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Abstract: Lactic acid bacteria (LAB) form a group of bacteria to which most probiotics belong and
are commonly found in fermented dairy products. Fermented foods and beverages are foods made
through desired microbial growth and enzymatic conversions of food components. In this study,
43 LAB were isolated from Ethiopian traditional cottage cheese, cheese, and yogurt and evaluated for
their functional and safety properties as candidate probiotics. Twenty-seven isolates, representative
of each fermented food type, were selected and identified to the species level. Limosilactobacillus
fermentum was found to be the predominant species in all samples studied (70.4%), while 11.1%
of isolates were identified as Lactiplantibacillus plantarum. All 27 isolates tested showed resistance
to 0.5% bile salt, while 26 strains were resistant to pH 3. The LAB isolates were also evaluated
for antagonistic properties against key pathogens, with strain-specific features observed for their
antimicrobial activity. Five strains from cottage cheese (Lactiplantibacillus plantarum 54B, 54C, and 55A,
Lactiplantibacillus pentosus 55B, and Pediococcus pentosaceus 95E) showed inhibitory activity against
indicator pathogens that are key causes of gastrointestinal infections in Ethiopia, i.e., Escherichia coli,
Salmonella enterica subsp. enterica var. Typhimurium, Staphylococcus aureus, Shigella flexneri, and Listeria
monocytogenes. Strain-specific immunomodulatory activity monitored as nuclear factor kappa B (NF-
κB) and interferon regulatory factor (IRF) activation was documented for Lactiplantibacillus plantarum
54B, 55A and P. pentosaceus 95E. Antibiotic susceptibility testing confirmed that all LAB isolates were
safe concerning their antibiotic resistance profiles. Five isolates (especially Lactiplantibacillus plantarum
54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, and P. pentosaceus 95E) showed promising results
in all assays and are novel probiotic candidates of interest for clinical trial follow-up.

Keywords: traditional fermented dairy products; lactic acid bacteria; antimicrobial activity; NF-κB;
interferon regulatory factors; probiotics; Ethiopia

1. Introduction

Food fermentation forms an essential element of human civilization, serving as a
means to preserve and enhance shelf-life, flavor, texture, taste, nutritional value, and
functional properties of food [1,2]. Fermented foods and beverages are foods made through
desired microbial growth and enzymatic conversions of food components [3]. Africa is
considered to be a continent with the richest variety of fermented foods [4]. Especially,
Ethiopia is a country rich in cultural diversity, with each cultural group having its own
variety of fermented food and beverages [5]. Fermented food items commonly consumed
in Ethiopia include fermented dairy products (e.g., cottage cheese (Ayib), yogurt (Ergo)),
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fermented plants (e.g., Enjerra, Kotcho), fermented beverages (e.g., Borde, Cheka), and
fermented condiments (e.g., Siljo, Awaze, Datta) [5–7]. Most of these traditional fermented
foods are produced on a fairly small-scale level, usually for household consumption and,
at times, sold by local vendors from their homes [5,6]. However, their microbiology and
potential health benefits are not yet widely studied. Moreover, there is a rapid rise in
the number of industrially processed fermented products in urban areas, especially dairy
products [8].

Most fermented dairy products harbor a microbial community characterized by a dom-
inance of lactic acid bacteria (LAB) that can ferment carbohydrates to produce lactic acid.
This group of bacteria includes several genera, such as the emended genus Lactobacillus [9],
Lactiplantibacillus, Lacticaseibacillus, Limosilactobacillus, Streptococcus, Pediococcus, Leuconostoc,
and Weissella [1,9]. Because of their long-time use in various food and feed preparations
without pronounced adverse effects, many species of LAB (especially those belonging
to Lactobacillaceae) have been granted a “generally recognized as safe” (GRAS) status by
the US FDA [10] and “Qualified Presumption of Safety” (QPS) by the European Food
Safety Authority (EFSA) [11]. Probiotics are defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit to the host” [12]. According
to this definition, the health benefit must be supported by at least one positive human
clinical trial conducted according to generally accepted scientific standards [13]. Over the
last decades, LAB use as probiotics has increased because specific LAB strains can confer a
wide range of health benefits through mechanisms including enhancement of gut barrier
function, competitive exclusion of pathogens, production of antimicrobial substances [14],
and modulation of immune functioning [15]. These mechanisms of action can result in
clinical benefits such as those documented for specific strains in specific clinical trials,
especially for reducing the risk or symptoms of various gastrointestinal (GI) disorders such
as irritable bowel syndrome, ulcerative colitis, and bacterial or viral infections [16].

Foodborne bacterial and viral infections are an important cause of morbidity and
mortality and a significant barrier to the socio-economic development of all nations. In
2010, based on a World Health Organization (WHO) estimation, Africa was reported to
have the highest burden of foodborne diseases per capita, with a median of 2455 foodborne
Disability Adjusted Life Years (DALYs) per 100,000 inhabitants [17]. Of these, 26.6%
were attributed to Salmonella spp., 11.2% to enteropathogenic Escherichia coli, 8.6% to
enterotoxigenic E. coli, 0.08% to Listeria monocytogenes, 5.7% to Campylobacter spp., and
0.004% to Shiga-toxin producing E. coli [18,19]. In Ethiopia, diarrheal diseases have been
reported to be the second most important contributor to the total burden of all disease types
and the second leading cause of premature death [19]. Meta-analyses on the burden of
methicillin-resistant Staphylococcus aureus (MRSA) and Shigella species in Ethiopia provided
a pooled prevalence of 32.5% [20] and 6.6% [21], respectively. Antibiotic resistance has also
increased worldwide, posing an enormous clinical and public health burden, necessitating
the search for alternatives to deal with the emerging risk of resistant pathogens [22].
Probiotics could form a valuable approach to decrease the burden of foodborne diseases
in a cost-efficient manner because they can target different steps in the infection processes
through multifactorial modes of action [23].

One mode of action of probiotics, and especially LAB, is their capacity to directly
inhibit the growth of bacterial, fungal, and even viral pathogens via their capacity to
produce the broad-acting antimicrobial molecule lactic acid and more species- or strain-
specific antimicrobials such as bacteriocins [24]. Another key mode of action of probiotics is
modulation of the mucosal immune system, whereby probiotics can activate the host cells
to produce antimicrobial molecules or cellular activities [25,26]. This activity is generally
mediated via microbe-associated molecular patterns (MAMPs) expressed by the probiotics,
which can interact with various immune receptors on the host cells, such as Toll-like
receptors [27]. This interaction leads to activation of nuclear transcription factors such
as NF-κB that play a key signaling role in induction of immune responses following a
variety of stimuli, such as with MAMPs [28,29]. While NF-κB induces a number of genes
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mainly involved in pro-inflammatory cascades at sites of infection to kill pathogens, the
intestinal epithelium generally does not trigger inflammatory responses against commensal
bacteria but induces tolerance towards the commensal microorganisms. However, some
of the signals induced by commensals and probiotics could result in better alertness and
more rapid clearance of incoming pathogens. Another important signaling pathway in
response to microbial stimuli is related to interferon (IFN) production, which is regulated by
interferon-regulatory factors (IRFs) [30,31]. This pathway is necessary for efficient antiviral
responses and is generally induced by viral MAMPs [30]. Spacova et al. [32] also found that
several selected strains of probiotic lactobacilli can induce this pathway and boost antiviral
responses. However, this mechanism has not been widely explored for LAB isolated from
traditional fermented foods.

Most probiotic strains are selected without a detailed investigation of the underlying
modes of action. Thus, there is a high demand for new strains with specific therapeutic
modalities against infectious and other diseases [14]. In this study, we aimed to mine the
microbial diversity of fermented foods and beverage items in Ethiopia for novel poten-
tial probiotic strains. Interesting isolates were characterized and evaluated for specific
antimicrobial and immunological properties.

2. Materials and Method
2.1. Isolation and Characterization of LAB Strains

One yogurt and one cheese product from two different dairy industries in Addis
Ababa, Ethiopia, and two traditional cottage cheeses from the Arba Minch district in
Ethiopia were aseptically collected. The process of fermentation used to produce traditional
cottage cheeses is spontaneous and uncontrolled. To isolate LAB, 10 mL (g) of each sample
was suspended and homogenized in 90 mL phosphate-buffered saline (PBS) (pH 7−7.4).
The homogenized sample (1st dilution) was used to prepare ten-fold serial dilutions, and
10 µL of the appropriate dilution (mostly the 3rd to 6th) was spread-plated on de Man,
Rogosa, and Sharpe (MRS) agar (Hi-Media, Mumbai, India), a selective medium used to
enrich LAB [33]. These plates were then incubated anaerobically (BD BBL™ GasPak™ jars)
at 37 ◦C for 24 to 48 h. Plates with 30 to 300 colonies were selected, and colonies were
counted. Five colonies were then randomly selected based on their differing appearance
and purified through three successive streaking on MRS agar, in which aliquots of the
selected isolates were stored at −80 ◦C in MRS broth containing 25% glycerol. Finally, the
pure isolates were characterized presumptively as LAB by cell morphology, Gram staining,
catalase test, and motility according to standard procedures [1], whereby Gram-positive,
catalase-negative, and non-motile isolates were presumptively identified as LAB. The
number of colony-forming units per milliliter/gram (CFU/mL(g)) was calculated as a
function of the number of confirmed LAB colonies and the inoculated dilution using the
following formula [34]:

CFU/mL = total colonies present × percent confirmed colonies × dilution. (1)

2.2. Molecular Identification of LAB Isolates

The selected isolates presumptively identified as LAB (Gram-positive, catalase-negative,
and non-motile) were further identified through 16S rRNA gene sequencing. For the
detection of LAB strains using 16S rRNA gene sequences, the following primers were used:
27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTA CGACTT-3′).
The bacterial genomic DNA was extracted using a 16S rRNA gene colony PCR technique.
In brief, a colony was picked, mixed up, and vortexed in 10 µL molecular grade water.
The cells were lysed through microwaving for 2 × 1.5 min at 800 W. The master mix was
prepared in a clean room and contained 2.5 µL 10×VWR Buffer, 0.5 µL dNTPs (10 mM),
2.5 µL 27F (10 µM), 2.5 µL 1492R (10 µM), 0.2 µL Taq polymerase, and 6.8 µL molecular
grade water to make a master mix of 15 µL final volume for each sample. This 15 µL
master mix was then added to each tube containing a 10 µL DNA template. PCR was
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performed under the following conditions: initial activation at 95 ◦C for 2 min; denaturation
step cycles at 95 ◦C for 30 s; annealing step at 55 ◦C for 30 s; extension step at 72 ◦C for
1 min and 30 s; and final extension cycle at 72 ◦C for 5 min; for 30 cycles. A total of 5 µL
of the PCR product was used to run 1% agarose gel electrophoresis on a gel with 5 µL
GelRed dye. Successful samples (bright band at 1500 bps) were sent for sequencing (Sanger
sequencing at Neuromics Support Facility VIB, Uantwerpen). The resulting sequences
were analyzed using SeqTrace 0.9.0 software and submitted to a search for similarity in
the EzBioCloud.net 16S-based ID. Bacterial species identification was assumed when the
query sequence showed pairwise similarity of >98.7% for the 16S rRNA gene sequence, as
previously described [35].

2.3. Resistance of LAB Isolates to Gastrointestinal Conditions In Vitro

LAB isolates from overnight (18 h) cultures (in MRS broth at 37 ◦C) were harvested
(4000× g, 10 min, 4 ◦C), washed twice with PBS, and adjusted to 1.5 × 108 CFU/mL. To
determine survival of the LAB strains in acidic conditions mimicking the GI tract, 100 µL of
1.5× 108 CFU/mL of each LAB strain was added to 900 µL of sterile PBS adjusted to pH 3.0
(using 1M HCl) and then incubated under stirring (150 rpm) at 37 ◦C for 3 h, mimicking the
time spent by food in the stomach. After incubation, 50 µL of each bacterial solution was
collected, and 10-fold serial dilutions were prepared using sterile PBS and spread plated
onto MRS agar in triplicates for enumeration of viable cells. To determine survival of the
LAB strains in bile salt solution, 100 µL of 1.5 × 108 CFU/mL was added into 900 µL of
sterile PBS (pH 8.0) supplemented with 0.5% (w/v) bile salts. The bacterial solution was
then incubated at 37 ◦C under stirring (150 rpm) for 4 h, mimicking the time spent by
food in the small intestine [36–38]. The percentage (%) of cell survival was calculated as
shown below:

% cell survival = (log CFUT/log CFUC) × 100

where CFUC and CFUT represent the total viable count of LAB isolates before and after,
respectively, incubated under the simulated GI condition (low pH or bile salts). The
starting absolute number was 1.5 × 108 CFU/mL, and the experiment’s limit of detection
was 103 CFU/mL.

2.4. Antagonistic Activity of LAB Isolates against Indicator Pathogens

Antagonistic activity of the LAB isolates against the foodborne pathogens was eval-
uated via spot overlay and radial diffusion assays with Salmonella spp., Shigella spp.,
Escherichia coli, Listeria spp., and Staphylococcus spp. as indicators of antimicrobial activity.
In addition, a longitudinal liquid culture growth assay was performed using S. aureus
MI/1310/1938.

2.4.1. Spot Overlay Assay

This assay was performed at both Armauer Hansen Research Institute (AHRI), Addis
Ababa, Ethiopia, and the Laboratory of Applied Microbiology and Biotechnology (LAMB),
University of Antwerp, Antwerp, Belgium. The indicator pathogenic bacteria used in AHRI
were S. aureus (ATCC 25923), L. monocytogenes (ATCC 19115), and E. coli (ATCC 25922)
obtained from the Ethiopian Public Health Institute, and a clinical isolate of MRSA obtained
from Tikur Anbessa Specialized Hospital, Addis Ababa University, Ethiopia. At the LAMB,
L. monocytogenes MB2022 isolated from Wijnendaele cheese, S. enterica subsp. Enterica var.
Typhimurium NTCT 13347, E. coli O157:H7 BRMSID188 lacking pathogenicity stx genes (for
biosafety reasons) isolated from bovine [39], S. aureus MI/1310/1938—methicillin-sensitive
(MSSA), and S. flexneri LMG 10472 were used as indicator strains. For the spot overlay
assay, 2 µL from each LAB isolate, cultivated overnight (20–24 h) in MRS broth under micro-
aerobiosis, was spotted on the surface of agar media (AHRI: MRS agar for all pathogens
tested; LAMB: Mueller Hinton agar (MHA) (1.5%) supplemented with 5 g/L glucose
for S. aureus and LB agar (1.5%) supplemented with 5 g/L glucose for other pathogens)
as described previously [38,40]. After spotting, the plates were incubated aerobically at
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37 ◦C for 24 h (for LAB spots on MRS agar) and 48 h (for LAB spots on MHA and LB
agar). A volume of overnight growth of each indicator pathogen required to make a final
concentration of 5 × 106 CFU/mL was mixed with 20 mL of soft agar (0.5% agar) and
uniformly poured over the spot inoculated square plate (7 mL/round Petri dish). The
plates were then incubated aerobically at 37 ◦C for 24 h. The antagonistic activity was
recorded as the diameter (mm) of zone of inhibition. A total of 2 µL of hexetidine (0.1%)
or chlorhexidine 0.2% were spotted as positive controls, while MRS broth was spotted as
negative control. Experiments were run in triplicates and the average values were recorded.

2.4.2. Radial Diffusion Assay

This assay was performed as described elsewhere [40] using the same indicator
pathogens, media, and final concentration of the pathogen inoculum as mentioned in
the spot overlay assay performed at LAMB. LAB strains were first cultivated overnight
(20–24 h) in MRS broth micro-aerobically (non-shaken) at 37 ◦C. The supernatants of these
cultures (ca. 109 cfu/mL) were collected through centrifugation (at 2484× g, 15 min, 4 ◦C)
and filter sterilized with a 0.22 µm filter, with or without pH adjustment to pH 7.4. An
adequate volume of overnight growth of indicator pathogens was added to cooled agar
(55 ◦C) and mixed well to produce a final concentration of 5 × 106 CFU/mL and poured
onto a square plate. LAB cell-free culture supernatants (CFS) (45 µL), pH adjusted (7.4)
or non-adjusted, were dispensed into 6 mm diameter wells drilled using a sterile glass
Pasteur pipette. The plates were aerobically incubated at 37 ◦C for 24 h. After incubation,
antagonistic activity was recorded as the diameter (mm) of growth inhibition zones around
each well. In this assay, MRS broth (45 µL) and hexetidine (0.1%, 45 µL) were used as
negative and positive controls, respectively. Experiments were run in triplicates and the
average values were recorded.

2.4.3. Antimicrobial Activity Screening of Cell-Free Culture Supernatants in Liquid
Culture Assays

This assay was also performed as described previously [40]. Briefly, 190 µL of a diluted
overnight (20–24 h) culture of S. aureus MI/1310/1938 (ca. 105 cfu/mL) was added to the
wells of a microplate supplemented with 10 µL CFS of LAB strains (obtained in the same
way as in the radial diffusion assay) to obtain a total volume of 200 µL. A total of 10 µL 0.1%
hexetidine and 10 µL MRS and LB medium were used as positive and negative control,
respectively. Bacteria were grown, and optical density (OD) was measured at 600 nm
(OD600) each 30 min for 24 h using a Synergy HTX multi-mode reader. Each test was
measured in triplicates, and the average OD600 was calculated.

2.5. Assessment of Immunostimulatory Activity of LAB Isolates

Immunostimulatory activity of the LAB strains was assessed by measuring activation
of the NF-κB pathway and IRF pathway in human THP1-Dual™ reporter monocytes (In-
vivoGen, San Diego, CA, USA), as previously described [32]. The cells were maintained
according to the manufacturer’s instructions in growth medium containing RPMI 1640,
2 mM L-glutamine, 25 mM HEPES, 10% heat-inactivated fetal bovine serum, 100 µg/mL
Normocin™ and Pen-Strep (100 U/mL;100 µg/mL). The bacterial cells were UV-inactivated
in a biosafety level 2 cabinet for 90 min with vortexing after each 15 min before co-incubation
with THP1-Dual™ cells. In the immunostimulation assay, UV-inactivated bacterial cells
(final concentration 107 CFU/mL before inactivation) were added to THP1-Dual™ cells
(final concentration 106 cells/mL) and co-incubated for 24 h at 37 ◦C and 5% CO2. For
assessment of the NF-κB pathway activation, secreted embryonic alkaline phosphatase
(SEAP) activity in the THP1-Dual™ monocyte supernatant after addition of a p-nitrophenyl
phosphate (pNPP) solution was measured (absorbance) at 405 nm according to the manu-
facturer’s instructions. IRF pathway induction was measured by assessing the activity of
a secreted luciferase (Lucia) by using QUANTI-Luc buffer, a luciferase detection reagent,
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based on luminescence using a BioTek Synergy HTX multi-mode reader according to the
manufacturer’s instructions.

2.6. Antibacterial Susceptibility Testing of LAB Isolates

Antibacterial susceptibility of selected LAB strains was determined for ampicillin,
chloramphenicol, clindamycin, erythromycin, gentamycin, kanamycin, streptomycin, and
tetracycline as per the recommendations of EFSA [41], using a broth microdilution test
previously described [42], with minor modifications. In brief, 10 µL of each antibacterial
solution was dispensed into each well of a 96-well microplate containing 180 µL of MRS
broth. Subsequently, a 10 µL-culture aliquot of each test LAB isolate was added to each
well (final viable cell count of approximately 7 log CFU/mL). The microplates were sealed
with plastic bags to prevent bacterial dehydration. The experiments included controls, in
particular bacteria alone, MRS broth, and known probiotic control strains, Lacticaseibacillus
rhamnosus GG [43] and Lactiplantibacillus plantarum WCFS1 [44], and were performed in
triplicates. The system was then aerobically and statically incubated at 37 ◦C for 48 h, and
the plates were observed for any visible growth. The strains that showed visible growth
were considered resistant.

2.7. Statistical Analysis

Results are expressed as mean ± standard deviation. Normal distribution of data was
evaluated using Shapiro–Wilk and Kolmogorov–Smirnov normality tests before statistical
comparisons. For normally distributed data, one-way ANOVA followed by Dunnett’s
multiple comparisons test was employed. Otherwise, the Kruskal–Wallis’s test, followed
by Dunn’s multiple comparisons test, was used. Statistical comparisons were made when
applicable using GraphPad Prism version 9.2.0. Differences were considered statistically
significant at p < 0.05.

3. Results

In this study, samples were taken from a representative fermented yogurt and a typ-
ical cheese obtained from different large-scale commercial dairy farms in Addis Ababa,
Ethiopia. In addition, two representative traditionally fermented cottage cheese samples
from the Arba Minch district, Ethiopia, were taken. The traditionally fermented cottage
cheese samples were prepared in a similar traditional method at the household level by
heating a fermented (18–24 h) and defatted cow milk. The commercial cheese sample used
in this study was a type of soft cheese produced from pasteurized milk coagulated by
adding a starter culture and rennet, whereas the yogurt sample was produced commer-
cially by fermenting pasteurized cultured milk. Following anaerobic cultivation on MRS
agar, 54 microbial isolates were obtained; 43 were identified putatively as LAB based on
morphological characteristics because they were Gram-positive bacilli or cocci, catalase-
negative and non-motile. Of these 43 isolates, 27 were selected based on the degree of
antibacterial activity displayed (16 showed poor activity, see Supplemental Table S2) and
to cover diversity of the sample origins. The samples were then subjected to a screening
pipeline to select potential probiotic strains, as depicted in Figure 1. The LAB load of the
dairy samples in CFU/mL(g) is presented in Supplemental Table S1. The data revealed that
more CFU were obtained than LAB from traditionally fermented products than industrially
fermented products.
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Figure 1. Strain selection flow chart used to select potential probiotic strains from Ethiopian yogurt
and cheese products based on a combination of phenotypic and genotypic methods. Fifty-four
isolates were obtained from Ethiopian yogurt and cheese-based products. Of these, 43 were classified
as putative LAB. After initial antimicrobial analysis, 27 isolates were selected (taking into account
origin) for 16S rRNA analysis. Of these 27 isolates, 11 were selected based on initial antimicrobial
screening and species diversity for in-depth characterization of their probiotic potential. Of these,
5 isolates scored the best on all tests and were selected as the most promising probiotic candidates.

3.1. Selected LAB Isolates from Ethiopian Fermented Dairy Products Predominantly Belong to the
Genus Limosilactobacillus

The 27 selected isolates were identified up to species level with 16S rRNA gene Sanger
sequencing (Table 1). Limosilactobacillus fermentum showed to be the predominant species
(19/27; 70.4%) identified, while 11.1% of isolates were identified as Lactiplantibacillus plan-
tarum. Eleven of the twelve selected LAB isolates from the yogurt sample were identified
as Limosilactobacillus fermentum. Seven of the fourteen selected isolates from spontaneously
fermented cottage cheese samples were also identified as Limosilactobacillus fermentum,
while the remaining isolates were identified as probably Lactiplantibacillus plantarum (three
isolates), Weissella confusa (93A), Pediococcus pentosaceus (95E), Lactiplantibacillus pentosus
(55B), and Enterococcus lactis (54A). The query sequence showed that the pairwise similarity
of all strains was >99.7% for the 16S rRNA gene sequence of the top hits.
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Table 1. 16S rRNA-gene-based identification of LAB isolates from Ethiopian dairy products.

Source Strain Identified by 16S rRNA as: Pairwise Similarity (%) Selected (Yes)

Commercially
fermented yogurt

12A Limosilactobacillus fermentum 99.92 Yes

12D Limosilactobacillus fermentum 100

12E Limosilactobacillus fermentum 100

13A Limosilactobacillus fermentum 99.91

13C Limosilactobacillus fermentum 100

13E Limosilactobacillus fermentum 100

14C Limosilactobacillus fermentum 100

14D Limosilactobacillus fermentum 100

15B Limosilactobacillus fermentum 100

15C Limosilactobacillus fermentum 100

15D Limosilactobacillus fermentum 100

15E Streptococcus thermophilus 99.92 Yes

Commercially
fermented cheese 25A Limosilactobacillus fermentum 99.92 Yes

Spontaneously
fermented cheese

54A Enterococcus lactis 99.77

54B Lactiplantibacillusplantarum 100 Yes

54C Lactiplantibacillusplantarum 100 Yes

55A Lactiplantibacillus plantarum 100 Yes

55B Lactiplantibacillus pentosus 100 Yes

55E Limosilactobacillus fermentum 100 Yes

93A Weissella confusa 100 Yes

93B Limosilactobacillus fermentum 99.92

93E Limosilactobacillus fermentum 99.85

94C Limosilactobacillus fermentum 99.85

94D Limosilactobacillus fermentum 99.84

94E Limosilactobacillus fermentum 99.84 Yes

95A Limosilactobacillus fermentum 99.85

95E Pediococcus pentosaceus 100 Yes

3.2. Selected Isolates Show High In Vitro GI Resistance

In order to act as a probiotic in the GI tract and exert their beneficial effect on the host,
the ingested LAB must survive the acidic conditions in the stomach and resist bile acids in
the small intestine. Therefore, the survival of the selected LAB isolates was investigated
in simplified stomach- and bile-mimicking conditions using a starting absolute number
of 1.5 × 108 CFU/mL (Figure 2). All 27 LAB isolates tested showed resistance to 0.5% bile
salt, with 15 LAB isolates having viability of more than 80% after 4 h exposure. Exposure to
low pH (pH = 3) for 3 h, simulating the time spent by food in the stomach, revealed that 26
of the 27 LAB isolates exhibited resistance. Overall, the LAB isolates tested showed better
tolerance capacity to 0.5% bile salt exposure than to low pH.
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Figure 2. Percentage of survival (from initial inoculum) of the selected LAB isolates after exposure to
acidic pH and bile salt solution. Isolates were exposed to pH 3.0 for 3 h at 37 ◦C and 0.5% (w/v) bile
salt solution (pH 8.0) for 4 h at 37 ◦C under stirring (150 rpm). Data are expressed as mean ± SD per
condition (n = 3).

3.3. LAB Isolates from Ethiopian Fermented Foods Inhibit Indicator Foodborne Pathogens

Antagonistic activity of the 27 selected isolates was evaluated against four indicator
pathogens, i.e., L. monocytogenes ATCC 19115, S. aureus ATCC 25923, E. coli ATCC 25922, and
a clinical MRSA via spot overlay assay. The 27 isolates tested were found to inhibit these
pathogens at varying degrees (Supplemental Table S2). A total of 18 LAB isolates (5 from
yogurt, 12 from cottage cheese) displayed inhibition activities against all the pathogens
tested to a varied extent (Supplemental Table S3). A total of 18 of the 27 isolates tested
also showed a wider inhibition zone against indicator pathogens compared to the positive
control (chlorhexidine 0.2%). However, eight of the LAB isolates (all from yogurt) failed to
show activity against MRSA.

Subsequently, based on the spot assay results and species variety, 11 isolates were
selected for more detailed characterization. First, more detailed profiling of their antimi-
crobial activity was performed against more pathogens using both radial diffusion and
spot overlay assays (Table 2). In a radial diffusion assay, the activity of the secreted LAB
metabolites was studied, while a spot assay investigated the activity of the live LAB. Five
indicator pathogens, including pathogens that are among the key causes of GI infections
in Ethiopia (S. enterica subsp. enterica Typhimurium, E. coli O157:H7 (-stx genes), S. aureus
MI/1310/1938, MSSA, S. flexneri LMG 10472, and L. monocytogenes MB2022) were stud-
ied. Six (L. plantarum 54B, 54C, 55A, Lactiplantibacillus pentosus 55B, W. confusa 93A, and
P. pentosaceus 95E) of the eleven LAB strains tested were effective against E. coli O157:H7,
S. enterica subsp. enterica Typhimurium, and S. flexneri LMG 10472 using spot overlay assay,
with similar levels of inhibition as the model probiotics (Lacticaseibacillus rhamnosus GG
and Lactiplantibacillus plantarum WCFS1) used as controls. In the radial diffusion assay, CFS
of all the LAB isolates displayed inhibitory activity against E. coli O157:H7 and S. enterica
subsp. enterica Typhimurium. Eight LAB isolates tested showed inhibitory activity against
S. flexneri LMG 10472 using radial diffusion assay (Table 2). All LAB isolates except for
S. thermophilus 15E were effective against L. monocytogenes MB2022 using spot overlay assay
with similar levels to that of the positive control and model probiotics, while nine of the
isolates tested were also effective in the radial diffusion method.



Fermentation 2023, 9, 258 10 of 21

Table 2. Antagonistic activity of the selected potential probiotic LAB strains by spot overlay and radial diffusion methods against 9 strains indicator food-
borne pathogens.

Zone of Inhibition (mm) 1, Data Are Mean Values ± SD, (n = 3) Zone of Inhibition (mm)2, Data Are Mean Values ± SD, (n = 3)

L. monocyto-
genes ATCC

19115

S. aureus
ATCC 25923

E. coli ATCC
25922

methicillin-
resistant S.

aureus

E. coli O157:H7
BRMSID188

S. enterica subsp.
enterica var.

Typhimurium NTCT
13347

S. flexneri LMG 10472 L. monocytogenes
MB2022

S. aureus
MI/1310/1938

LAB strain (Source) Spot overlay Spot overlay Spot overlay Spot overlay Radial
diffusion

Spot
overlay

Radial
diffusion

Spot
overlay

Radial
diffusion

Spot
overlay

Radial
diffusion

Spot
overlay

Radial
diffusion

Spot
overlay

Limosilactobacillus
fermentum 12A (1) +++ + +++ +++ ++ − ++ − + − + ++ − +

Streptococcus
thermophilus 15E (1) ++ + ++ − ++ − ++ − – − – − − −

L. fermentum 25A (2) ++ ++ +++ ++ ++ − ++ − + − ++ ++ − ++

Lactiplantibacillus
plantarum 54B (5) ++ + ++ ++ ++ ++ ++ ++ +++ ++ +++ +++ − +++

L. plantarum 54C (5) ++ + ++ ++ ++ ++ ++ ++ ++ +++ ++ +++ − ++

L. plantarum 55A (5) ++ ++ ++ ++ +++ ++ ++ ++ +++ ++ +++ +++ − ++

Lactiplantibacillus
pentosus 55B (5) +++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + +++ − +++

L. fermentum 55E (5) ++ ++ ++ +++ ++ − ++ − − − ++ ++ − +

Weissella confusa 93A (9) − + ++ ++ ++ ++ ++ ++ − ++ − +++ − ++

L. fermentum 94E (9) ++ +++ ++ ++ +++ − ++ − ++ − ++ ++ − −

Pediococcus pentosaceus
95E (9) +++ ++ +++ ++ ++ ++ ++ ++ ++ +++ ++ +++ − ++

Chlorhexidine 0.2% ++ + + +

Lacticaseibacillus
rhamnosus GG +++ +++ ++ ++ ++ +++ +++ +++ − +++

L. plantarum WCFS1 +++ ++ ++ ++ ++ +++ +++ ++ − ++

Hexetidine 0.1% ++ ++ + − ++ + +++ +++ +++ +++

Chlorhexidine 0.2% and hexetidine 0.1% = Positive controls. Source: 1 = Commercially fermented, yogurt; 2 = Commercially fermented, cheese; 5 = Spontaneously fermented, cheese;
9 = Spontaneously fermented, cheese; 10 = Industrially fermented, probiotic yogurt. 1 Results of experiments of inhibition at AHRI: –no inhibition; low, + (9–14 mm); moderate,
++ (14–19 mm), and high inhibition, +++ (>19 mm). 2 Results of experiments of inhibition at LAMB: for radial diffusion assay: − = no inhibition; low, + (6–8 mm); moderate,
++ (8–11 mm), and high inhibition, +++ (>11 mm); for Spot assay: − = no inhibition; low, + (5–7 mm); moderate, ++ (7–10 mm); and high inhibition, +++ (>10 mm).
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Nine of the eleven LAB isolates displayed activity against S. aureus MI/1310/1938 in
the spot overlay method, but no CFS of the isolates tested (including model probiotics) could
replicate the activity in the radial diffusion method (Table 2). Subsequently, the time-course
effect of the 11 LAB isolates CFS on the growth of S. aureus MI/1310/1938 was measured in
a more fine-scale, longitudinal liquid culture growth assay. Stronger longitudinal effects of
LAB isolates CFS on the growth of S. aureus MI/1310/1938 were observed for four active
LAB isolates (Lactiplantibacillus plantarum 54B, 54C, 55A, and Lactiplantibacillus pentosus
55B) compared to the model gastrointestinal probiotics (Lacticaseibacillus rhamnosus GG and
Lactiplantibacillus plantarum WCFS1) (Figure 3A). P. pentosaceus 95E displayed significant
inhibitory activity comparable to the model probiotics but lower than the four isolates
(Figure 3A). The growth curve’s area under the curve (AUC) estimates total bacterial
growth as it correlates with both the growth rate and maximum density [45]. Consequently,
AUC analysis of S. aureus MI/1310/1938 growth curves also revealed that five of the eleven
LAB strains (Lactiplantibacillus plantarum 54B, 54C, 55A, Lactiplantibacillus pentosus 55B,
and P. pentosaceus 95E) and model probiotics significantly inhibited growth (p < 0.0001)
of S. aureus MI/1310/1938 compared to MRS medium control (Figure 3B). Although the
differences in mean AUC of the LAB isolates 55E and 94E were statistically significant
(p < 0.05) compared to that of the MRS medium control, these isolates were shown to be
weak inhibitors, as they had overlapping growth curves with the medium (Figure 3A) and
larger AUC values (Figure 3B). MRS broth (used as negative control) only induced a small
delay in growth of the indicator pathogen.

To explore medium acidification as an antipathogenic mechanism of the LAB isolates,
the CFS (Supplemental Table S3) was neutralized to pH 7.4, and subsequent radial diffusion
assay against all indicator pathogens and longitudinal time-course analysis against S. aureus
MI/1310/1938 were performed. The assays showed that antimicrobial activity of the CFS
was pH-dependent, as the inhibition completely disappeared. Strong acidifiers (Lactiplan-
tibacillus plantarum 54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, P. pentosaceus 95E,
Lacticaseibacillus rhamnosus GG, and Lactiplantibacillus plantarum WCFS1) with CFS pH < 4
also showed higher inhibition (p < 0.05) against the pathogenic strains tested.
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Figure 3. Effect of the LAB strains cell-free culture supernatant (CFS) against the growth of S. aureus
MI/1310/1938 in LB broth: (A) Growth curves of S. aureus over the course of 24 h, non-inoculated
MRS and LB broth and 0.1% hexetidine were used as negative and positive control, respectively.
Curves of the most active four LAB strains (L. plantarum 54B, 54C, 55A, and L. pentosus 55B) are below
the curves for the model probiotics (L. rhamnosus GG and L. plantarum WCFS1), indicating isolates
were strong inhibitors. Curves for 95E and model probiotics are overlapping since 95E showed
comparable inhibitory activity against the pathogen as model probiotics. (B) Area under the curve
(AUC) of S. aureus growth curves. Bars depict AUC means ± SD per condition (n = 3). 55E and 94E
have large AUC since they are weak inhibitors. * p < 0.05, *** p < 0.001, **** p < 0.0001 compared
to S. aureus grown with MRS broth control. L. plantarum, Lactiplantibacillus plantarum; L. pentosus,
Lactiplantibacillus pentosus; L. fermentum, Limosilactobacillus fermentum; P. pentosaceus, Pediococcus
pentosaceus; S. thermophilus, Streptococcus thermophilus; W. confusa, Weissella confusa.

3.4. Selected Ethiopian Dairy LAB Isolates Activate NF-κB and IRF Pathways in
Human Monocytes

Immunomodulation is one of the potential mechanisms of action of probiotics. In
this study, the eleven selected LAB strains were further explored for their capacity to
stimulate the NF-κB and IRF pathways as key for antipathogenic defenses in human
monocytes. Nine out of the eleven tested LAB isolates significantly (p < 0.05) induced
NF-κB, while S. thermophilus 15E and W. confusa 93A did not (Figure 4A). Of note, the
tested LAB strains demonstrated variable strain-dependent immunostimulatory capacities.
For example, while Limosilactobacillus fermentum 25A showed strong NF-κB activation, the
other Limosilactobacillus fermentum strain 55E had a lower activity (Figure 4A). Three of the
tested isolates, i.e., Lactiplantibacillus plantarum 54B and 55A and P. pentosaceus 95E, also
displayed significant IRF induction, even higher than the model probiotic Lactiplantibacillus
plantarum WCFS1 (Figure 4B). Several tested isolates demonstrated a trend towards IRF
induction, including Limosilactobacillus fermentum 25A and 94E, Lactiplantibacillus plantarum
54C, and Lactiplantibacillus pentosus 55B, but this was not statistically significant in the
tested conditions.
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1 
 

 Figure 4. Immunostimulatory (A) NF-κB and (B) IRF activation by LAB strains in THP1-Dual human
monocytes. S. aureus MI/1310/1938 was used as a Gram-positive pathogenic control strain. Bars
depict mean ± SD per condition (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to
medium control without bacteria (indicated by dotted line); L. plantarum, Lactiplantibacillus plantarum;
L. pentosus, Lactiplantibacillus pentosus; L. fermentum, Limosilactobacillus fermentum; P. pentosaceus,
Pediococcus pentosaceus; S. thermophilus, Streptococcus thermophilus; W. confusa, Weissella confusa.

3.5. Antibiotic Susceptibility Profile of Select LAB Isolates as Candidate Probiotic Strains

According to a 2002 report jointly released by the WHO and FAO of the United Na-
tions, microbial strains to be used as probiotics should be safe in the host, with gene transfer
of especially antibiotic resistance markers listed as one of the potential adverse events
associated with probiotic use [46]. Therefore, it is important to verify that LAB strains to
be consumed as a probiotic lack transferable antimicrobial resistance markers on mobile
elements prior to considering them safe for human and animal consumption [46]. In the
present study, antibacterial susceptibility profile of the 11 LAB isolates to 8 antibiotics
recommended by EFSA [41] (ampicillin, chloramphenicol, clindamycin, erythromycin, gen-
tamycin, kanamycin, streptomycin, and tetracycline) was examined (Table 3). All 11 LAB
isolates tested showed sensitivity to ampicillin, erythromycin, clindamycin, and chloram-
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phenicol at the respective reference concentration (Supplemental Table S4). Strain Lactiplan-
tibacillus plantarum 55A was resistant to gentamycin. All LAB strains except S. thermophilus
15E and Lactiplantibacillus pentosus 55B showed resistance to kanamycin. LAB resistance
to aminoglycosides such as kanamycin is considered to be natural [47,48] and, therefore,
non-transmissible, so these strains could still be considered for further development.

Table 3. Antibiotic susceptibility profile of potential probiotic strains from dairy products.

Isolate Amp Gent Kana Strep Eryth Clind TTC CAF

L. fermentum 12A S S R S S S S S

S. thermophilus 15E S S S S S S S S

L. fermentum 25A S S R S S S S S

L. plantarum 54B S S R n.r S S S S

L. plantarum 54C S S R n.r S S S S

L. plantarum 55A S R R n.r S S S S

L. pentosus 55B S S S n.r S S S S

L. fermentum 55E S S R S S S S S

W. confusa 93A S S R S S S S S

L. fermentum 94E S S R S S S S S

P. pentosaceus 95E S S R S S S S S

L. rhamnosus GG S R R S S S S S

L. plantarum
WCFS1 S S S S S S S S

(Amp: ampicillin; Gent: gentamycin; Kana: kanamycin; Strep: streptomycin; Eryth: erythromycin; Clind: clin-
damycin; TTC: tetracycline; CAF: chloramphenicol; n.r.: not required). L. plantarum, Lactiplantibacillus plantarum;
L. pentosus, Lactiplantibacillus pentosus; L. fermentum, Limosilactobacillus fermentum; P. pentosaceus, Pediococcus
pentosaceus; S. thermophilus, Streptococcus thermophilus; W. confusa, Weissella confusa.

4. Discussion

Although a large variety of spontaneously fermented foods exist in Ethiopia, their
microbial constituents are largely underexplored. However, they form an interesting
source of potentially novel isolates for applications in fermented foods and as probiotics.
Isolating and characterizing LAB strains directly from widely consumed fermented foods
is a particularly promising approach because of their applicability to fermented foods and
their increased probability of being safe for oral consumption. In this work, we present one
of the first dedicated studies on Ethiopian LAB strains isolated from different dairy sources,
evaluating their efficacy and antibiotic susceptibility profile as potential probiotics.

A total of 27 LAB isolates were identified from Ethiopian yogurt and cheeses with 16S
rRNA gene Sanger sequencing: Limosilactobacillus (19), Lactiplantibacillus (4), Streptococcus
(1), Enterococcus (1), Pediococcus (1), and Weissella (1) spp. The presence of these genera
is consistent with Girma et al. [49], who isolated LAB (Lactobacillus (current reclassifica-
tion as Lactobacillus, Lacticaseibacillus, and Lactiplantibacillus [9]), Lactococcus, Leuconostoc,
Pediococcus, Streptococcus, Enterococcus spp.) from other fermented Ethiopian traditional
dairy products (Ergo, Ayib, and Metata Ayib). Colombo et al. [49] also reported that Lac-
tobacillus (current reclassification as Lactobacillus, Lacticaseibacillus, Lactiplantibacillus, and
Schleiferilactobacillus [9]), Pediococcus spp., and Weissella paramesenteroides were the species
isolated from a Brazilian dairy production environment. Limosilactobacillus fermentum was
the predominant (70.4%) species in our samples, and this is in line with the report of
Taye et al. [50] from cow milk and milk products from Ethiopia. However, the fact that
Limosilactobacillus is isolated so often in fermented Ethiopian dairy products is of particular
interest and extends the habitats of this genus because it seems to be different from other
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geographical regions, where Limosilactobacillus is not often linked to dairy but rather to
chicken and animal hosts [51].

Survival in the GI tract is a desirable property required for probiotics intended for oral
administration. The tolerance of our LAB isolates to bile salts and acidic pH was studied
in vitro to predict bacterial survival after oral administration. The acidic and protease-rich
conditions of the stomach are generally the strongest barrier for probiotics [52]. The LAB
isolates showed resistance to 4 h exposure to 0.5% bile salt and 3 h exposure to pH 3, with
bile salt tolerance being universal, indicating good candidates as gastrointestinal probiotics.

Probiotics can exert their beneficial properties through many different mechanisms [46].
One of the potential probiotic properties of strains is antimicrobial activity. Ethiopia has a
large burden of foodborne diseases [17,19], for which probiotics could be a good alternative
to traditional antibiotic treatment. In the present study, three approaches were utilized
to assess antipathogenic activity: radial diffusion, a spot overlay assay, and antimicrobial
activity screening of CFS in liquid culture assays for the main causes of infection in Ethiopia
(E. coli, S. enterica subsp. enterica var. Typhimurium, S. aureus (including MRSA) and
S. flexneri and L. monocytogenes). In the radial diffusion assay, all CFS of the tested LAB
isolates—containing secreted metabolites—displayed inhibition activities against E. coli
O157:H7 and S. enterica subsp. enterica Typhimurium, while, because of the specificity
of the spot overlay tests [53], only six of the eleven strains tested were effective against
these two pathogens using a spot overlay assay that monitors more the live interaction
between pathogen and potential probiotics (Table 2). To further explore and confirm
the antimicrobial activity of the CFS of LAB isolates against S. aureus MI/1310/1938, we
performed an inhibition experiment with the CFS and monitored the growth of S. aureus
MI/1310/1938 for 24 h. A confirmed inhibitory activity was recorded for the five of eleven
LAB isolates CFS (Figure 3). Three of the five isolates that showed antimicrobial activity
against all nine strains of indicator pathogens using all methods and protocols tested
belonged to the genus Lactiplantibacillus plantarum. Al-Madboly and Abdullah [54] detected
and reported five potent antibacterial Lactiplantibacillus plantarum isolates recovered from
fermented milk samples in Egypt, which were able to inhibit all the eight tested pathogenic
bacterial strains from five pathogenic species (S. aureus, E. faecalis, E. coli, S. flexneri, and
S. enterica subsp. enterica serovar Typhi). The LAB CFS neutralized to pH 7.4 failed to show
any antagonistic activity, indicating that antimicrobial activity of the isolates is probably
mainly due to the production of acidic substances. Similarly, Van den Broek et al. [40],
Spacova et al. [55], and Reuben et al. [53] reported a loss of antagonistic activity by most
LAB CFS tested against selected pathogens after neutralizing the supernatant, but these
previous studies did not use native Ethiopian isolates.

In addition to their antipathogenic and adaptation properties, probiotics capable of
modulating the immune system are highly promising for application against diseases re-
lated to immune imbalances, such as allergic diseases [56], inflammatory bowel disease [57],
and even COVID-19 [58]. Our results demonstrate that nine of the eleven tested LAB iso-
lates from Ethiopian fermented dairy products were capable of activating the key immune
transcription factor NF-κB to similar levels as the model probiotic strain, Lactiplantibacillus
plantarum WCFS1 [44]. The latter strain was recently successfully implemented as part of
a throat spray in COVID-19 patients [58]. NF-κB activation by LAB could help stimulate
antipathogenic immune responses and correct the development and regulation of immune
self-tolerance [59–62]. Furthermore, our selected LAB isolates demonstrated activation of
IRF. IRF is especially necessary for host antiviral defenses. For example, activation of IRF
by Lactobacillus acidophilus [63] or dsDNA of various LAB [31] has previously been linked
to protective IFN-β response induction in host cells. Importantly, we observed that the
immunostimulatory activity of LAB was strain-specific. This supports previous results on
LAB that immunostimulatory activity is strain-specific [32] and highlights the need to select
appropriate probiotic strains for each envisioned application. Three of the eleven tested
strains belonging to Lactiplantibacillus plantarum (54B, 54C, and 55A), Lactiplantibacillus pen-
tosus 55B, and P. pentosaceus 95E demonstrated the most efficient NF-κB and IRF activation
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similar or higher than the model probiotic Lactiplantibacillus plantarum WCFS1, suggesting
these strains are promising candidates to induce protective immune responses in the host.
This might be especially promising if these strains are used in fermented foods. Of note, a
recent systematic review and meta-analysis focusing on the effects of orally administered
probiotics on respiratory tract infections in adults specifically demonstrated that infection
duration was more efficiently reduced when fermented dairy was used as the delivery
matrix for probiotics [64].

To assess the prospective application of the selected LAB strains as probiotics or in
food/feed, we next considered the recommendations by EFSA [41] regarding antibiotic
resistance. LAB can serve as a reservoir for antibiotic-resistant genes and transfer them
to other microorganisms, including pathogens [65]. A probiotic candidate should be
verified for lack of acquired transferrable resistances. Therefore, susceptibility to the
recommended antibiotics should be assessed for all potential probiotic strains [41]. LAB
resistance to aminoglycosides (gentamycin, kanamycin, streptomycin, or neomycin) and
glycopeptide (vancomycin), in most cases, is considered to be natural and, therefore, non-
transmissible [47,48,53]. Hence, all tested LAB isolates are presumed to be safe regarding
antibiotic resistance. Although LAB strain P. pentosaceus 95E had a lower survival rate at low
pH, it is one of the best performers in antagonistic activity and immunostimulatory assays.
As there is no clear cut-off value for in vitro GI conditions resistance and proof of benefit
can be established in further in vivo and human studies, it can be taken as a promising
probiotic candidate. Overall, we demonstrated that five (Lactiplantibacillus plantarum 54B,
54C, and 55A, Lactiplantibacillus pentosus 55B, and P. pentosaceus 95E) select LAB isolates
have promising antimicrobial and immunostimulatory properties and are presumed to
be safe with respect to antibiotic resistance (Table 4) and could, thus, be considered as
promising candidates for use in fermented foods or as food supplements.
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Table 4. Summary of results of probiotic properties of LAB strains to select as candidate probiotics.

Property Tested

Good Candidate LAB Strains Poor candidate LAB Strains

L. plantarum
54B

L. plantarum
54C

L. plantarum
55A

L. pentosus
55B

P. pentosaceus
95E

W. confusa
93A

L. fermentum
12A

S. thermophilus
15E

L. fermentum
25A

L. fermentum
55E

L. fermentum
94E

Antipathogenic
activity against

L. monocyto-
genes ATCC

19115

√ √ √ √ √
−

√ √ √ √ √

S. aureus ATCC
25923

√ √ √ √ √ √ √ √ √ √ √

E. coli ATCC
25922

√ √ √ √ √ √ √ √ √ √ √

Methicillin-
resistant S.

aureus (MRSA)

√ √ √ √ √ √ √
−

√ √ √

L. monocyto-
genes

MB2022

√ √ √ √ √
−

√
−

√ √ √

S. enterica
subsp. enterica

var.
Typhimurium
NTCT 13347

√ √ √ √ √ √
− − − − −

E. coli O157:H7
BRMSID188

√ √ √ √ √ √
− − − − −

S. aureus
MI/1310/1938

√ √ √ √ √
− − − − − −

S. flexneri LMG
10472

√ √ √ √ √
− − − − − −

In vitro GI
conditions
resistance

pH= 3
√ √ √ √ √

−
√ √ √ √ √

Bile salt 0.5%
√ √ √ √ √ √ √ √ √ √ √

NF-κB
activation

√ √ √ √ √
−

√
−

√ √ √

IRF induction
√

ns ns ns
√

− − − ns − ns

AST
√ √ √ √ √ √ √ √ √ √ √

√
= robust/significant/safe; AST = antibiotic susceptibility test; − = no activity.
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5. Conclusions

In this study, five LAB isolates from traditional cottage cheese showed in vitro broad-
spectrum antimicrobial activities against nine strains of foodborne pathogens from five
species and stimulated key immune pathways in human cells. All five LAB isolates
complied with antibiotic resistance recommendations. These findings indicate that the
selected LAB strains are promising probiotic candidates for use in fermented foods and
food supplements and highlight the potential of traditional fermented dairy products as
a source of novel probiotic bacteria. They can be considered probiotic strains once their
health benefits are documented in a clinical trial as a next step.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation9030258/s1, Table S1: LAB load of dairy samples;
Table S2: Antagonistic activity of the selected 43 potential probiotic LAB strains by spot overlay
method against; L. monocytogenes (ATCC 19115), S. aureus (ATCC 25923), E. coli (ATCC 25922),
methicillin resistant S. aureus (MRSA); Table S3: pH of the corresponding LAB isolates cell-free
culture supernatants; Table S4: Concentration of antibiotics used for determination of antibacterial
susceptibility test.
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