 20 and 40 µg/mL FWBP,
showed dramatically decreased fluorescence intensity. This result indicates that FWBP
relieves intestinal constipation in zebrafish.
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3.2. Experiment 2 Effects of FWBP on Immune Activity, Intestinal Morphology and Gut
Microbiota of Zebrafish
3.2.1. Effect of FWBP on Intestinal Morphology

The effects of FWBP on the intestinal morphology of zebrafish are presented in
Figures 3 and 4, and, compared with control group, the FWBP groups showed a significant
improvement in the height of the villi (p < 0.05).
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3.2.2. Expression of Intestinal Inflammation-Related Genes and Intestinal Mucosal
Barrier-Related Genes

As shown in Figure 5, after zebrafish were fed diets with the supplementation of FWBP,
the mRNA expression of interleukin 10 (IL-10) in the intestines of zebrafish in the 0.05%
FWBP group was significantly increased, comparted to the control (p < 0.05). Zebrafish
in the 0.1% FWBP group showed significantly increased IL-17 mRNA expression when
compared with the control group (p < 0.05). The mRNA expression of intestinal mucosal
barrier-related genes was determined, and the results are presented in Figure 6. When
compared with the control group, FWBP groups showed up-regulated mRNA expression of
tight junction protein α(TJP1α), muc2.1, muc5.1, matrix metalloproteinases 9 (MMP9), and
defensin1 (p < 0.05). The 0.05% FWBP group showed higher Occludin1 mRNA expression
than in the control and 0.1% FWBP groups (p < 0.05).

3.2.3. Effect of FWBP on Gut Microbiota
Diversity of Gut Microbiota

The Venn diagrams (Figure 7) show that a total number of 404 operational taxonomic
units (OTUs) is shared by the three groups, and the numbers of unique OTUs in the control,
0.05% FWBP, and 0.1% FWBP groups were 214, 298, and 264, respectively. In the analysis of
α-diversity (Table 2), the Shannon and Chao1 indexes were significantly enhanced in the
0.05% FWBP supplementation group (p < 0.05).
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Composition of Intestinal Microbiota

In regards to the intestinal microbial composition, at the phylum level (Figure 8),
Fusobacteriota, Proteobacteria, Bacteroidota, Actinobacteriota, and Firmicutes were the
predominant bacterial phyla in the gut of the zebrafish. At the family and genus level,
Fusobacteriaceae and Aeromonadaceae, as well as Cetobacterium and Aeromonas, were
the dominant families and genera, respectively (Figures 9 and 10). Taxonomic profiling
showed a diverse gut microbiota community at the phylum, family and genus level.
The significantly decreased abundance of Proteobacteria and the significantly increased
abundance of Firmicutes at the phylum level were observed in 0.05% FWBP and 0.1% FWBP
groups, in comparison with control group (p < 0.05). In addition, the 0.05% FWBP group
showed a significantly increased relative abundance of Bacteroidota and Actinobacteriota
(p < 0.05). At the family and genus level (Figures 9 and 10), by comparison with control
group, a significantly decreased abundance of the family Aeromonadaceae and genus
Aeromonas was observed in the 0.05% FWBP and 0.1% FWBP groups (p < 0.05).
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Table 2. The effects of FWBP on α-diversity in the gut.

Groups Observed-
Species

Goods-
Coverage

PD-Whole-
Tree Shannon Simpson Chao1

control 341.67 ± 98.96 0.999 ± 0.0001 24.99 ± 4.02 1.76 ± 0.09 b 0.61 ± 0.03 274.12 ± 74.44 b

0.05% FWBP 422.67 ± 78.65 0.999 ± 0.0001 41.93 ± 5.65 3.53 ± 0.51 a 0.71 ± 0.09 565.43 ± 32.47 a

0.1% FWBP 342.66 ± 88.91 0.999 ± 0.0002 31.51 ± 6.29 1.63 ± 0.31 b 0.57 ± 0.13 270.33 ± 46.10 b

FWBP: Fermented wheat bran polysaccharides. Data are expressed as the mean ± SE. Different lowercase
superscript letters denote statistically significant differences among different groups (p < 0.05).
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4. Discussion

Wheat bran, as a rich source of dietary fiber, contains many non-starch polysaccha-
rides, including cellulose, and other non-cellulose polysaccharides, such as arabinoxylan,
β- glucan, glucomannan, araban, and so on [21]. However, the gut tract of zebrafish cannot
directly digest the non-starch polysaccharide. Therefore, the current study used microbial
fermentation technology to break down wheat bran by microorganisms [22]. Studies have
shown that wheat bran could be altered by microbial fermentation, and active substances,
such as soluble polysaccharides, were significantly increased [23,24]. Based on our previous
study, the results found that using S. cerevisiae and B. subtilis could change the structural
characteristics of wheat bran and increase the yield of FWBP when compared to using a
single strain. Because S. cerevisiae can secrete many enzymes and assimilate five-carbon
sugars, B. subtilis can produce α-amylase, cellulase, β-glucanase, phytase, pectinase, xy-
lanase, and so on [25]. In addition, our previous research found that the antioxidant activity
of WBP can be improved by fermentation with S. cerevisiae and B. subtilis, both in vitro and
in zebrafish models [11]. Previously, our study results showed that the FWBP group had
better growth performance, higher antioxidant-associated gene expression, and a more
positive effect on gut microbiota than the WBP group in zebrafish [13].

Intestinal motility disorders are an important cause of morbidity. The primary clinical
manifestation of this effect is constipation, with the potential to produce intestinal obstruc-
tion, intestinal infarction, and a paralytic ileus, leading to death in sporadic cases [26]. The
zebrafish is a potentially valuable model for gastrointestinal studies, due to its transparency,
low cost, and ease of screening [27]. Studies have shown that loperamide hydrochloride
can induce an increase in intestinal fluorescence intensity, which indicates that loperamide
hydrochloride can be used to establish the zebrafish model of constipation [27]. Researchers
have found that wheat bran polysaccharide induces cytokine expression via the toll-like re-
ceptor 4-mediated p38 MAPK signaling pathway, and prevents cyclophosphamide-induced
immunosuppression in mice [7]. To determine whether FWBP can be used as a natu-
ral product for the treatment of intestinal motility disorders, we investigated FWBP’s
promotion of intestinal peristalsis in normal zebrafish and in zebrafish with loperamide
hydrochloride-induced constipation. In the present study, the results showed that FWBP
had a strong promoting effect on the intestinal motility of normal zebrafish. Furthermore,
the fluorescence intensity was significantly altered in the zebrafish treated with loperamide
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hydrochloride when compared with the normal group. After treatment with FWBP, the flu-
orescence intensity was dramatically decreased, indicating the amelioration of loperamide
hydrochloride-induced constipation in zebrafish. This initial data suggested that the FWBP
effectively promoted intestinal peristalsis.

Intestines with a large surface area acting as a barrier are acknowledged as the first line
of resistance against external harmful substances’ penetration into the intestine, associated
with structural integrity, immunological status and microbiota homeostasis [28,29]. The
villus height is a common indicator used to evaluate the function of the gut; an increase in
villus height reflects an improvement in the digestion and absorption ability of the gut, and
thereby positively affects the utilization of nutrients [2,30]. Additionally, complete intestinal
barrier function is closely related to integrated intestinal morphology [31]. Polysaccharides
have been shown to promote intestinal health in fish. However, there are very few studies
regarding the effects of polysaccharides derived from wheat bran on intestinal function in
zebrafish. In this work, the effect of FWBP on the histological structure of zebrafish gut
was studied. Although the crypt depth did not show any alteration between experimental
groups, villus height significantly increased in the FWBP-treated versus the control group.
In addition, 0.1% FWBP significantly increased the villus height to crypt depth ratio. Our
results were in partial accordance with Zahran et al., who observed that Nile tilapia fed
with 1500 mg/kg Astragalus polysaccharides had an increased villus height in the anterior
intestine [32].

Intestinal barrier function is considered to be the most important line of defense against
external stimuli, which is composed of an immune barrier, mechanical barrier, chemical
barrier, and biological barrier [33]. Inflammatory factors are a series of proteins secreted
by endothelial cells, lymphocytes, monocytes, and fibroblasts that play an important role
in regulating inflammatory processes, and are important facets of the intestinal immune
barrier [34]. Our results displayed that the 0.05% FWBP group had anti-inflammatory
effects on the intestine of zebrafish, via significantly increasing the expression of IL-10. It
can be concluded that supplementation of appropriate amounts of FWBP in diets could
improve the zebrafish intestinal immune system. In present study, the expression of the
pro-inflammatory cytokine IL-17 was induced by the addition of 0.1% FWBP. However,
the influence of FWBP on the intestinal immune system in zebrafish is poorly investigated,
thus, it is difficult to make any direct comparison. Therefore, this aspect requires further
investigation. In addition, our findings proposed that the intestinal mucosal barrier-related
genes (TJP1α, Occludin1, muc2.1, muc5.1, MMP9, and defensin1) exhibited higher gene
expression in the FWBP-supplemented group than in the control groups, indicating that
FWBP improved the zebrafish intestines’ mechanical and chemical barrier function, by
increasing the expression of related genes. This result may be due to the beneficial effects
of FWBP on intestinal morphology. Similar results were also observed for other sources
of natural polysaccharides in zebrafish diets. For instance, Li et al. reported that dietary
supplementation with Astragalus polysaccharide up-regulated TJP1b, Occludin1 and IL-10
gene expression in the intestines of zebrafish [35].

The intestinal biological barrier is a mutually dependent and interrelated microe-
cosystem, which is represented by the intestinal microbiota [33]. The intestinal microbiota
plays important roles in immunity, the maintenance of homeostasis, and in digestion and
nutrient absorption of the host [36]. A higher Shannon index value indicates a rich gut
biodiversity. Our results demonstrate that supplementation with 0.05% FWBP can result
in an enriched microbiota diversity in the zebrafish intestine. The possible explanation
of the differences in results received from 0.05% FWBP and 0.1% FWBP could be that
excess FWBP results in bacterial inhibition [37]. At the phylum level, the abundance of
Proteobacteria was decreased, and the abundance of Firmicutes was increased in all FWBP
groups. Proteobacteria is generally associated with dysbiosis, or an unstable gut microbial
community; an increased abundance of Proteobacteria may bring potential risks to fish [38].
The Firmicutes are beneficial dominant bacteria in animals’ guts, and many probiotics, such
as Lactobacillus, Enterococcus and Bacillus, belong to the Firmicutes phylum [30]. In addition,
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dietary addition of 0.05% FWBP remarkably enhanced the abundance of Bacteroidetes and
Actinobacteria. Studies have shown that Bacteroides have the ability to produce SCFAs by
fermenting dietary fiber and other undigested food remnants, in order to regulate host im-
mune homeostasis [39]. As probiotics, bacteria in the phylum Actinobacteria can produce
abundant secondary metabolites, which can inhibit the growth of pathogenic intestinal
bacteria, and enhance the host defense ability [2]. Our present study found that dietary
0.05% FWBP had a stronger effect on probiotic levels. This was consistent with our previous
in vitro study, which found that, with the increase of FWBP supplementation, FWBP had
the effect of first increasing, then decreasing, probiotic levels [37]. This result may be that
the high concentration of FWBP has an inhibitory effect on bacterial growth [30]. Previous
studies of the effects of polysaccharides on aquaculture were consistent with our results.
Su et al. confirmed that dietary Yu-Ping-Feng polysaccharide supplementation decreased
the intestinal Proteobacteria and Chlamydiae abundance, and increased the abundance of
Bacteroidetes in Litopenaeus vannamei [40]. At the family and genus level, the abundances
of the family Aeromonadaceae and genus Aeromonas were greatly decreased in the all
FWBP groups. Aeromonas, belonging to Aeromonadaceae, is mostly considered a major
opportunistic pathogen in fish, causing intestinal inflammation. The results indicated
that FWBP positively changed the gut microbiota through decreasing the abundance of
opportunistic pathogens, and increasing the abundance of beneficial bacterium.

5. Conclusions

In conclusion, FWBP can promote intestinal peristalsis in zebrafish larvae. FWBP can
improve intestinal morphology, mitigate intestinal inflammation, improve the mechanical
and chemical barrier, and positively modulate the intestinal microbiota of zebrafish, thus
enhancing intestinal barrier function. These results indicate that FWBP could be developed
as a functional food ingredient candidate, in order to promote intestinal health.
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