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Abstract: Cellulases from glycoside hydrolase family 48 (GH48) are critical components of natural
lignocellulose-degrading systems. GH48 cellulases are broadly distributed in cellulolytic microorgan-
isms. With the development of genomics and metatranscriptomics, diverse GH48 genes have been
identified, especially in the highly efficient cellulose-degrading ruminal system. GH48 cellulases uti-
lize an inverting mechanism to hydrolyze cellulose in a processive mode. Although GH48 cellulases
are indispensable for cellulolytic bacteria, they exhibit intrinsically low cellulolytic activity. Great
efforts have been made to improve their performance. Besides, GH48 cellulases greatly synergize
with the complementary endoglucanases in free cellulase systems or cellulosome systems. In this
review, we summarized the studies on the diversity of GH48 cellulases, the crystal structures, the
catalytic mechanism, the synergy between GH48 cellulases and endocellulases, and the strategies
and progress of GH48 engineering. According to the summarized bottlenecks in GH48 research
and applications, we suggest that future studies should be focused on mining and characterizing
new GH48 enzymes, thoroughly understanding the progressive activity and product inhibition,
engineering GH48 enzymes to improve stability, activity, and stress resistance, and designing and
developing new biocatalytic system employing the synergies between GH48 and other enzymes.

Keywords: GH48 family; cellulase; lignocellulose degradation; structure; catalytic mechanism;
synergy

1. Introduction

Lignocellulose—the fibrous material in the plant cell wall—consisting of 30–50%
cellulose, 10–40% hemicellulose, and 5–30% lignin [1], is one of the most abundant re-
newable resources on the planet. Biodegradation and conversion of lignocellulose are
essential for carbon recycling, agricultural development, and environmental homeosta-
sis [2,3]. However, the dense, tough, and complex structural properties of lignocellulose
make it difficult to be efficiently degraded and utilized. In nature, various microorganisms
have evolved effective strategies to biodegrade lignocellulosic materials through secreting
synergistic mixtures of enzymes including cellulases, hemicellulose, and lignin-degrading
enzymes [4,5]. The degradation of cellulose into glucose (i.e., the saccharification) needs
the synergy of three types of cellulases: endoglucanase, cellobiohydrolase/cellobiosidase,
and β-glucosidase [6–8]. The hemicellulases are more diverse because hemicellulose has a
complex saccharide composition and structure [9,10]. Lignin is a complex aromatic poly-
mer and ligninolytic enzymes are mainly by oxidoreductases, such as lignin peroxidase,
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manganese peroxide, laccase, etc. [11]. The efficiency of enzymatic degradation of lignin is
often very low, so lignin is first isolated by a pretreatment procedure in most strategies of
the current lignocellulose biorefinery [12,13]. After the pretreatment, the saccharification
processes of lignocellulose biorefinery mainly depend on cellulases and hemicellulases.

Cellulases and hemicellulases belong to glycoside hydrolases (GHs). Glycoside hydro-
lases are a large collection of enzymes that hydrolyze glycosidic bonds including as many
as 173 families. Many GH families are widely involved in lignocellulose degradation, with
GH families 5, 6, 7, 8, 12, 45, and 48 containing most fungal cellulases [8,14] and GH5, GH9,
GH10, GH11, GH43, and GH48 commonly found in cellulolytic bacteria [7,15]. Family
GH48 is an essential member in the hydrolysis of crystalline cellulose [16]. It includes
mainly, but not always, exocellulases (namely, exoglucanase or cellobiohydrolase) that
catalyze cellulose hydrolysis to release cellobiose molecules [17]. Besides, GH48 cellobiohy-
drolases synergize greatly with endoglucanases to improve cellulose degradation efficiency
and synergize with β-glucosidase to eliminate feedback inhibition [13,18]. For instance, the
cellulosomal Cel48S from Clostridium thermocellum synergizes with GH9 endoglucanases
for efficient crystalline cellulose hydrolysis [18,19], while the large multi-module CelA from
Caldicellulosiruptor bescii containing both a GH9 module Cel9A and a GH48 module Cel48A
is also known to be synergistic in the activities of the two modules [20,21]. To date, all
organisms possessing at least one GH48 member are truly cellulolytic organisms, i.e., they
can substantially degrade crystalline cellulose [22].

Since the first GH48 exoglucanase CelS (also known as Cel48S, Cel48A, or S8) was
characterized in 1991, more than 1500 GH48 sequences have been released in GenBank
according to the CAZy (Carbohydrate-Active EnZymes) database (http://www.cazy.org,
accessed on 13 December 2022) [23]. GH48 enzymes are found mainly in bacteria includ-
ing Firmicutes, Chloroflexi, Proteobacteria, and Actinobacteria. They also exist in some
Fungi, viruses, and even Arthropoda. The GH48 genes of Actinobacteria, Firmicutes, and
Chloroflexi may originate from a common ancestor, while the GH48 genes of Proteobacte-
ria, Fungi, and Arthropoda are believed to be obtained from Actinobacia and Firmicutes
through gene horizontal transfer [16,24,25].

The GH48 family is primarily classified as (α/α)6-fold enzymes. Currently, crystal
structures of 11 GH48 cellulases with or without oligosaccharides have been reported [26].
GH48 cellulases utilize an inverting mechanism with aspartate and glutamate acting as base
and acid donors, respectively, to cleave the sugar chain of cellulose [26,27]. GH48 cellulases
exhibit low enzyme activities mainly attributed to end-product inhibition, which limits the
utilization of cellulases in lignocellulose bioconversion [17]. In view of this, mutagenesis
strategies based on crystal structures and molecular dynamics simulations have been
adopted to relieve end-product inhibition and enhance enzyme activity [17,28,29].

GH48 cellulases are among the most abundant glycoside hydrolases in nature. Despite
the importance of GH48 cellulases, few related reviews have been published. To deeply
understand the role and mechanism of GH48 in cellulose degradation, in this review, we
elaborated on the advances in the distribution and evolutionary relationship, the structures,
as well as the catalytic and processive mechanism of GH48 cellulases. We also summarized
the engineering strategies for activity improvement and reviewed the synergistic effects
of GH48 enzymes with endocellulases in various cellulolytic systems. This review will
provide a reference for better utilization of GH48 in lignocellulose biorefinery.

2. Key Role of GH48 Cellulases in Cellulose Degradation

Lignocellulose-derived sugars represent the largest reserve of fermentable sugars
in Nature [30]. However, lignocellulose is difficult to deconstruct and utilize due to its
recalcitrant structure and diverse and complex composition, with cellulose in crystalline
and fibrous forms [31,32]. Three dominant enzymatic systems are utilized by cellulolytic
organisms to overcome the recalcitrant nature of lignocellulose, including the free cellulases
derived from aerobic fungi and bacteria, the cellulosome system mainly produced by
anaerobic bacteria, and multimodular glycoside hydrolases with carbohydrate-binding
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modules usually produced by Caldicellulosiruptor species. One common feature of these
various cellulolytic systems is the high expression of GH48 cellulases, which are considered
to be the key component of cellulose degradation [33–35].

Usually, only one or two (rarely three) GH48 gene(s) are present in the genomes of
cellulolytic organisms. For the well-known cellulolytic bacteria C. thermocellum, which is
one of the most efficient cellulose degraders in nature, two GH48 cellulases—cellulosomal
Cel48S and non-cellulosomal Cel48Y—exhibit hydrolysis activities on crystalline cellulose.
These GH48 cellulases are upregulated during growth on crystalline cellulose. Meanwhile,
the deletion of Cel48S and Cel48Y led to a significant decrease in performance but does
not completely abolish cellulolytic activity [35]. Moreover, three mutants of the cellulolytic
bacterium Ruminococcus albus which are impaired in the production of Cel9B and Cel48A
were all reported to be defective in adhesion to and degradation of cellulose [33]. Addi-
tionally, deletion of the CelA gene in C. bescii seriously damaged its ability to grow on
crystalline cellulose and abolished its growth on lignocellulosic biomass, with a 15-fold
decrease in sugar release on crystalline cellulose compared with the parent and wild-type
strains. Meanwhile, the loss of exoglucanase activity could not be compensated by other
enzymes in the C. bescii secretome [36]. Except for the genetics perspective, the importance
of GH48 cellulases for crystalline cellulose hydrolysis has also been addressed from the
perspectives of metatranscriptomic [37] and genomic analyses [38,39]. GH48 cellulases
are necessary for microorganisms to degrade crystalline cellulose, so GH48 genes were
reported to be a suitable molecular marker for the characterization of truly cellulolytic
bacteria, especially in anaerobic environments [34,40]. The detection and quantification of
GH48 genes also can be used to identify cellulolytic organisms [22]. Moreover, Cel48A, the
GH48 cellulase domain in CelA, exhibits catalytic promiscuity in hydrolyzing xylan with
an unrevealed mechanism [41].

3. Diversity and Distribution of GH48 Family

The glycoside hydrolase family 48 (GH48) comprises reducing end cellobiohydrolases
(EC 3.2.1.176), non-reducing end cellobiohydrolases (EC 3.2.1.91), endo-β-1,4-glucanases
(EC 3.2.1.4), which are important sources of cellulases, as well as part of chitinase (EC 3.2.1.14),
according to the CAZy database. As the key components in bacterial cellulase systems,
GH48 cellulases are highly expressed in cellulolytic bacteria, such as CelS from C. thermocel-
lum [42,43], CelF from Clostridium cellulolyticum [44], CelA from C. bescii [21,45,46], TfCel48A
from Thermobifida fusca [47], and so on. With an increasing number of bacterial genome
sequences and the growing availability of metagenomes, the number of GH48 sequences
identified in the CAZy database increases dramatically. Till December 2022, the GH48 fam-
ily contains 1595 known protein sequences, of which 95.6% are from bacterial organisms,
3.7% are from eukaryotes including Fungi and Arthropoda, and even 4 sequences from
viruses. Of the more than 1500 bacterial GH48 genes currently predicted, only 20 have been
characterized, indicating a vast untapped resource of GH48 enzymes (Figure 1). About
40.6% of the sequences are from uncultured and unclassified bacteria. The bacterial GH48 is
known to be expressed by more than 70 genera, mainly distributed in two terrabacteria
groups, Actinobacteria and Firmicutes, and also, a few from Proteobacteria, Bacteroidota,
and Chloroflexi. Metagenomic data analysis indicated that the GH48-type enzymes of three
closely related phyla, Actinobacteria, Firmicutes, and Chloroflexi, may have originated
from a common ancestor; meanwhile, fungi, insects, and Proteobacteria may receive their
GH48 genes horizontally from Firmicutes and Actinobacteria [25]. Surprisingly, GH48 fam-
ily genes have been identified from several polyphagan coleopterans, especially from the
two superfamilies (Chrysomeloidea and Curculionoidea) [48]. This finding confirmed
the possibility of their acquisitions by horizontal gene transfer rather than simple vertical
transmission from ancestral lineages of insects [48]. Besides, the GH48 family from insects
often exhibits chitinase activity instead of glucanase or cellobiohydrolase activity [25,48].



Fermentation 2023, 9, 204 4 of 15

Fermentation 2023, 9, 204 4 of 16 
 

 

gene transfer rather than simple vertical transmission from ancestral lineages of insects 
[48]. Besides, the GH48 family from insects often exhibits chitinase activity instead of glu-
canase or cellobiohydrolase activity [25,48]. 

The rumen is one of the most efficient cellulose degradation systems in nature, har-
boring abundant cellulose-degrading microorganisms that efficiently break down plant 
biomass to provide energy to the host animal [14]. Currently, in cultured rumen microor-
ganisms, reported GH48-producing bacteria mainly include R. albus, Ruminococcus flave-
faciens, Cellulosilyticum ruminicola, and Clostridium acetobutylicum, and anaerobic fungi in-
clude Neocallimastix patriciarum, Piromyces sp., and Piromyces equi. However, as about 77% 
of the ruminal microorganisms attached to solid fibers are considered to be uncultured, 
the GH48 cellulases in the rumen are underestimated [37]. Transcripts for GH48 cellulases 
are in a relatively high abundance in the metatranscriptomic analysis of the rumen micro-
biomes, accounting for 3.0% of CAZyme transcripts in a metatranscriptomic study of the 
fibrolytic microorganisms in the rumen of a cow fed a mixed diet [37,49]. The abundance 
and diversity of GH48 genes in the rumen may provide new gene resources for the effi-
cient degradation of cellulose. 

 
Figure 1. Distribution of GH48 sequences retrieved from the CAZy database. 

4. Structures of GH48 Cellulases 
As early as 1998, Parsiegla et al. reported the first crystal structure of GH48 cellulase, 

the catalytic domain of processive endocellulase Cel48F from C. cellulolyticum in complex 
with a thiooligosaccharide inhibitor [50]. Subsequently, they reported structures of native 
and mutated Cel48F in complex with the cello-oligosaccharides, hemithiocellooligosac-
charide, and thio-oligosaccharide inhibitors (Table 1) [51,52]. Currently, 26 structures of 
11 unique GH48 cellulases including Cel48F, CelS from C. thermocellum, ExgS from Clos-
tridium cellulovorans, TfCel48A from T. fusca, two GH48s from Caldicellulosiruptor genus, 
three GH48s from Bacillus genus, and HcheGH48 from Hahella chejuensis. Most of them are 
exocellulases, except for Cel48F, which is a processive endocellulase. 

Table 1. Characterized and structure-determined GH48 cellulases. 

GH48s Activities Origin PDB Code (Ligand) Form Reference 

CelS (Cel48S) Exocellulase 
C. thermocellum 

DSM1313 5YJ6  cellulosomal [53] 

CelS (Cel48A) Exocellulase  C. thermocellum F7 
1L1Y(cellobiose), 1L2A (cellobiose, cel-

lohexaose) cellulosomal [54] 

Figure 1. Distribution of GH48 sequences retrieved from the CAZy database.

The rumen is one of the most efficient cellulose degradation systems in nature, har-
boring abundant cellulose-degrading microorganisms that efficiently break down plant
biomass to provide energy to the host animal [14]. Currently, in cultured rumen microorgan-
isms, reported GH48-producing bacteria mainly include R. albus, Ruminococcus flavefaciens,
Cellulosilyticum ruminicola, and Clostridium acetobutylicum, and anaerobic fungi include
Neocallimastix patriciarum, Piromyces sp., and Piromyces equi. However, as about 77% of
the ruminal microorganisms attached to solid fibers are considered to be uncultured, the
GH48 cellulases in the rumen are underestimated [37]. Transcripts for GH48 cellulases
are in a relatively high abundance in the metatranscriptomic analysis of the rumen micro-
biomes, accounting for 3.0% of CAZyme transcripts in a metatranscriptomic study of the
fibrolytic microorganisms in the rumen of a cow fed a mixed diet [37,49]. The abundance
and diversity of GH48 genes in the rumen may provide new gene resources for the efficient
degradation of cellulose.

4. Structures of GH48 Cellulases

As early as 1998, Parsiegla et al. reported the first crystal structure of GH48 cellulase,
the catalytic domain of processive endocellulase Cel48F from C. cellulolyticum in complex
with a thiooligosaccharide inhibitor [50]. Subsequently, they reported structures of native
and mutated Cel48F in complex with the cello-oligosaccharides, hemithiocellooligosac-
charide, and thio-oligosaccharide inhibitors (Table 1) [51,52]. Currently, 26 structures of
11 unique GH48 cellulases including Cel48F, CelS from C. thermocellum, ExgS from Clostrid-
ium cellulovorans, TfCel48A from T. fusca, two GH48s from Caldicellulosiruptor genus, three
GH48s from Bacillus genus, and HcheGH48 from Hahella chejuensis. Most of them are
exocellulases, except for Cel48F, which is a processive endocellulase.

Table 1. Characterized and structure-determined GH48 cellulases.

GH48s Activities Origin PDB Code (Ligand) Form Reference

CelS (Cel48S) Exocellulase C. thermocellum DSM1313 5YJ6 cellulosomal [53]

CelS (Cel48A) Exocellulase C. thermocellum F7 1L1Y(cellobiose), 1L2A
(cellobiose, cellohexaose) cellulosomal [54]

Cel48Y Exocellulase C. thermocellum ATCC 27405 free-cellulase [55]

Cel48S Exocellulase C. thermocellum ATCC 27405 cellulosomal [56]
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Table 1. Cont.

GH48s Activities Origin PDB Code (Ligand) Form Reference

CelY Exocellulase Clostridium stercorarium free-cellulase [57]

GH48 Exocellulase Clostridium clariflavum
DSM 19732 cellulosomal [58]

CpCel48 Exocellulase Clostridium phytofermentans ISDg free-cellulase [59]

ExgS Exocellulase Clostridium cellulovorans
ATCC 35296

4XWL (PEG), 4XWM (cellobiose),
4XWN (cellobiose, cellopentaose) cellulosomal [26]

Cel48F Processive
endocellulase C. cellulolyticum H10

1FCE (inhibitor IG4), 1F9D
(cellotetraose), 1FBW (cellohexaose),
1FAE (cellobiose), 1FBO (cellobiitol),

1F9O (inhibitor PIPS-IG3), 1G9G
(glucose), 2QNO (thiocellodecaose),
1G9J (hemithiocellooligosaccharide)

cellulosomal [50–52]

CbCel48A Exocellulase C. bescii DSM 6725 4EL8, 4L0G (cellobiose),
4TXT (cellotriose), 4L6X multi- module [41]

Cdan_2053 Cellulase Caldicellulosiruptor danielii 6D5D (cellobiose) multi-module [15]

BlCel48B Processive
cellulase Bacillus licheniformis DSM 13 7KW6 (cellobiose, cellotetraose) free-cellulase [28]

BpCel48 Cellulase Bacillus pmilus SAFR-032 5BV9 (cellobiose), 5CVY (cellobiose,
cellohexaose) free-cellulase [17,60]

BpGH48 Cellulase Bacillus pmilus SH-B9 5VMA (cellobio-derived
isofagomine) free-cellulase To be

published

TfCel48A Exocellulase T. fusca YX 4JJJ (cellobiose, cellohexaose) free-cellulase [61]

HcheGH48 Cellulase H. chejuensis KCTC 2396 4FUS (cellobiose) free-cellulase [25]

CbhB Exocellulase Cellulomonas fimi ATCC 484 free-cellulase [62]

Cel48A Exocellulase C. ruminicola H1 free-cellulase [63]

Cel48 Exocellulase Myxobacter sp. AL-1 free-cellulase [64]

Cel48C Exocellulase Paenibacillus sp. BP-23 free-cellulase [65]

All these GH48 structures exhibit similar overall fold, with the Cα RMSD values
ranging from about 0.5 Å to 0.7 Å by superimposing CelS to other GH48 cellulases. They
share a typical (α/α)6 barrel consisting of an inner core of six mutually parallel α-helixes
(helices with even numbers) and an outer shell of six peripheral α-helixes (helices with odd
numbers), and the N-terminus of each inner helix is connected by long loops, additional
helices, or sheets to the C-terminus of one outer helix (Figure 2A). The catalytic residues are
located in the N-terminal region of two inner helices, while most substrate-binding residues
are located on the additional elements which form a layer covering the barrel. The covering
elements may play roles in modulating the function of GH48 enzymes. BpCel48 from
Bacillus pumilus exhibits eight longer loops compared to other GH48 structures. Structural
overlay revealed that all three GH48 enzymes from Bacillus sp. feature these extra loops
(Figure 2B). Molecular dynamics simulations indicated that BpCel48 loops near the tunnel
exit do not affect product inhibition. However, these loops are speculated to be responsible
for the lower thermostability of BpCel48 by being more exposed to solvent [17,60]. A recent
study indicates that two extra longer loops (loop2 and loop6) located at the exit of the
active site in BlCel48B act as an extension of the catalytic pocket and form a platform
for product anchoring at the exit from the open-cleft part of the active site [28]. Among
these GH48 structures, HcheGH48 is more special as it is from Proteobacteria, whose
gene is believed to be obtained by horizontal gene transfer [25]. Consistent with the gene
transfer statement, the structure of HcheGH48 is almost identical to other GH48 structures.
Besides, a structural element termedω-loop located between residue Pro469 and Ala482
(as in Cel48F) in all cellulases is proposed to distinguish cellulases and non-cellulases from
insects (i.e., chitinases) coded by horizontally transferred GH48 genes.



Fermentation 2023, 9, 204 6 of 15Fermentation 2023, 9, 204 7 of 16 
 

 

 
Figure 2. Structure and substrate sites of GH48 cellulase. (A) The overall structure of GH48 cellulase, 
CelS (PDB entry 5YJ6). The core (α/α)6 barrels are colored red and violet, and the additional second-
ary structures are gray. The helices of the inner barrel with even numbers are in red while the helices 
of the outer barrel with odd numbers are shown in violet. (B) Superimposition of CelS (PDB entry 
5YJ6, orange) and three Bacillus GH48 cellulases (PDB entry 5WMA, marine; PDB entry 5BV9, cyan; 
PDB entry 7KW6, gray). The extra loops of Bacillus GH48s are indicated by red arrows. (C) The 
substrate sites of GH48 cellulase. The cellobiose in subsites +1 and +2 and cellohexaose in subsites 
−2 to −7 in CelS-cellohexaose are shown in deep purple (PDB entry1L2A). The thiocellodecaose lo-
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2QNO). The figure was prepared using PyMOL (Schrödinger). 
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biose. The cleavage site is located between subsite −1 and subsite +1. Then, the produced 
cellobiose exits from an open shallow cleft located after the tunnel and is released into the 
aqueous environment [17,66]. Upon product release, the subdomain that forms the open 
cleft at the reducing end of the substrate is supposed to rearrange to facilitate the linear 
sliding of the uncleaved cellulose chain from the tunnel to subsites +1 and +2. In turn, 
substrate occupation of the +1 and +2 positions will trigger a reverse conformational 
change of the (α/α)6–helix barrel, inducing substrate kinking and subsequent catalysis 
(Figure 3). This is the so-called “substrate-control” mechanism [27,52]. At some point, the 
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Figure 2. Structure and substrate sites of GH48 cellulase. (A) The overall structure of GH48 cellulase,
CelS (PDB entry 5YJ6). The core (α/α)6 barrels are colored red and violet, and the additional
secondary structures are gray. The helices of the inner barrel with even numbers are in red while the
helices of the outer barrel with odd numbers are shown in violet. (B) Superimposition of CelS (PDB
entry 5YJ6, orange) and three Bacillus GH48 cellulases (PDB entry 5WMA, marine; PDB entry 5BV9,
cyan; PDB entry 7KW6, gray). The extra loops of Bacillus GH48s are indicated by red arrows. (C) The
substrate sites of GH48 cellulase. The cellobiose in subsites +1 and +2 and cellohexaose in subsites
−2 to −7 in CelS-cellohexaose are shown in deep purple (PDB entry1L2A). The thiocellodecaose
located at subsites +2 to −7 in CelF E55Q/thiocellodecaose complex are colored in gray (PDB entry
2QNO). The figure was prepared using PyMOL (Schrödinger).

Structures of GH48 enzymes in complex with oligosaccharides revealed the active-site
topology, generally featuring a tunnel-like substrate binding part (subsites named −7 to
−1) and an open-cleft product binding part (subsites named +1 and +2) (Figure 2C). In most
complex structures, the tunnel-shaped active site is occupied by cello-oligosaccharides, and
the cleft part is bounded by cellobiose in subsites +1 and +2 after the cleavage site. Never-
theless, another subsite +3 is surmised in the complex of the inactive mutant E55Q of CelF
and cellohexaose or cellotetraose, indicating that there is sufficient sugar-binding potential
at the tunnel exit [51]. Residues constituting the tunnel are quite conserved. In the statistics
of the five GH48 enzymes, including BpCel48, CbCel48A, TfCel48A, CelS, and Cel48F,
27 residues of 36 that represent the tunnel walls and contact with the substrate/product are
universally conserved and most of the rest are highly conserved [60]. A large content of
the conserved residues is aromatic residues, as well as several charged residues, including
Arg, Asp, and Glu residing along the tunnel exit [17]. The aromatic residues interact and
stabilize the cellulose chain along the tunnel length by stacking interactions with the sugar
moieties. These aromatic residues are supposed to serve as lubricating agents to reduce the
sliding barrier in the processive action [51]. Further studies confirm their essential roles in
the molecular recognition of insoluble cellulosic substrates as their mutants dramatically
affect the enzyme hydrolysis rate and processivity [17,61].
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5. Catalytic Mechanism

Although GH48 exocellulases were reported to be able to initiate hydrolysis from either
reducing or nonreducing end of the cellulose chain, all characterized GH48s are reducing
end-acting cellobiohydrolases. In general, after recognition, GH48 cellulases acquire the
reducing end of a cellulose chain into its active site tunnel. Subsequently, the cellulose
chain processes through the tunnel till the position for hydrolysis. The hydrolysis reaction
occurs at every two glycosidic bonds, and the product of this process is cellobiose. The
cleavage site is located between subsite −1 and subsite +1. Then, the produced cellobiose
exits from an open shallow cleft located after the tunnel and is released into the aqueous
environment [17,66]. Upon product release, the subdomain that forms the open cleft at
the reducing end of the substrate is supposed to rearrange to facilitate the linear sliding
of the uncleaved cellulose chain from the tunnel to subsites +1 and +2. In turn, substrate
occupation of the +1 and +2 positions will trigger a reverse conformational change of the
(α/α)6–helix barrel, inducing substrate kinking and subsequent catalysis (Figure 3). This is
the so-called “substrate-control” mechanism [27,52]. At some point, the enzymes dissociate
from the cellulose substrate, stopping the processive cycle.
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Figure 3. The hypothetical model of the processive action of GH48 cellulases [27,54]. The sugar
moieties of cellulose are represented by green hexagons. The catalytic acid and base are shown
in light orange shades, the nucleophilic-attacking water molecule is drawn as a blue sphere. Two
important residues (Trp417 and Met414 as in Cel48F) contributing to the conformational changes
are colored green (hydrolyzing conformation) and pink (sliding conformation), respectively. Some
of the residues consisting of the channel are also indicated. The figure was prepared in Microsoft
PowerPoint with molecular structure pictures generated by ChemDraw (PerkinElmer).

The catalytic mechanism that GH48 cellulases adopt is a concerted, inverting mecha-
nism and a pair of carboxylic residues are required. In particular, one residue (glutamic
acid) generally acts as a catalytic acid providing a proton, and the other (aspartic acid) acts
as a catalytic base to activate the nucleophilic-attacking water molecule [27,67]. The average
distance between the acid and the base should be approximately 10 Å [66]. The key catalytic
residues have been identified in many reported GH48 cellulases. For instance, Glu87 and
Asp255 act as a general acid and a general base in the catalytic function of GH48 CelS,
and they are equivalent to Glu50 and Asp222 in C. cellulovorans exoglucanase ExgS, re-
spectively. Specifically, in the ExgS–cellobiose structure, the O1 atom of Asp222 bridges
the C1 atom of subsite −1 through one water molecule (W1), and it was proposed that
after the removal of an H atom from water W1 by Asp222, the resulting hydroxyl group
attacks the anomeric C atom at subsite −1, which contributes to the mechanism of hy-
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drolysis. In Cel48F from C. cellulolyticum, Glu55 is a confirmed catalytic acid and two
possible candidates Asp230 and Glu44 are proposed as the base. The results of molecular
dynamics simulations indicated that Asp230 acts as the base and Glu44 also plays a crucial
role to maintain the proper conformation of the substrate to ensure a successful cleavage
reaction [27,66]. Besides, Met414 and Trp417 constitute the water-control system, and
some hydrophobic residues are supposed to reduce the sliding energy barrier or provide a
hydrophobic environment to prevent surrounding water molecules from entering the active
site. Therefore, except for the key catalytic residues, other hydrophilic or hydrophobic
residues including aromatic entrance residues also have significant effects on the catalytic
process. Still, much remains to be understood about the molecular mechanisms underlying
the progressive action of GH48 cellulases. For example, it is reported that the neighboring
water molecules move into the void left by the product after the product expulsion, but how
this water traffic signal is communicated to the substrate movement remains unclear [29].

6. Strategies and Progress of Engineering GH48 Cellulases

Compared with other family cellulases, GH48 cellulases exhibit relatively low specific
activity on cellulose in assays in vitro. Three main factors are speculated to be responsible
for the low enzymatic activities of GH48s: the inefficient acquisition of cellulose by the
tunnel entrance, the slow processivity of the cellulose substrate in the tunnel, and the end-
product inhibition [17]. A fundamental factor affecting the enzymatic activity of GH48 is
the substrate properties. A comprehensive study of enzymatic properties of the processive
BlCel48B cellulase from B. licheniformis indicates that the heterogeneity and structural nature
of cellulose substrates, including substrate size and morphology, impact the substrate
affinity, cleavage patterns, processivity, and hydrolytic efficiency of BlCel48B [28]. In
addition, other cellulases are reported to be strongly influenced by the ratio between
the average free path for cellulase processive dislocation after one catalytic step and its
processivity, as well as by the physical and chemical structure of the substrate [28,68,69].
The end-product cellobiose has been reported to strongly inhibit the activity of several
GH48 cellulases, such as C. thermocellum CelS [70] and T. fusca Cel48A [71].

Various factors are reported to influence the product binding affinity, such as the
pH of the solution, the type of the product, and the enzymatic environment [29,72,73].
The product inhibitory effect of four GH48s has been quantitatively evaluated, with CelS
exhibiting the highest product inhibitory level, followed by BpCel48, CelF, and CbCel48A.
A series of single mutants with theoretically reduced levels of product inhibition have also
been proposed [17]. For the well-studied Cel48F, a hydrogen bond rearrangement that
reduces the sliding barrier and stimulates the product to move toward the exit is important
for the product release progress. This provides clues and directions to the modification or
the mutation of cellulase to enhance the catalytic activity [27,66].

Effects on improving the enzyme secretion and stability have also been made to
enhance GH48 enzymatic activity on cellulose. A PelB signal peptide mediating post-
translational secretion has been attached to the N-terminal end of CelS (P-Cel48S) and
allowed catalytically active Cel48S to be successfully produced in the culture medium of
recombinant Escherichia coli [74]. Meanwhile, recombinant Cel48S via the co-translational
pathway (attached with a DsbA signal peptide) yielded a 2.2-times higher specific activity
than that associated with P-Cel48S expression. A set of Cel48 chimeras created from
the catalytic domains of three native Cel48 enzymes CelF, CelS, and CelY by structure-
guided recombination have been evaluated and subsequent sequence-function analysis
demonstrates a high degree of additivity in the sequence–stability relationship, and this
will help to predict highly stable and active Cel48 enzymes [75].

In addition to product inhibition, the sliding of the substrate into the active site is
another crucial step in cellulose degradation. Recently, nonequilibrium molecular dynamics
simulations are carried out to investigate the energetics and mechanism of the substrate
dynamics and product expulsion in CelS. The results indicate that product removal is
relatively easier and faster than the sliding of the substrate to the catalytic active site [29].
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Therefore, the details of the substrate passage in the processive action of GH48s will
be another noteworthy entry point to the rationale design of enzymes with better yield
and performance.

7. Synergistic Effects of GH48 Cellulases with Endocellulases

Synergism between different cellulases was reported as early as 1950 [76]. In the
classical synergistic action, endocellulases attack the amorphous part of cellulose, creating
more chain ends for exocellulases to attack. In turn, the exocellulase activity exposes new
amorphous regions in the bulk substrate, thereby further stimulating subsequent endo-
cellulase activity [77,78]. Although GH48 exocellulases exhibit relatively low hydrolysis
activities, they often act in synergy with endocellulases, for example, GH9 endocellulases,
which dramatically increase their performance on crystalline cellulose. According to the
form of cellulases, there are three types of synergistic systems between GH48 cellulases
and endocellulases (Figure 4) [79]. The most common one is the intermolecular synergy
resulting from the complementary function of separate GH48 cellulases and endocellulases
which exists mainly in the free cellulase system used by cellulolytic fungi and bacteria.
For instance, TfCel48A has been shown to synergize well with a processive endocellulase
TfCel9A and other T. fusca cellulases [47,80]. The addition of Cel48A to a balanced mixture
of T. fusca endocellulase and exocellulase led to improved hydrolytic activity [71].
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The second type of synergism refers to multifunctional cellulases utilizing intramolec-
ular synergy between nearby exo- and endocellulase catalytic modules tethered into a
single gene product. This synergism type is widespread in some cellulolytic bacteria,
represented by Caldicellulosiruptor sp. [46]. The most extensively studied multifunctional
cellulase is CelA from C. bescii containing an N-terminal GH9 endoglucanase module and
a C-terminal GH48 endoglucanase module separated by three family 3 cellulose-binding
modules (CBMs) (GH9-CBM3c-CBM3b-CBM3b-GH48) [38]. CelA is one of the most highly
expressed proteins in the extracellular proteome of C. bescii [41,45,81] and displays a high
efficiency in hydrolyzing crystalline cellulose, which is attributed to the increased in-
tramolecular synergy with the proximity of chain-end-forming endoglucanase and an
efficient cellobiohydrolase in the same molecule [41]. Homologs of the CelA gene are
widely found in the genomes of most cellulolytic members of the genus Caldicellulosiruptor.
Besides, the GH48 module, CbCel48B of multimodule CelC from C. bescii is demonstrated to
work synergically with the GH10 module CbXyn10C, a xylanase module, to hydrolyze both
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cellulose and xylan [38]. The synergistic hydrolysis of xylan is dependent on the covalent
linkage of the two domains in the same polypeptide, while the synergy effect can take place
both intra- and intermolecularly in hydrolyzing cellulose. Furthermore, CbXyn10C can also
cooperate with the GH48 domain of both CelA and CelF. The combination of GH10 and
GH48 domains in a protein is also reported in five other Caldicellulosiruptor species that can
efficiently degrade lignocellulose [39,82,83].

The third type of synergism is a tethered multi-enzyme proximity-dependent synergy
observed in cellulosomes. Cellulosomes are multienzyme complexes produced by anaero-
bic cellulolytic bacteria for the degradation of lignocellulosic biomass [7,84]. Cellulosomes
are composed of various dockerin-containing enzymatic subunits and cohesin-containing
structural subunits termed scaffoldins. Multiple catalytic enzymes are integrated into
the complex through the strong specific non-covalent interactions between dockerins and
cohesins [85,86]. C. thermocellum is the first reported cellulosome producer and its cel-
lulosome integrates more than 70 enzymatic subunits with the most abundant subunits
including exoglucanases Cel48S and endoglucanases Cel9Q, Cel9R, and Cel5G [19,87].
Besides, GH48 exoglucanases displaying distinct synergies with different GH9 enzymes
are observed in the cellulosomes from C. cellulolyticum [88] and Ruminococcus champanel-
lensis [89]. Nevertheless, extensive intra- and inter-molecular synergies and the physical
proximity of enzymatic components are determined to be critical for the high efficiency
of cellulosomes. An artificial minicellulosome constructed with a modified Cel48S and
multi-endoglucanases (GH8 and GH9) demonstrates the high conversion of crystalline
cellulose at a high temperature of 60 ◦C [79].

8. Conclusions and Outlook

Members of the GH48 family are broadly distributed, mainly in bacteria but also in
Fungi and Arthropoda [25]. Genomics and metagenomics have revealed a large number of
GH48 sequences, demonstrating the prevalence of GH48 enzymes in various lignocellu-
lolytic systems. It is agreed that GH48 cellulases are among the most abundant CAZymes
and play a key role in processes associated with lignocellulose biorefinery, but the function
and activity of these GH48 enzymes remain uncharacterized. The available structures of
various GH48 cellulases provide key information for their catalytic mechanism, substrate
recognition, product inhibition, stability, and even evolution. In light of the structures of
GH48 cellulases with or without the oligosaccharides, extensive engineering efforts have
been made to improve thermal stability, reduce end-product inhibition, and explore the
mechanism of product expulsion. GH48 cellulases synergize greatly with the complemen-
tary endocellulase intra- or inter-molecularly to improve their performance, providing
great values in lignocellulose biorefinery, but the mechanism of synergistic effects has not
been fully understood.

Despite the great importance of GH48 enzymes in lignocellulose-degrading systems,
the knowledge of these enzymes is still far from complete. Among a large number of
GH48 sequences available in the database, only a few of them have been functionally
and structurally characterized. The catalytic mechanism, particularly the progressive
mechanism and product-releasing mechanism, are still not clear. The current information
about the mechanism of synergistic effects of GH48 and other family GHs in different
cellulolytic systems is still very limited and mostly descriptive. Compared to other GH
families, the engineering studies of GH48 enzymes are much less and lack depth and width.
One reason is that the recombinant expression of GH48 cellulases in E. coli often results in
the formation of inclusion bodies [43,90]. Although both the refolding of GH48 enzymes
from the inclusion bodies and direct purification of GH48 enzymes from their original
species have been reported in the literature [43,53], the complexity of these methods makes
the high-throughput screening of engineered mutants difficult and infeasible. The activity
assays of GH48 enzymes often use crystalline cellulose as the substrate and generate
cellobiose as the product, leading to difficulty in spectroscopy determination and time-
consuming analysis is indispensable. The development of new methods to obtain soluble
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expression of GH48 enzymes and the design of convenient assays for cellulase activity
are needed. Therefore, in the future, the research and exploration of GH48s for practical
utilization in lignocellulose biorefinery should focus on the following aspects: mining
and characterizing new GH48s, thoroughly understanding the relationship between the
structure, dynamics, and functions (particularly the progressive activity and product
inhibition) of GH48 enzymes, engineering GH48 enzymes to improve the properties, and
designing and developing new biocatalytic system employing the elaborate synergistic
effects between GH48 and other family enzymes. Recent progresses in artificial intelligence
for multi-omics analysis, protein structure prediction, protein design, and laboratory
automation will accelerate the theoretical research and applicational technique development
of the important but lagging GH48 enzymes, promoting their key roles in lignocellulose
biorefinery for a future green circular economy.
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